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Abstract 

Surface/plane intersection problem is a special case of surface/surface intersection, and is an active area of re-
search across many disciplines in computer-aided geometric design. This paper presents, in general the setting of 
derivational continuities, (i.e. C0, C1, and C2), a surface/plane intersection algorithm for parametric Bézier trian-
gular surface over triangular domain. The present algorithm is a combinatorial algorithm that is based on a trac-
ing method, in which the intersection curves are traced out in the direction of tangent vectors at intersection 
points. The intersection curves are represented by their piecewise polynomial approximations, given by ordered 
pair of surface domain points. The aim is to obtain the smallest number of ordered points that correctly represent 
the topology of the true intersection curves. Since the points on the intersection curves are obtained in an ordered 
manner, no sorting is essential. The refinement of the intersection curve may include fitting an interpolatory cubic 
spline, or adding and deleting points. The method has been used to compute different planar sections (i.e. inter-
section curves with X, Y, and Z planes) for surfaces having different derivational continuities (i.e. C0, C1, and C2). 

Keywords: Bézier rational triangular patches, rational-triangular parametric surfaces, surface/plane intersection, 
surface directional tangent vectors, topological subdivision. 

 
1. Introduction 

In general context, surface/plane intersection problem is a special case of surface/surface 
intersection. This has various applications in CAD/CAM systems, computer graphics, sur-
face information systems, geographic information systems, etc. The computation of curve is 
required for different objectives in many industries, i.e. surface slicing for laminated object 
manufacturing and stereo lithography, NC tool path generation, intersection of hunting 
planes to evaluate machining information, and contour lines for geographical and informa-
tion models. Though it is computationally expensive to treat surface/plane intersection 
problem as a special case of surface/surface intersection rather than purely a planar cut 
problem, theoretically it is better because some of the ideas of the algorithm may be utilized 
to compute surface/surface intersection. The surface/surface intersection problem is consid-
ered to be one of the most basic but difficult problems in computer-aided geometric design 
(CAGD). However, it has been dealt extensively to obtain exact, robust, and efficient solu-
tions in general setting for surfaces. 
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 Triangular surfaces are important because in areas where the geometry is not similar to 
rectangular domain, the rectangular surface patch will collapse into a triangular patch. In 
such a case, one boundary edge may collapse into a boundary vertex of the patch, e.g. 
Wolter and Tuohy [1]. This may give rise to geometric dissimilarities, (e.g. shape parame-
ters, Gaussian curvature distribution, cross-boundary continuities, etc.) and topological in-
consistency. Furthermore, since a triangular patch (i.e. defined as a closed polygon) is a 
basic 2D figure in algebraic topology, any fairly irregular complex geometry can be effi-
ciently modeled/designed/regenerated with a triangular patch, e.g. Farin [2]. However, tri-
angular surfaces over triangular domain remain relatively unexplored as compared to 
rectangular surfaces over rectangular domain. 

 In the present work, we are interested in surface/plane intersection algorithm for paramet-
ric Bézier triangular surface over triangular domain. Since, in full generality, the curve trac-
ing in surface/surface intersection is a difficult problem, no infallible method is available 
either in general context or in general setting of derivational continuities. Instead of work-
ing with one special type of derivationally continuous surface (i.e. C0, or C1, or C2 continu-
ous) or concentrating on a specialized area in the general problem of surface/plane 
intersection, in this work we take a combinatorial approach that utilizes different ideas, and 
concentrate on general settings of derivational continuities (i.e. C0, C1, and C2 continuity). 
Our aim is to present a basic surface/plane intersection algorithm for parametric Bézier tri-
angular surface over triangular domain without any add-on feature.  

 We consider the non-self-intersecting surface/plane intersection problem as a special case 
of non self-intersecting surface/surface intersection. Basically, we compute surface/surface 
intersection, while defining the plane itself as a fixed domain surface. The planar surface is 
designed/modeled/defined over the plane as a fixed domain surface, where the domain is 
user-specified. This will ensure that within the bounds of the domain of the two surfaces, 
one surface and another planar surface for the plane, an intersection does exist. The algo-
rithm used in this work is based on a tracing method, in which the intersection curves are 
traced out in the direction of tangent vectors at intersection points. The intersection curves 
are represented by their piecewise polynomial approximations, given by ordered pair of surface 
domain points. The aim is to obtain the smallest number (i.e. in this work the number is be-
tween 2 and 23) of ordered points that correctly represent the topology of the true intersec-
tion curves. The algorithm presented is simple, but allows the correct computation of topo-
logy of the true intersection curves. This allows any complex and complicated feature (i.e. 
the computation of intrinsic properties such as unit tangent vector, curvature vector, binor-
mal vector, curvature, torsion, and higher­order transversal and tangential derivatives), re-
quired to further analyze the intersection curve to be suitably added. Since the points on the 
intersection curves are obtained in an ordered manner, no sorting is essential. We consider 
the computation of multiple intersection curves at one plane with multiple solutions of start-
ing point and for each starting point the intersection curve is traced separately. However, 
we do not include the computation of intersection curve with multiple branches (i.e. branch 
points, and bifurcation points), or lower and higher-order singularities in our surface/plane 
intersection algorithm. The surface/plane intersection algorithm presented in this work is a 
structured algorithm that allows better insight into the problem, and stepwise computations. 
This shall allow easy addition of any suitable add-on feature for future research. 
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 This paper is organized as follows. In Section 1, a brief description of the work is pre-
sented. The current state of the art has been reviewed in Section 2. The theoretical back-
ground and implementation of the surface/plane intersection is presented in Section 3. 
Numerical examples are discussed in Section 4. Section 5 concludes by identifying some 
future applications and scope of research. 

