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Abstract 
 
Two centralized controller-tuning methods, Davison’s method [Multivariable tuning regulators: The feed forward 
and robust control of general servo mechanism problem, IEEE Trans. Auto. Control, 21, 35–21 (1976)] and 
Tanttu and Lieslehto method [A comparative study of some multivariable PI controller tuning methods, in Intelli-
gent tuning and adaptive control, Pergamon Press, pp 357–362 (1991)], are extended to nonsquare systems with 
right half-plane zeros. These methods have been applied to two examples with right half-plane zeros in the indi-
vidual scalar elements—coupled pilot plant distillation columns (2 outputs and 3 inputs) and a crude distillation 
process (4 outputs and 5 inputs). Simulation studies have been carried out for these examples for both servo and 
regulatory problems. For the coupled pilot plant distillation column example, the proposed methods are compared 
with the robust decentralized controller design method proposed by Loh and Chiu [Robust decentralized control 
of nonsquare systems, Chem. Engng Commun., 158, 157–180 (1997)]. The performance of square and nonsquare 
controllers is compared for the crude distillation process example. 
 
Keywords: Nonsquare system, centralized controller, decentralized controller, RHP zero. 

 
1. Introduction 

Processes with unequal number of inputs and outputs often arise in the chemical process in-
dustry. Such nonsquare systems may have either more outputs than inputs or more inputs 
than outputs. Nonsquare systems with more outputs than inputs are generally not desirable, 
as all of the outputs cannot be maintained at a set point since it is overspecified. The control 
objective in this case is to minimize the sum of square errors of the outputs with the given 
fewer inputs. For these systems, robust performance (with no offset) is impossible to 
achieve due to the presence of an inevitable permanent offset that results in at least one of 
the outputs [1]. 

 More frequently encountered in the chemical industry are nonsquare systems with more 
inputs than outputs. Here, better control can be achieved by redesigning the controller 
eliminating the steady-state offsets. Examples of nonsquare systems are mixing tank proc-
ess [1], 2 × 3 system, Shell standard control problem [2], 5 × 7 system, crude distillation 
unit [3], 4 × 5 system, etc. A common approach towards the control of nonsquare processes 
is to first ‘square up’ or ‘square down’ the system through the addition or removal of ap-
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propriate inputs (manipulated variables) or outputs (controlled variables) to obtain a square 
system matrix. Then the multivariable control design methods can be employed to achieve 
design specifications, but none of these alternatives is desirable. Adding unnecessary out-
puts to be measured can be costly, while deleting inputs leaves fewer variables to be auto-
matically manipulated in achieving the desired control. Similarly, reducing the number of 
measured outputs decreases the amount of feedback information available to the system, 
and arbitrarliy adding new manipulated inputs can incur unnecessary cost. Hence, if supe-
rior performance can be achieved by the original nonsquare system, it is preferable to 
squaring the system [4]. 

 Loh and Chiu [4] have extended the independent design procedure for robust decentral-
ized controllers proposed by Hovd and Skogestad [5] to nonsquare systems with more in-
puts than outputs. The proposed design method is applied to a nonsquare mixing tank 
example, which is a simple system (i.e. there are no RHP zeros and time delays) with the 
first-order elements. From the simulation results they have concluded that nonsquare sys-
tems should be controlled in their original state instead of squaring them by adding or delet-
ing the variables. The design procedure is complicated and the obtained controller is not of 
the conventional form (i.e. not of PI or PID form). 

 In multi-input and multi-output system, interaction and location of transmission zero are 
important. The system with one or more right half-plane transmission (RHPT) zeros is 
called non-minimum phase system. These RHP zeros impose limitations on stability and 
controllability of the system. They affect both the amplitude and phase angle. The extra 
phase lag that is added by the RHP zero contributes to the instability and makes the control 
difficult. So the controller design for having positive zeros is of greater concern in the pre-
sent work. A few reported methods are available for non-minimum phase systems to design 
multivariable square systems, which involve complicated control strategies and lengthy cal-
culations. Though several rigorous methods are available for designing multivariable PI 
controllers [6], simple methods are preferable. Simple tuning methods are available to de-
sign the multivariable centralized controllers for minimum phase system such as (i) Davi-
son’s method [8], and (ii) Tanttu and Lieslehto method [7]. Dinesh et al. [9] have shown 
that Davison’s method gives good performance for square non-minimum phase system. 
Shaji and Chidambaram [10] have used the method for the square-down crude distillation, a 
4 × 4 system. In the present work, these two simple methods are extended to nonsquare sys-
tems with RHP zeros. 
 
