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Abstract 
 
We describe a new transform for signal processing applications, and explain its basis using multiplicative number 
theory. Applying this transform, any signal can be resolved into its transformed spectrum in less than 
2N(1 + logeN) computations, where N is the number of signal samples. Re-synthesis of the signal from the trans-
formed spectrum also takes about the same number of computations. We also discuss the likely applications of 
this new transform and outline recommendations for further research. 
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1. Introduction 

Let N samples of a discrete time signal be denoted by the vector s = [s(1), s(2), …, s(N)]T. 
Let a transform of s be defined through the relation 

  
1

or ( ) ( ),,      .
N

ij
j

i A x js A x s
=

= = ∑  (1) 

where A is a nonsingular N × N matrix. In the above, i and j are the row and column num-
bers. 

 In this paper, we are concerned with a particular type of transformation matrix A whose 
elements are expressed as  

  ( / ),ijA f i j=     (2) 

where i/j denotes the ceiling of the number i/j, and f (m) is any arithmetic function subject 
to the constraints f (1) ≠ 0 and f (1) ≠ f (2). An arithmetic function f (m) is defined as any 
complex-valued function that vanishes when m is not a finite non-negative integer [1–3].  

 The class of matrix A, stated above, has some special characteristics: 

(a) A is a square N × N matrix with at least 2 and at most N distinct entries f (1), f (2), … 
f (N), with f (1) ≠ 0, f (2) ≠ f (1). 
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(b) In the nth row of A, the last (N – n + 1) elements are equal to f (1), the proceeding  
n – n/2 elements are equal to f (2), the preceding n/2 – n/3 elements are equal to 
f (3), etc. 

(c) The entry f (m) appears n/(m – 1) – n/m times consecutively in the nth row if m ≤ n. 

(d) The entry f (m) does not appear in the nth row if (i) m > n or if (ii) m < n and  
n/(m – 1) – n/m = 0. 

For the restrictions stated on the arithmetic function f (m) in eqn (2), the nonsingularity of 
matrix A is ensured by the fact that a sequential subtraction of the rows of the matrix leads 
to 

 ( 1)det[ ] (1) { (1) (2)} .. NA f f f −= −  (3) 

To compute the spectral coefficients {x ( j), j = 1,..., N} of the signal s, we need to evaluate  

  X = A–1.s = B.s. (4) 

Thus, the problem of spectral decomposition is reduced to computation of inverse matrix B. 
We shall refer to the transform defined by eqn (4) as number-theoretic transform, since sev-
eral of its properties are derived through the application of multiplicative number theory [4, 
5]. 

 During the investigation of the problem by numerical matrix inversion, it was discovered 
that the structure of matrix B is surprisingly simple and sparse. In addition, as it is shown 
later in the paper, the inverse matrix B has at the most 2N(1 + logeN) nonzero entries. Fur-
ther investigation also revealed that most of the entries of matrix B are repetitive and they 
can be computed without an explicit inversion of matrix A. 
 
2. Some definitions 

The matrix transformation we are dealing with is characterized by the selected arithmetic 
function. Any arithmetic function that satisfies the restriction stated in eqn (2) can be used. 

 The Dirichlet product (or multiplicative convolution) of any two arithmetic functions  
f (m) and g(m) is defined as [4] 

 

1 1

( / ). ( ) ( ). ( / ) ( ) ( ),
k m k m
k m k m

f m k k f k m k f m g mg g

≤ ≤ ≤ ≤

≡ ≡ ⊗∑ ∑  (5) 

where k|m denotes k divides m. The complimentary symbol k |/ m denotes k does not divide 
m, which is used or implied elsewhere in the paper.  Also in the above, the symbol ⊗  de-
notes the multiplicative convolution. This convolution has commutative and associative 
properties [5]. 

 Two arithmetic functions, f(m) and g(m), are said to be Dirichlet inverses of one another 
if they satisfy the condition 

  ( ) ( ) ( , 1),f m g m mδ⊗ =   (6) 



A NUMBER-THEORETIC TRANSFORM FOR SIGNAL PROCESSING 793

where δ(i,j ) = 1, for i = j and is zero otherwise [6]. 