2. Brief review of the state of the art 

Normally, the surface/surface intersection approaches are classified into four groups: ana-
lytical, lattice evaluation, subdivision, and tracing (i.e. including numerical methods)-based 
methods. Of these four approaches, subdivision- and tracing-based methods are the most 
widely used because of their generality. In this section we concentrate on the review of the 
methods based upon subdivision and tracing. 

 Bajaj et al. [3] discuss a purely numerical approach that used a third-order Taylor ap-
proximation by taking steps of reliable lengths and the intersection curves are computed us-
ing the Newton iteration method. They also presented implemental techniques to address 
the problem of singularity, but, because of the implicit nature of the method it is suitable to 
only CAD systems in engineering where implicit surface definitions are used. Montaudouin 
et al. [4] presented a method in limited context for approximation of intersections for alge-
braic curves and surfaces. They used power series in approximation. Asteasu [5], and Gar-
rity and Warren [6] also worked on similar lines. 

 Houghton et al. [7] discuss a subdivision-based method. It is dependent on C0 linear sub-
divided surface approximations, which is a limitation in general context. Filip et al. [8] also 
worked on similar lines. Bürger and Schaback [9] presented a parallel algorithm using the 
divide-and-conquer (i.e. subdivision based) method with the analysis of its complexity. The 
method uses progressive refinement in interval search (e.g. Gregory [10]). Barnhill et al. 
[11] discuss a general well-structured surface/surface intersection algorithm for 1C  con-
tinuous surfaces in parametric rectangular domain. The algorithm computes the intersection 
curve stepwise, and hence allows a better insight into the problem. This allows any ‘add-
on’ feature to be integrated with the algorithm if the geometric constraints so demand. 
Later, Barnhill and Kersey [12] generalized the algorithm further by excluding explicit sur-
face definitions and including more geometric and topological definitions (i.e. evaluated 
surface positions and tangents). The method uses oriented bounding boxes (e.g. common 
with [7]) over the surface domain for selective subdivision and to get starting points. In 
similar line, Cugini et al. [13] present the concept of shrinking bounding boxes over the 
surface domain, and use conflicting bounding boxes to compute the starting points. Though 
the concept of bounding boxes is elegant, simple, and effective in many cases, it is pure 
geometric, and hence may miss the intersection points. 

 Abdel-Malek and Yeh [14] present a tracing method to compute the intersection curve for 
surface/surface intersection. The authors deal with solid surfaces (i.e. closed surface de-
fined over a solid) and represent a solid by a number of parametric surfaces (i.e. 

2 3( , ) :
i

A
SS u v U R R⊂ → , 

1 2 3
{ , , ,...},

i

A A A A
S S S SS S S S=  which is a differentiable map 

iS
AS  

from an open set U ⊂ R2 into R3). The authors define a solid surface over R3 scattered data, 
onto different open surfaces over R2 parametric plane. The implicit condition in the algo-
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rithm presented by the authors is that the vectors /
i

A
SS u∂ ∂  and /

i

A
SS v∂ ∂  are linearly inde-

pendent. The linear independency of these partial derivatives is essential to have a nonzero 
Jacobian (JC) of the surface SS(u, v). The requirement of a nonzero Jacobian (JC) of the sur-
face SS(u, v) is because if the Jacobian (JC) is zero then the computation of the inverse of 
the Jacobian (JC) is computationally expensive, and numerically unstable too. This implicit 
condition holds true only for a class of surfaces, which are higher-order continuous (i.e. 
Gn/Cn continuous for n ≥ 1), and do not have a tangent crack (i.e. surface which has C0 con-
tinuity overall or in hybrid setting of derivational continuities). Because of this, the formu-
lation presented is restricted to surfaces in engineering sciences that are nonflat, nonhybrid, 
and without a crack. Thus, the authors have only discussed the examples of analytical sur-
faces (i.e. nonflat higher-order continuous surfaces such as cylindrical and spherical sur-
faces). Additionally, the authors trace the curve with a purely numerical approach (i.e. 
incorporating extra constraints representing local differential geometrical properties such as 
tangent vector), and hence solve a system of highly nonlinear equations using a professional 
software (PITCONTM*). The solution of nonlinear equations generally is a complex, com-
plicated, and computationally expensive process, and hence for robustness specialized 
software is needed. Furthermore, the authors address the problem of singularity/bifurcation 
(i.e. the intersection curve having multiple branches), by relying upon the change in the 
sign of Jacobian (JC) of the surface, and the assumption is used in switching from one inter-
section curve branch to another of the same curve. This formulation holds true only for the 
cases when Jacobian (JC) of the surface is nonzero and nonconstant. In engineering sci-
ences, this is valid only for a class of surfaces that have a fair distribution of curvatures (i.e. 
cylindrical surfaces). For the objective of switching the authors use low rank deficiency in 
the Jacobian (JC) (i.e. if only the first-order Taylor expansion of the surface is zero and not 
the higher-order ones, then it is low rank). Numerically, rank deficiency of the Jacobian 
(JC) can only be tackled efficiently with analytical surfaces, and not with piecewise poly-
nomial surfaces. This is because for analytical functions the degree in the series expansion 
can be sufficiently large, while for piecewise polynomials the popular degrees are either 3 
or 4. As in the present work, piecewise polynomial surfaces are investigated we avoid, in 
our formulation, rank deficiency in the Jacobian (JC). 