2. Centralized controller design methodology 
 
2.1. Davison’s method 

Davison [7] has proposed a centralized multivariable PI controller tuning method for square 
systems. Here the proportional and integral gain matrices are given by  

  KC = δ [G(S = 0)]–1  (1) 

  KI = ε [G(S = 0)]–1 (2) 
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where [G(S = 0)]–1 is called the rough tuning matrix, and δ and ε are the finetuning parame-
ters, which generally range from 0 to 1. In the present work, this method is extended to 
nonsquare system. As inverse does not exist for nonsquare system, Moore–Penrose pseudo-
inverse is used. For matrix A, Moore–Penrose pseudo-inverse is 

  A† = AH (A* AH)–1.  (3) 

AH is the Hermitian matrix of A. So for nonsquare system, PID controller gains are: 

 KC = δ [G(S = 0)]†   (4a) 

  KI = ε [G(S = 0)]†  (4b) 

  KD =  [G(S = 0)]†.  (4c) 
 
2.1.1. Calculation of tuning parameters 

The system is not stable for the entire region (0 to 1) of tuning parameters in the Davison’s 
method. In the present method, the tuning parameters (δ, ε, γ) are calculated as follows: 
First the characteristic equation, det (I + KG), is obtained. For a 2 × 2 system, characteristic 
equation can be obtained easily but for higher-order systems packages like symbolic math 
(Matlab toolbox) have to be used. Then, Routh stability criterion is applied to find the  
range of the tuning parameters for which the system is stable. The system is then simu- 
lated by tuning around these values and finetuning parameters are chosen based on per-
formance. 

 Usually for design of controllers for SISO systems with a positive zero, only the stable 
invertible portion is considered. That is, the numerator dynamics due to positive zero is ne-
glected. For square MIMO systems, system positive zero should be separated and this 
should not be considered for the controller design. In the Davison’s method, steady-state 
gain matrix only is considered. As such no change or modification is required for the Davi-
son’s method for the system with positive zero. In the present work, we try to check how 
the Davison’s method works for such systems. 
 
2.2. Tanttu and Lieslehto method 

Morari and Zafiriou [11] have discussed a method for the design of PI controller known as 
internal model control (IMC). Tanttu and Lieslehto [7] have developed a multivariable PI 
controller tuning method based on IMC principles. First, PID controller (kc,ij) for each of 
the scalar transfer functions (gp,ij) of the process is designed based on the IMC method. For 
a first-order time delay (FOPTD) system 

    (2 )/ 2ij cij ij ijk k Lτ λ= +   (5a) 

  ( 0.5 ).Iij ij ijLτ τ= +   (5b) 

Here kij and Lij are the gain and time delay of an element in the process model for the ith out-
put and jth input. kcij and τIij are the proportional gain and integral time constant of the IMC 
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controller of the ijth loop. In this method, the same filter constant is used for each of the sca-
lar systems so that there is only one tuning parameter (λ). Then the multivariable PI con-
trollers can be designed as follows: 
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where  /  ( )I ij cij I ijk k τ=    (9a) 

and     ( * ).D ij cij Dijk k τ=    (9b) 

For a square system 
  1[ ]c cK = R −  (10a) 

  1[ ]I IK R −=   (10b) 

  1[ ] .D DK R −=  (10c) 

This method is extended to a nonsquare system taking the pseudo-inverse. 

 †[ ]c cK R=  (11a) 

  †[ ]I IK R=  (11b) 

  †[ ] .D DK R=   (11c)  

kcij, kIij and kDij are calculated from equations given in Morari and Zafiriou [11]. Tuning pa-
rameter (ë) has to be calculated by trial-and-error-method. The lower limit of λ is given in 
literature for individual elements [11]. This limit is taken as the initial value and the final 
value of the tuning parameter is obtained by trial-and-error method by simulation. 
 
2.3. Robust decentralized controller (Loh–Chiu method [4]) 

The independent procedure for robust decentralized controllers proposed by Hovd and Sko-
gestad [5] is extended by Loh and Chiu [4] to nonsquare system with more inputs than out-
puts in their work. The controller design equations are: 
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  C = Q[I–GMQ]–1  (12) 

where Q is nonsquare IMC controller. 

  Q = [GM
–]†F.  (13) 

GM
– is the minimum phase part of GM and F = diag {fI}i~k is a low-pass diagonal filter with 

a steady-state gain of 1. 
 