 The Dirichlet transform of an arithmetic function f (m) is defined as 

  
1

( ) ( ).
m

s
F s f m m

−

≤ ≤∞

= ∑   (7) 

where s is a complex variable. The transform is defined only over that region of the com-
plex s plane where the infinite sum in eqn (7) converges.  

 A necessary and sufficient condition for the convolution (6) to hold [6], i.e. the necessary 
and sufficient condition for any two arithmetic functions to be Dirichlet inverse is 

  ( ). ( ) 1 ( ) ( ) ( , 1).F s G s f m g m mδ≡ ⇔ ⊗ =  (8) 

 
3. An elementary arithmetic identity 

Next, I establish an elementary arithmetic identity which is invoked in our later analysis. It 
establishes a relationship between any finitely bound function f (i/j) and the correspond-
ing arithmetic function f (i/j). 
 
Theorem 1: Any  function f (i/j) whose indices i and j are positive integers, and the cor-
responding arithmetic function f (i/j), satisfy the identity 

  { / } { ( 1) / } { / } {( / ) 1}.f i j f i j f i j f i j− + ≡ − +        (9) 

Proof (outline): Since f (i/j) is an arithmetic function, the left-hand side of the above 
identity is zero (0) whenever |/j k ; i.e. the left-hand side vanishes in such cases. The valid-
ity of the identity can be readily verified in only two other cases, namely, (j|i; j = 1) and (j|i; 
j > 1). ¨ 
 
4. Inverse transformation matrices; B 

Using the above definition of Dirichlet inverses, we state and prove the following inverse 
transformation matrix theorem.  
 
Theorem 2: The inverse of the matrix Aij = f (i/j) is 

  ( ) ,
1

{ / } { /( 1)}, if 1

1 ,
. ,1 , if

(1)
ij

l j
l N

g i j g i j i N

B
j B i N

f
δ

≤

− − ≤ < 
 =  − = 
 

∑
≺

 (10) 

where g (m) is the Dirichlet inverse of the difference ( ) ( ) ( 1),f m f m f m= − +  i.e. 

  
|

( / ).{ ( ) ( 1)} ( ,1) ( ) ( ) ( , 1).
k m

g m k f k f k m g m f m mδ δ− + = ⇔ ⊗ =∑
 

(11) 
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Proof: Considering the product, 1 ,k N ik kjijC A B≤ ≤= ∑  we need to show that Cij = δ(i, j), the 
Kronecker delta function. For, 1 ≤ i < N manipulation of the summation indices and using 
the fact that g (m) vanishes when m is not a finite non-negative integer, yields 

  

1 1 1
1

1 <

. [ ( / ) { /( 1)}]. ( / )

( / ).[ { / } { ( 1) / }].

i j i k kj
i N k N k N
j N

k i
k N

C B A g i k g i k f k j

g i k f k j f k j

≤ ≤ ≤ ≤ ≤ ≤
≤ ≤

≤

= = − −   

= − +      

∑ ∑

∑
 (12) 

Using the identity (9) and the convolution (11), the above becomes 

  

1
1

/
( / ) .[ { / } {( / ) 1}] . ( / ).

/i j
i N j k i j k i
j N

i j
C g i k f k j f k j g f k j

k j≤ ≤ ≤ ≤ ≤ ≤
≤ ≤

 
= − + =  

 
∑ ∑

 

(13) 

For the last row of the product 

 
1 1 1 1

1 1

1
. . ( ,1) . ( / )

(1)

1
. ( 1/ ) . ( / ) .

(1)

Nj Nk kj l k
j N k N k N l N

l k
l N k N

C B A k B f k j
f

f j B f k j
f

δ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤

  = = −     
  
  = −       
  

∑ ∑ ∑

∑ ∑
≺

  (14) 

Using (13) in the above, and considering the cases j = N and j ≠ N, yields 

 
1 1 1

1 1

1 1 ( , ) 1 {1 ( , )} ( , ).Nj
j N l N l N

j N j N

l jC C l j N j N jδ δ δ
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

= − = − = − − =∑ ∑
≺ ≺

 (15) 

Combining (13) and (15), we have 

 ( , ) for 1 { , } .ijC i j i j Nδ= ≤ ≤  (16) 