 In recent years, research has been concentrated on the ‘loop detection’-based methods, 
e.g. Cheng [15], Kriezis et al. [16], Sederberg et al. [17], Sederberg and Meyers [18], and 
Sinha et al. [19]. In those techniques, one seeks the solution to sequential initial value prob-
lems. Each initial value problem terminates when the solution encounters one of the possi-
ble stopping points. Since it is impossible to estimate the parametric value at which such an 
encounter might occur, a heuristic approach is taken into the curve tracking/tracing scheme. 
This procedure in general depends upon prior setting of a few tolerances, a process that is 
dependent on the geometrical features of the surfaces. Since the choices are not obvious, it 
is not always easy to handle. 

 Grandine and Klein [20] approach this problem differently. Instead of working with ini-
tial value problem, the authors try to determine, in advance, which of the candidate stop-
ping points is the actual one, and set that prior to curve tracking/tracing. Hence, the authors 
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work with boundary value problem in place of initial value problem. The approach is re-
stricted heavily to a class of surfaces (i.e. in the author’s case tensor product surfaces) to 
which the computationally robust solution to a nonlinear system of equations exists. Again, 
the surface has to be C1 continuous, and if not, it needs to be subdivided into subsurfaces 
that are C1 continuous. The method can be extended to piecewise polynomial surfaces defined 
over triangular domain (i.e. those used in the present work) and irregularly shaped regions, 
and algebraic surfaces. Though the method computes excellent results in some cases, be-
cause of its restrictions and computational expenses, it cannot be applied in general context. 

 The ‘loop detection’ technique ensures that the different branches of the intersection 
curve will be computed. However, this technique does not ensure the correct topological 
computation of the intersection curve. Since, in interactive user environment in engineering, 
the correct topology of the intersection curve is important for interactive design this is a se-
rious restriction. In general context, only the marching, tracing, and curve tracking makes 
the computation of topological properties of the intersection curve an in-built feature in the 
procedure. Because of this reason ‘loop detection’-based techniques are considered a suit-
able add-on, but not a sole methodology in themselves.  

 In general, numerical algorithms require the computation of a starting point on/or close 
within specified tolerances to the intersection curve. Müllenheim [21] discusses an iterative 
procedure to compute a starting point close within specified tolerances to the intersection 
curve. Dokken [22], and Dokken et al. [23] present a surface/surface intersection based on 
recursive subdivision. Abdel-Malek and Yeh [24] present two iterative numerical algo-
rithms to compute the starting points in surface/surface intersection with their complexity 
analysis. The first numerical algorithm is an iterative, conjugate gradient-based optimiza-
tion technique. The second algorithm uses the Moore–Penrose pseudo-inverse of the con-
straint function to determine the starting point. 

 The recursive subdivision based on some type of global divide-and-conquer algorithms 
can continue till the problem reduces to a simple optimization problem within specified tol-
erances, for example, Dokken et al. [23]. Since optimization moves from global to local via 
subdivision, any error in subdivision at any level will continue and might affect the conver-
gence in the whole solution. Also, because of their global characteristics the subdivision-
based algorithms are slow and computationally expensive. The iterative methods consider 
the intersection problem in local context of the parametric domain. Hence these are fast and 
computationally efficient, and due to the same reason do not ensure the complete determi-
nation of multiple solutions. The Moore–Penrose pseudo-inverse, however, guarantees that 
if a solution exists, it will be computed within/closest to user-specified tolerance (i.e. initial 
guess). If multiple solutions exist, then the closest solution to the pre-specified initial guess 
will be found. 

 The subdivision is important on surfaces that occur normally in engineering sciences 
(discussed in Section 3.1.2.). The recursive subdivision methods are based on some type of 
pure geometric primitives. And, with each step of subdivision, the method loses information 
on the derivational continuities and subsequently the surface’s topological features too. It is 
simple and computationally efficient to continue the subdivision till the problem reduces to 
a simple optimization problem within specified tolerances. However, this restricts the use of 
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recursive subdivision methods to only a class of surfaces where derivational continuities are 
not of much importance (i.e. planar, flat, nearly flat surfaces, or surfaces having low Gaus-
sian or principal mean curvatures). Since these types of surfaces constitute only a small 
type of general surfaces in engineering sciences, this is a serious restriction. The subdivi-
sion can be based upon topological features that maintain not only derivational continuities 
but also convexity and other topological properties. This is desired in engineering sciences, 
and allows for a wide variety of surfaces to be included in the surface/surface intersection 
algorithm. 

 Almost all the methods mentioned above deal with rectangular surfaces defined over rec-
tangular domains. Both the methods (i.e. curve tracing and ‘loop detection’ technique) deal 
with prior setting of a few tolerances, a process that is dependent on the geometrical fea-
tures of surfaces, and is always difficult to handle in semi-automatic or fully automatic 
computation process. Because of this, in full generality, the surface/surface intersection 
problem based on either curve tracing or ‘loop detection’ techniques is a difficult problem, 
and hence no infallible method is available either in general context or in general settings of 
derivational continuities. Any algorithm involving tolerances can be defeated by suffi-
ciently ill-chosen examples. Thus, the surface/surface intersection problem is user-
specified, tricky, and involves sufficient, correct and flexible user inputs. More comprehen-
sive review on iterative and subdivision-based methods can be found in [23, 24] and on sur-
face/surface intersection algorithms in [10–12, 20, 25, 26]. 