3. Simulation example 1: Two coupled pilot plant distillation columns  

Levien and Morari [12] have discussed the example of two coupled distillation columns in 
their work. They have considered a square system (3 × 3). In the present work, the above 
system having non-minimum phase is considered with 2 outputs and 3 inputs. Here the out-
puts are mole fraction of ethanol in distillate (y1) and mole fraction of water in bottoms 
(y2), and manipulated variables are distillate flow rate (u1), steam flow rate (u2), and prod-
uct fraction from the side column (u3). The system transfer function is given as: 
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3.1. Davison’s method for coupled pilot plant distillation columns 

From the above transfer function matrix, steady-state gain matrix is given by: 

  
0.052 0.032 0.012

(0) .
0.0725 0.0029 0.0078

G
− 

=  − 
 (15) 

The pseudo-inverse for the above matrix is calculated and substituted in eqns (4a and b) to 
obtain the proportional and integral gains of PI controllers. The system is stable over the 
range δ = 0.7 to 1 and ε = 0 to 0.1. Tuning parameters are obtained by tuning the controller 
around these values. The overall controller is obtained with δ = 1 and ε = 0.03. The final PI 
controller matrix is obtained as: 
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3.2. Tanttu and Lieslehto method for coupled pilot plant distillation columns 

Centralized PI controller is designed for the two-coupled distillation columns using the 
Tanttu and Lieslehto method as given in Section 2.2. Individual IMC settings for the two-
coupled distillation column systems, with process model G(s), are found and arranged in 
matrix form given by: 
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Here, λ is a tuning parameter. The initial value of λ = 13 (λ > 1.7*time delay) is used. Final 
controller settings are found as discussed in Section 2.2. The recommended value for the 
tuning parameter is λ = 15. The final PI controller is obtained as: 
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In the controller matrix by Tanttu and Lieselhto method, two of the controller setting signs 
are different from that of Davison’s method [eqns (16) and (18)]. Since system zeros are not 
defined for nonsquare systems, it is not clear how to separate the positive system zero  
from the nonsquare transfer function matrix. The presence of such zeros may cause the 
change of sign in some of the individual controllers. Further research is required in this di-
rection. 
 
3.3. Decentralized controller method for coupled pilot plant distillation columns 

Loh and Chiu method is applied to the coupled pilot plant distillation columns and the de-
centralized controller designed. The pairing of the manipulated and controlled variables is 
obtained using block relative gain (BRG) [1]. The first output variable y1 is paired with u2 
and y2 is paired with u1 and u3. This paring leads to less interaction and unity BRG. From 
the pairings the block diagonal model is obtained and given by: 
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Table I 
ISE values for the servo problem for 
centralized controller: Two coupled dis-
tillation columns example 
Method Step ISE values Sum  
 change Y1 Y2 of ISE 
 in 
 

Davison Y1 33.04 12.41 45.45 
 Y2 3.11 11.46 14.57 
Tanttu &  Y1 34.04 44.04 78.07 
Lieslehto Y2 0.4532 52.765 53.218 
Loh & Y1 44.99 9.91 54.90 
Chiu Y2 19.64 28.34 47.98 
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The IMC controller Q is designed by substituting GM in eqn (12). Here, the first-order filter 
is used. Simulations are carried out for different values of tuning parameter [4] and the best 
value is obtained as ε1 = ε2 = 28. With this tuning parameter value the final controller is 
given by eqn (20). From the controller transfer function matrix (Q) it is clear that it is not of 
the conventional PI/PID form. 
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3.4. Simulation results 

Simulation was carried out for both servo and regulatory problems using SIMULINK. Results 
are compared using ISE values for both the methods (Tables I and II). The load transfer 
function matrix for the disturbances is not available. For the regulatory problem, the load 
transfer function matrix is assumed as that of the process transfer function matrix (i.e. load 
enters along with the manipulated variable). Davison’s method gives the lowest ISE values 
than the other two methods for both servo and regulatory problems. Decentralized control-
ler gives lower ISE values than Tanttu and Lieslehto method for the servo problem, whereas 
for the regulatory problem Tanttu and Lieslehto method gives lower ISE values than decen-
tralized controller (Figs 1 and 2). For step change in y1 the decentralized controller gives 
sluggish response than the centralized controller and settling time is more in the case of 
Tanttu and Lieslehto method, whereas for step change in y2, Tanttu and Lieslehto method gives 