This completes the proof. ¨ 
 
5. Structure of the inverse transformation matrix 

On examining the structure of g{i/j} and g{i/(j – 1)} in (10), we observe certain characteris-
tic sparse structure of the inverse transformation matrices: 

(a) For 1 ≤ i < N, the entries of the matrix are nonzero only when i/j or i/(j – 1) are finite 
integers, and g{i/j} and g{i/(j – 1)} are nonzeros. Some of the entries satisfying both 
these conditions may also be zero because of the cancellation of the g{i/j} and g{i/(j – 1)} 
terms. Matrix Bi,j may be viewed as the difference of two matrices having the same en-
tries but shifted by a column. 

(b) The last row of B is a negative summation of the other rows, with the exception of 
1/f (1) added to element BN1. 
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Next, we determine an upper bound of nonzero entries of B. For the entry g(i/j) = g(p) to be 
nonzero, p must be an integer. For i ≠ N, the number of g(p)s for each value of p is at the 
most (n – 1)/p. So is the case for g[i/(j – 1)].(1 – δj,1). The Nth row has at the most N en-
tries. Therefore, an upper bound of number of nonzero entries of B is 

 
, 0 1

1 { , }

1 2 ( 1) / 2 2( 1) log ( 1) 2 (1 log ).
i j

e e
B p N

i j N

N N p N N N N N
≠ ≤ ≤

≤ ≤

≤ + − ≤ + − − ≤ +  ∑ ∑  (17) 

 
6. Conclusions and recommendations for further research 

In this paper, we state and prove the key results of a new class of number-theoretic trans-
forms. We expect that this class of transform will find wide-scale application in signal 
processing, coding and encryption, design of telecommunication equipment and other ap-
plications.  Particular attractions of these transforms are their computational efficiency, and 
design flexibility through the choice of a variety of arithmetic functions. 

 One particular subclass of these transforms is called the alternating pulse transform. 
Here, any signal can be represented by unit-magnitude (i.e., alternating +1 and –1) uniform 
pulse-widths of 1, 2, 3,…, N. Comparable to the fast Fourier transforms (FFT), the alternat-
ing pulse spectra of a signal yield much useful information about its characteristics.  This 
work by the author is yet unpublished; it is available on request [7]. 

 Another remark about the transform described should be relevant for researchers in signal 
processing. The differential form of representation of the spectra as expressed in eqn (10) 
leads to a process of sequential computation of the signal spectra. That is, it is possible to 
construct a signal processor that will start computing the spectral coefficients as soon as the 
signal sample starts arriving; it is not necessary to wait for the entire block of signal to ar-
rive to start the spectral computation process. The relevant Dirichlet inverses required for 
computation of the spectrum can be pre-computed and stored. 

 Some of the applications of the new transform are likely to be in the following areas: 

(a) Signal processing and analysis:  The choice of the associated arithmetic function will 
decide the type of signal spectrum and the type of representation. Therefore, the 
arithmetic function chosen will depend on the specific signal-processing application. 

(b) Real-time coding, encryption and decryption: The transform’s efficacy in fast process-
ing of signals should make real-time applications attractive. Furthermore, sequential 
computation of the spectrum gives ability to generate nearly real-time spectrum of the 
signal. These facts should be of significance for small portable communication equip-
ment, e.g. cell phones, onboard satellite equipment. 

(c)  Efficient utilization of airwave telecommunication spectra: Applications for these are 
likely to be similar to that of code division multiplexing (CDM). The present crowding 
of the airwaves is likely to lead to the utilization of the new transform in quest of effi-
cient packing of users within the available bandwidth. 
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I dedicate this work on the new transforms to two of my gurus, with whom I had privilege 
to work and study.  My mentor at the Indian Institute of Science, Late Prof. Satish Dhawan 
[8] coaxed us to ‘be fascinated by un-chartered territories.’ My teacher at the University of 
Delhi, Late Prof. Daulat Singh Kothari [9], impressed on us that ‘every phenomenon be-
hoves an explanation.’ Undoubtedly, schooling of these inimitable gurus greatly influenced 
the reported work. 
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