3. The tracing method 

In this section, we present the surface/plane intersection algorithm considering it as a spe-
cial case of general surface/surface intersection problem. The algorithm used in this work is 
based upon three basic ideas: computation of starting point to initiate the algorithm (e.g. [14 
and 24]), topological subdivision of the surface to improve upon the aspect ratios of the 
discretized triangular elements/patches (e.g. Goldman [27]), and tracing along intersection 
curve in the direction of tangent vector in an ordered and structured manner (e.g. [12]). The 
structured algorithm includes two processing steps for obtaining intersection approxima-
tions: getting starting points on intersection curve, and trace along intersection curve. The 
compository structure of the algorithm used is the following: 

 
1. Getting start points 
 ¡ Subdivide the surface patches. 

2. Trace along intersection curve 
 l Get step vector. 
 l Relax point to an intersection. 
 l Relax points on to boundaries if desired. 
 l Identify branch points and tangent points if desired. 
  l Tolerances. 
 l Repeat for all start points. 

 The implementation program of the algorithm is briefly presented in the next section. 
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3.1. Getting start points 

Following [14, 24], let the equation of a surface parametrized in independent parameters u, 
and v be 

 SS (u, v) (1) 

with constrained parameters 

 u1 ≤ u ≤ u2 (2) 

 v1 ≤ v ≤ v2 (3) 

and let the equation of a plane defined as a fixed domain surface be 

 SPl (l, m) (4) 

with constrained parameters 

 l1 ≤ l ≤ l2 (5) 

 m1 ≤ m ≤ m2. (6) 

It may be noted here that SPl (l, m) is a planar and flat surface and has been defined as a C0 
continuous surface. SPl (l, m) may be defined as C1 or C2 continuous surface, but this will 
not change the nature of the numerical computations since a fixed domain surface for a 
plane will remain planar irrespective of the continuities imposed. Therefore, a planar sur-
face as C1 or C2 continuous surface will only affect a few entries via the incorporation of a 
constant valued column or row in the system matrices. This will not affect computations 
per se, and only increase the computational space. 

 For numerical computation, let us reparametrize the above constraints by the introduction 
of new generalized coordinate χi, in order that an inequality constraint in the form 

  maxmin
ii OOO ≤≤  (7) 

can be parametrized as 

  i
iiii

i
OOOO
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constraint. The intersection problem is considered as solving a system of seven nonlinear 
equations, in eight variables, and with the constraint function as 
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where P = [u v l m χ1 χ2 χ3 χ4] and the inequality constraints of eqns (2), (3), (5), and (6) 
are parametrized as per eqn (8). 
 
3.1.1. The Moore-Penrose pseudo-inverse method: The solution is desired for  

 ψP∆P = –ψ (10) 

where ψP is defined as the Jacobian of the constraint, i.e. .
Ρ∂

∂=Ρ
ψψ  

 There exist two different possibilities, 

• If the constraint subJacobian matrix is square, then eqns (9) and (10) comprise the con-
ventional Newton–Raphson iteration method (i.e. with quadratic convergence properties, 
e.g. Markot and Magedson [28]). 

• If the constraint equation (9) has more rows than columns, and the constraint subJacobian 
ψP has more columns than rows, and vice versa, then (10) will have more than one solu-
tion. Using the principle of minimum norm, (Haug et al. [29], and Noble and Daniel 
[30]); i.e. to find the solution of the minimization problem; 

  ∆Ρ∆ΡT

2
1min  (11) 

 ψP∆P = –ψ. (12) 

Applying Lagrange multiplier approach (i.e. appending a multiplier vector number of times 
the equation to be satisfied in the minimization function), we define 

 )(
2
1 ψψϕς +∆−Ρ∇∆Ρ= Ρ zTT . (13) 

For a solution to eqn (13) to exist, the gradient of the function in eqn (13) should be zero, i.e. 

 ∆PT = ϕT.ψP. (14) 

Transposing both sides in eqn (14), 

 P . ,Tψ ϕΡ∆ =  (15) 

and substituting in eqn (12), 

 .ψϕψψ −=ΡΡ
T  (16) 

If the subJacobian ψP has full row or column rank, then the coefficient matrix on the left 
hand side of eqn (10) is positive, definite, and nonsingular, and therefore 

 )()( 1 ψψψϕ −= −
ΡΡ
T . (17) 

Substituting in eqn (15) 

 )()( 1 ψψψψ −=∆Ρ −
ΡΡΡ
TT . (18) 

The coefficients of the right-hand side in eqn (18) are called Moore–Penrose pseudo-
inverse of the subJacobian ([30]). The equation can also be written as 
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 )(* ψψ −=∆Ρ Ρ  (19) 

where ψ*
P is the Moore–Penrose pseudo-inverse of the Jacobian ψP, and is defined as 

 1
P )(* −

ΡΡΡ= TT ψψψψ . (20) 

For numerical computation, let us define, 

 )()( 1 ψψψρ −≡ −
ΡΡ
T  (21) 

which is equivalent to the solution 

 .)( ψρψψ −=ΡΡ
T  (22) 

Solving eqn (22) numerically for ρ, and substituting in eqn (18), 

 .Tψ ρΡ∆Ρ =  (23) 

With the specification of initial Pi, the generalized set of coordinates is computed as 

 Pi + 1 = Pi + ∆P. (24) 

The method described above has the same quadratic convergence as the standard Newton–
Raphson method (e.g. [21]). And, using this method, the starting point P0 is computed with 
smaller number of iterations (i.e. 4–6), but it gives only one starting point that is nearest to 
the user-specified initial point, Pi. 
 
3.1.2. Subdivide the surface patches: In engineering sciences (i.e. aircraft, mechanical 
and ship sciences), a surface is designed/modeled/generated with a set of discrete input 
points called control points (i.e. control net or offset points). Derivational continuities do 
not ensure that the surface will have a fair distribution of aspect ratios of the discretized 
elements. Hence, there is no practical control over the aspect ratio of the elements gener-
ated in the surface. Furthermore, for surfaces of underwater or surface floating bodies, the 
flow changes drastically in the normal direction to the surface and little in the tangential 
longitudinal direction. This forces the discretized elements to have extreme side ratios, e.g. 
Bertram [31]. Again, in the case of some surfaces the production features of the surface also 
show drastic change from one end to another and that forces discretized elements to have 
poor aspect ratios. This means that in some cases of surface generation process, the poor 
aspect ratio of individual domain cannot be avoided. 

 The poor aspect ratios of long, narrow, and thin elements/patches often affect the stabil-
ity, efficiency, and robustness of the solution process. It is not only difficult to compute ei-
ther numerical or computational objective function within a domain or boundary of a long, 
narrow, and thin element/patch, but even the simple geometric and algebraic function tends 
to fail to converge for a long, narrow, and thin element/patch. Therefore, in the present 
work the subdivision is used selectively, and for the following purposes: The long, narrow, 
thin and patches with poor aspect ratio are subdivided explicitly before computing sur-
face/plane intersection. 
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FIG. 1. A simple triangular Bézier surface and corresponding control net. 

 
 Following Farin [2, 32], let the surface be parametrized by two parameters u and v and a 
weight function ),(, vuBd

ji  describes the influence of a control point Pi,j on the shape of sur-
face, where d is the degree of the surface. The triangular rational Bézier surfaces are de-
fined as follows: 
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with the corresponding Bézier weight functions: 

 kjid
ji wvu

kji
dvuB

!!!
!),(, =  with w = 1 – u – v,  k = d – i – j.  (26) 

The each control point on the surface is assigned a weight wi,j for better control. In case all 
the weights are constrained to be positive, then the two properties hold: the surface lies 
completely in the convex hull of its control points, and the surface can be repeatedly subdi-
vided into subsurfaces of the same kind, e.g. [2] and [32]. Figure 1 shows a simple Bézier 
surface and the corresponding control net. 

 The triangular surfaces can be subdivided with an extended form of the de Casteljau al-
gorithm, or any of its variant [33]. The triangular control point net is recursively subdivided 
with trilinear interpolation for a parameter set, and the result being control net for the sur-
faces and a point on the surface. Furthermore, the geometric and topological properties are 
computed as for the initial surface. The successive recursion to the resulting subsurfaces, 
with de Casteljau algorithm leads to long, narrow, and thin triangular patches with poor as-
pect ratio, often causing numerical and computational problems [34]. Thus, the de Casteljau 
algorithm is not practical for use in this work. 

 Goldman [27] presents a general subdivision algorithm, based on arbitrary subdivision 
that allows explicit control over the aspect ratio. The idea is: each of the three corner points 
Pj(uj, vj), j = 1, 2, 3 of an arbitrary triangular subsurface can be computed by evaluating a 
sequence of d de Casteljau steps ( , ),i

j j jCd u v  i = 0, ... , d, where d is the degree of the sur-
face. The selection of an arbitrary step from among the three ( , )i

j j jCd u v  for each of the d 
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steps of the sequence will compute a control point of the subtriangle. The computation for 
all possible permutations of this step sequence will give all the control points of the triangu-
lar subsurface, and the geometric and topological properties are computed as for the initial 
surface (Fig. 2). 

 This process is known as blossoming principle after Ramshaw [35], and was independ-
ently developed by de Casteljau [33]. In this work, we have used techniques described in 
Goldman [27] to arbitrarily subdivide the parametric surface to improve upon the aspect ra-
tios of the discretized triangular elements/patches of the parametric surface SS(u, v), and 
correspondingly the geometric and topological properties are computed. 

3.2. Trace along intersection curve 

3.2.1. Getting step vector: After getting start point P0 and selectively subdividing the sur-
face SS(u, v), the corresponding intersection curve is traced in the direction of tangent vec-
tor along intersection curve. For a step direction, it is necessary to determine a step distance 
at which a new point (i.e. approximate) will be obtained. In general, step length is important 
because a too small step length decreases the computational efficiency and a too large one 
may miss the points on the intersection curve. In order to achieve balance in these two con-
flicting requirements, adaptive step length based on curvature estimates at intersection 
points is used in this work. 

 In the case of nonparallel surface tangent planes, step vector direction is computed by the 
crossproduct of the plane-surface normal. The tracing moves by stepping a distance in the 
direction (i.e. +ve or –ve) along this vector (Fig. 3). Instead of crossproduct, another calcu-
lation that is computationally efficient is that for a given Jacobian matrix (JC) of the tangent 
plane on one surface (i.e. SS), and the plane normal of the other surface (i.e. SPl) tangent 
plane NPl, the intersection vector between these planes is represented by (JC∆(u,v)SS)⋅NPl

 = 0), 
where ∆(u,v)SS is the domain gradient of the first surface (i.e. SS) corresponding to the inter-
section vector. The expansion will give the intersection vector; 

 Su
PlSu

PlSv
SvSV S

S
S

SI .
.
.
Ν
Ν−=  (27) 

where SSu and SSv are the partial derivatives of the surface SS at the previous point (i.e. P0). 
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FIG. 2. Arbitrary parameterization and corresponding subsurface and its control net. 
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FIG. 3. The stepping vector and stepping length.     FIG. 4. The approximation of stepping length. 

 
 In the case of parallel surface tangent planes (i.e. in the case of surfaces having tangent 
cracks, or C 0 continuity), the computation of step vector is difficult. One possible approach 
that has been utilized in the present work is to search coordinate points radially about the 
starting point. It means that a new point is computed at a small distance ε from the start 
point (i.e. P0) on the intersection. The search is done radially in each local parametric do-
main till a new point is computed. The new tangent vector then is computed as the differ-
ence between the new and the starting point (i.e. P0). 

 The next step is to compute step length. The method used in this work is adaptive and is 
based upon approximate curvature and an angle tolerance with curve refinement tolerance 
(CRT) as a minimum bound width for stepping distance, e.g. [11, 12]. As shown in Fig. 4, 
for the computation of radius of curvature, an osculating circle is approximated at a given 
point P. 

 The circle is defined by P, and two neighboring points at fairly small distances from P in 
each direction along the tangent vector. The neighboring points are then relaxed to the in-
tersection using the methods described in Section 3.2.2. Within the computational limit, 
these three points describe the true osculating circle. For these three points as computed, the 
radius of their circumscribed circle that is assumed to be the approximate radius of curva-
ture is, e.g. [26]; 

 .
–R–Q.2

–R–Q.–R.–Q
f

Ρ×Ρ

Ρ−ΡΡΡ
=  (28) 
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In the case of surfaces with tangent plane parallelity, and possibly in some other cases, 
when the three points are collinear, or if step length ISL > CRT, then CRT is chosen as the 
step length. The step length (i.e. arc length ISL) is then approximated to ISL = f.∆θ. The 
value of angle tolerance (i.e. ∆θ) is defined by the user. 
 
3.2.2. Relax point to an intersection: The refinement (i.e. relaxing approximate points on 
to intersections) is computed using linear iterative techniques as described in [12]. The ini-
tial approximate point is the tracing point with approximate domain and range values. For 
an approximate intersection point P ∈ ℜ3, and coordinate pairs (u, v) and (l, m) in the do-
main of surfaces SS(u, v) and SPl(l, m) ∈  ℜ3 respectively, the aim is to relax P on to a true 
intersection. The point P may not in general be lying on any surface. The one possible 
method for refining P is to first compute surface ‘near point’, and then evaluating the lin-
earized surface equations at these points. The process will continue till convergence is 
achieved, (i.e. ||SS(u, v) – SPl(l, m)||2 〈 SPT, where ||⋅|| is the Euclidean vector norm, and SPT 
is the same point tolerance ([11]). 

 The surface near points is defined as points, one on surface, which is at a minimum dis-
tance from P. The point on surface SS(u, v) that is nearest to P is determined by minimizing 
the norm of P – SS(u, v). The linearized form is computed as Taylor expansion, as: 
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The matrix (i.e. 3 × 2) on the left-hand side in eqn (29), which contains column vectors, is 
the Jacobian transformation JC. Since the Jacobian matrix is not rank deficient, the least 
square solution (i.e. 2-norm minimum) can be computed uniquely by inverting the Jacobian 
using its pseudo-inverse; 

 )].,([][][ 1
1 iiS

TT
ii vuSJcJcJcuu −Ρ=− −

+  (30) 

The iterations (i.e. after 3–4 iterations in general) converge fast because of the quadratic 
convergence of Newton methods. When the surfaces near points are not within the SPT 
then the linearized forms of the surface equations are computed again. And, SS – SPl = 0, at 
surface points (u, v) and (l, m) near to Pi, are tackled directly. The tangent planes at the sur-
face points are intersected with a third nonparallel plane to uniquely define a new point Pi+1. 
There exist many methods to address this, e.g. [7, 11, 26]. The computationally efficient 
method is to use the mid-point of the projection of the surface near points on to the inter-
section line of the tangent planes to describe the next iterate (Fig. 5). 

 If NS and NPl are the tangent plane normals at the surface near points, and NSPl = NS × NPl 
is the third tangent plane normal, then the next iterate Pi+1 is computed from 
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FIG. 5. The tangent planes on the surfaces, SS and SPl. 

 
The convex combination of the two projected points is sufficient for convergence (e.g. 
Mullenheim [36]). This means that the desired element (i.e. third) of the righthand side ma-
trix in eqn (31) can generally be taken as NSpl⋅(t⋅SS + (1 – t)SPl), where 0 ≤ t ≤ 1. In the pre-
sent work, as given in eqn (31), we have taken t = 1/2. 

 The methods used above may be problematic in the case of nearly or the same parallel 
tangent planes at surface near points. If the planes are the same at two surfaces near points, 
then there is an intersection, and computationally it should have been computed with SPT, 
before refinement. If the tangent planes are parallel, then assuming twice differentiable sur-
face equation will lead to linear convergence. Though, theoretically in this case, the solu-
tion is not possible, but within SPT, a root shall always be computed; and that is sufficient 
for computational purposes. 
 
3.2.3. Relax points on to boundaries: Following [11], let the initial domain values be v0, 
l0, m0, and the constant isoparametric uu =  on the surface SS (i.e. the u = 0, or u = 1 
boundary of the triangular domain), then a new iterate can be computed by minimizing the 
norm of SPl(l, m) – SS(u, v). Computing the linearized form will result in 3 × 3 Newton itera-
tion on v, l, m, meaning; 
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with the termination of iteration at 2111 ||),(),(|| +++ − iiPliS mlSvuS 〈 SPT. Alternatively, in a 
more computationally efficient manner, it is possible to incorporate u = constant constraint, 
directly into the system, and this results in a 4 × 4 system matrix, in four unknowns. Let 
∆u = u2 – u1, and constraint u2, as u2 = ∆u + u1 = a, where a is a constant, for a boundary 
curve with a = 0 or a = 1, then ∆u = a – u1, and the system matrix is; 
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Similarly, for u + v = 1 boundary of the triangular domain of surface SS, the system is al-
tered slightly for computational easiness. In that case, the sum of equations u2 = ∆u + u1 and 
v2 = ∆v + v1, is used to get ∆u + u1 + ∆v + v1 = 1. In other words, ∆u + ∆v = 1 – u1 – v1, and 
the corresponding system matrix is; 
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The methods used above may be problematic in the case of nearly or the same parallel tan-
gent planes at surface near points. In that case, similar techniques as mentioned before are 
used. 
 
3.2.4. Termination of intersection curve: In this work, the intersection curve terminates, 
when, 

a) The intersection curve being traced meets a boundary. In this case, the methods de-
scribed in Section 3.2.3 are applied. 

b) The intersection curve being traced meets an earlier intersection curve. 

The second situation in general points to the existence of a ‘branch point’, where more than 
one intersection curve meet. In general, branch points are the points where surfaces share 
tangent plane (i.e. tangent points) [12]. In the present work, we only detect this problem, 
but have not addressed this. Hence, the intersection curve terminates even when it meets a 
branch point. 

 
3.2.5. Tolerances: The basic tolerance used in this work is SPT. Barnhill and Kersey [12] 
examine whether the two points (i.e. P1 and P2) are the same or not and base the answer on 
the Euclidean distance between the points. In this work, SPT has been chosen to be 
SPT = 1.0e – 8. However, for engineering applications, SPT can be chosen anywhere be-
tween 1.0e – 4 and 1.0e – 8. Another tolerance used in this work is CRT, which is used as a 
prescribed stepping distance. This distance measurement is dependent on the relative mag-
nitude of surfaces. As mentioned in Section 3.2.1, angle tolerance has been used, along with 
the estimation of curvature of intersection curves, and is incorporated in adaptive step 
length estimations. An adaptive step length provides better control over efficiency and ro-
bustness, and the angular tolerance positively affects the dependency on relative surface 
magnitudes and units of measurements. Hence, this combination is better suited for general 
surface/plane intersection problems. 

 
3.2.6. Repeat for all start points: Once the intersection curve corresponding to the starting 
point (i.e. P0) has been traced exhaustively (using steps from Section 3.1–3.2.1–3.2.4), then 
within different settings, another starting point is computed as mentioned in Section 3.1, 
and the whole process is run again. 
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 In this work, the intersection curves have been computed at different X = constant, 
Y = constant, and Z = constant planes for different surfaces (i.e. surfaces having C0, C1, and 
C2 continuities). The aim is to obtain the smallest number of ordered points that correctly 
represent the topology of the true intersection curve. In this work, we compute two points 
(minimum) that are desired even for an intersection curve that is linear. Since we have used 
cubic surfaces (i.e. d = 3 the most popular degree of surfaces in engineering sciences), the 
generated surfaces consist of 100 elements within a patch (i.e. clearly shown in Fig. 7(a), 
10(a), and 12(a)). So, an arbitrary plane may pass through all the ten triangular elements in-
side one patch, though ideally one must compute three points on each triangle (i.e. two at 
the local boundary and one inside/at the triangle). This is computationally expensive, and 
reduces the speed of computation, and in practice really does not improve the quality or to-
pology of the intersection curve. Since in this work the intersection curves are represented 
by their piecewise polynomial approximations, the computation of one point inside/at the 
triangle is sufficient for applications in engineering sciences. Therefore, we compute one 
intersection point on each triangle of each patch. Again, since the exact computation of the 
interior edge or line of derivational continuity, where it is imposed, is essential in engineer-
ing sciences for surface-related analysis, we compute one point on the interior edge, or line 
of derivational continuity and re-check via backtracking. Hence, for a two-patch surface we 
compute total 23 numbers of points (i.e. one starting point on the surface’s exterior bound-
ary + 2*10 + one point on the interior edge/line of derivational continuity + one end point 
of the surface at the surface’s exterior boundary = 23) for an intersection curve. 

 The algorithm has been implemented in C++ using its object-oriented features on a Sili-
con GraphicsTM** OriginTM** 200 workstation. The surface views and intersection curves 
are represented explicitly in AutoCADTM*** R2000. 

4. Numerical examples and discussion 

To illustrate the theoretical model of this work, we have considered different problems. The 
first problem deals with the intersection curve of C0 – C0 continuities combination. The 
second, under the cases (1) and (2), deals with the intersection curve of C1 – C0 and C2 – C0 
continuities combinations. For the sake of reproducibility, we give the explicit coordinates 
and geometric definition with continuities of the point set. 
 
Problem 1. This is basically a Y = 5 plane, modeled as a flat plate with five points and four 
patches. The point set consists of P1 = (5, 5, 5), P2 = (–5, 5, –5), P3 = (–15, 5, 5), P4 = (–
5, 5, 15), and P5 = (–5, 5 ,5). The indices of the vertices of the triangles in geometry defini-
tion F are given by (1, 2, 5), (2, 3, 5), (3, 4, 5), and (4, 1, 5). 
 
Intersection curves: The triangular domain is defined as in Fig. 6. Here C0 continuity has 
been imposed across all the four patches (i.e. pa 1–pa 4). In this case, Fig. 7(a) shows the 
front view in which the connectivity and triangulation pattern is clear. Figure 7(b) shows 
the isometric view. 

                                                           
**Trademark and copyright with Silicon Graphics Corporation, USA. 
***Trademark and copyright with AutoDesk Corporation, USA. 
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FIG. 6. Definition of the triangular domain 
for flat rectangular plate. 

 
 Since the surface is C0 continuous, it is purely flat. We plot the intersection curves of the 
surface with constant X planes at the interval of 1.0, from (X = –14.0 to X = 4.0). Figure 8 
shows the intersection curves at X planes. The surface is purely flat, so the intersection 
curves are constantly linear (i.e. this follows the obvious; any continuous surface for a flat 
plate will be a flat surface with linear curves of intersection). 
 
Problem 2. This is a simple problem of a nonflat plate where one corner has been raised 
with respect to the plane passing through the three points; and it has been modeled with two 
patches. The point set consist of P1 = (0, 1, 0), P2 = (1, 0, 0), P3 = (1, 1, 1) and 
P4 = (0, 0, 1). The indices of the vertices of the triangles in geometry definition F are given 
by (1, 2, 4) and (2, 3, 4). 
 
Case 1–Intersection curves: The triangular domain is defined as in Fig. 9. Here, C1 conti-
nuity has been imposed across the patches (i.e. pa 1–pa 2). Figure 10(a) shows the front 
view in which the connectivity and triangulation pattern is clear. Figure 10(b) shows a typi-
cal isometric view. We have computed the intersection curves of the surface with constant Y 
planes at the interval of 0.1, from (Y = 0.1 to Y = 0.9). Figure 11 shows the intersection 
curves at constant Y planes. As stated earlier, since the surface is nonflat but is C1 continu- 
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FIG. 8. Intersection curves of constant X planes with 
surface for flat rectangular plate, C0 continuous. 

FIG. 7. Surface for a flat rectangular plate, C0 continuous. 

FIG. 9. Definition of the triangular domain for a nonflat 
rectangular plate. 
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FIG. 10. Surface for a nonflat rectangular plate with one corner raised, C1 continuous. 
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ous, the intersection curves are continuous (i.e. nonlinear variation) without any break in 
continuity. 
 
Case 2–Intersection curves: Here C2 continuity has been imposed across all the patches 
(geometric definition as in Fig. 9). Figure 12(a) shows the front view in which the slightly 
curved sides, twist in space, higher curvatures, connectivity and triangulation pattern are 
visible and clear. Figure 12(b) shows a typical isometric view. As previously, we have 
computed the intersection curves of the surface with constant Y planes at the interval of 0.1, 
from (Y = 0.1 to Y = 0.9). Figure 13 shows the intersection curves at Y planes. The surface is 
nonflat but is C2 continuous, so the intersection curves are highly nonlinear but continuous. 
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Fig. 12. Surface for a nonflat rectangular plate with one corner raised, C2 continuous. 

Fig. 11. Intersection curves of constant Y planes with 
surface for a nonflat rectangular plate with one corner 
raised, C1 continuous. 
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5. Conclusions 

This work has presented in general setting of derivational continuities a surface/plane inter-
section algorithm for non self-intersecting rational triangular Bezier surfaces defined over 
triangular domain using combination of ideas (i.e. [11, 12, 14, 24, 27]). The algorithm pre-
sented is a stepwise, structured, and combinatorial one. Hence, it allows better insight into 
the problem of the computation of surface/plane intersection curve. The method has been 
used to compute different planar sections (i.e. intersection curves with X, Y, and Z planes) 
for surfaces having different combination of continuities (i.e. C0–C0, C1–C0, and C2–C0 con-
tinuous surface/plane). The algorithm includes the computation of multiple intersection 
curves at one plane but does not include the computation of intersection curve with multiple 
branches (i.e. branch points), bifurcation points, and lower and higher-order singularities. A 
more complex algorithm in general settings of surfaces in engineering sciences will pref-
erably include these features. Again, the detailed analysis of efficiency and complexity of 
the present algorithm has not been addressed. Though we have also computed the intersec-
tion curves for parallel planes, the spatial coherency, (e.g. Kulkarni and Dutta [37], Jun et 
al. [38]), among the planes, have not been incorporated in the algorithm. Again, the surface 
subdivision used in the present work is explicit, and theoretically based upon Goldman [27] 
that uses a 5-simplex of polar value numerical computations. However, if the explicit con-
trol over the aspect ratio is not desired, then the same can be achieved in four calls (e.g. 
Prautzsch [39] and DeCarlo and Gallier [40]). The incorporation of the four-call procedure 
in the surface subdivision algorithm would mean better robustness and computational effi-
ciency. Since in the present algorithm the surface/plane intersection problem has been con-
sidered as a special case of the surface/surface intersection problem in general setting of 
derivational continuities, theoretically some ideas of the algorithm may be utilized to com-
pute intersection curves in surface/surface intersection. Furthermore, in the present algo-
rithm, the correct computation of the topological properties of the intersection curve is an 
in-built feature, hence a suitable ‘loop detection’ technique can be implemented as an add-
on feature. This is under investigation. 
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Nomenclature 

JC = Jacobian matrix 
ε = small distance in Euclidean or parametric space 
SS(u, v) = surface parametrized in independent parameters (u, v) 
SPl(l, m) = plane defined as a fixed domain surface parametrized in parameters (l, m) 
P0 = starting point on the intersection curve of surface/plane intersection 
Pi = point on the intersection curve of surface/plane intersection 
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ISV = intersection stepping vector  
ISL = intersection stepping length 
∆θ = user-specified angle tolerance 
ψ* = Moore-Penrose pseudo-inverse of the Jacobian 
NPl = tangent plane normal of surface SPl(l, m) 
NS = tangent plane normal of surface SS(u, v) 
NS

i  = surface normal for surface SSl(u, v) at point Pi 
NPl

i  = surface normal for surface SPl(l, m) at point Pi 
SPT = user-specified same point tolerance 
CRT = user-specified curve refinement tolerance 
 
 