Table II 
ISE values of the regulatory problem for two coupled distillation  
columns–example for disturbances at the input 
Method Step ISE values Sum of IAE values Sum of  
 in Y1 Y2 ISE Y1 Y2 IAE 
 

Davison V1 0.0319 0.0465 0.0784 1.79 3.58 4.37 
 V2 0.01 0.0056 0.156 1.18 0.84 2.02 
 V3 0.0075 0.0046 0.0127 1.045 0.847 1.893 
Tanttu & V1 0.0481 0.0216 0.0698 2.151 2.076 4.227 
Lieslehto V2 0.0080 0.0248 0.0334 1.254 3.065 4.319 
 V3 0.0092 0.0043 0.0136 1.069 1.227 2.296 
Loh & V1 0.041 0.107 0.148 2.67 4.67 7.34 
Chiu V2 0.036 0.021 0.057 2.75 1.54 4.39 
 V3 0.0065 0.0045 0.011 1.03 0.658 1.688 
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FIG. 1. Performance comparison of the three methods for unit step changes in y1 or y2 for coupled pilot plant dis-
tillation columns. (a) Response, (b) Interaction for step change in y1, and (c) Response and (d) Interaction for step 
change in y2. Legend: Solid–Tanttu and Lieslehto method, Dot–Davison’s method, Dash dot–Decentralized controller. 
 

sluggish response and the decentralized controller gives more interactions than the central-
ized controllers. 
 
3.5. Robustness studies for coupled pilot plant distillation column 

Robustness studies were carried out for this system by increasing the individual element 
gain by 10%. The same controller setting as previously obtained was used. The perform-
ance of the three methods for the perturbed system is shown in Fig. 3. The performance of 
the centralized controllers is similar to that of the perfect parameter system. The sum of ISE 
for the perfect parameter system and the perturbed system is compared in Table III. Davi-
son’s method gives the ISE values for the perturbed system close to that of the nominal sys-
tem. It gives more robust performance than the other two methods. 
 
4. Simulation example 2: Crude distillation process 

The crude distillation unit lies at the front end of a refinery. This unit performs the initial 
distillation of the crude oil into several boiling range fractions. The crude is pumped in 
from storage tanks and, after desalination, is preheated against crude tower products and 
overhead streams. The crude is then partially vaporized in two parallel fuel gas-fired heaters. 
The vapor and liquid from the heaters enter the flash zone at the bottom of the crude column. 
Muske et al. [3] have considered the crude distillation unit at Cosmo Oil’s Sakai Refinery. 
They have given the transfer function for three general crudes and average crude. Crude 2 is 
considered in this work and its transfer function is given in eqn (21). In this example,  
 
Table III 
Sum of ISE values for robustness comparison 
for coupled pilot plant distillation column 
Method Step  Sum of ISE 
 change Perfect +10% change  
  in parameter in time constant 
 

Davison Y1 45.45 44.2 
 Y2 14.57 13.23 
Tanttu & Y1 78.07 72.8 
Lieslehto Y2 53.218 47.96 
Loh & Y1 54.90 55.32 
Chiu Y2 47.98 48.64 

(a) (b) (c) (d) 
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Fig. 2. Performance comparison of three methods for unit step changes in load variables v1/v2/v3 for coupled pi-
lot plant distillation columns; Step changes in (a) v1 (b) v2 and (c) v3. Legend: Solid–Tanttu and Lieslehto 
method, Dot–Davison’s method, Dash dot–Decentralized controller. 

 
controlled variables are naphtha/kerosene cutpoint (y1), kerosene/LGO cutpoint (y2), LGO/ 
HGO cutpoint (y3) and measured over flash (y4). Manipulated variables are top temperature 
(u1), kerosene yield (u2), LGO yield (u3), HGO yield (u4) and heater outlet temperature (u5). 
For this, process centralized PID controllers are designed using Davison’s and Tanttu and Li-
eslehto methods. 

(b) 
(b) 

(c) (c) 

(a) (a) 
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FIG. 3. Performance comparison of the two methods for unit step change in y1 or y2 for coupled pilot plant distil-
lation column with 10% deviation in each scalar system gain. (a) Response, (b) Interaction for step change in y1; 
and (c) Response, and (d) Interaction for step change in y2. Legend: Solid–Tanttu and Lieslehto method, Dot–
Davison’s method, Dash dot–Decentralized controller. 
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(21) 

 

4.1. Davison’s method for crude distillation process 

For the transfer function matrix, given in eqn (21), steady-state gain matrix is: 
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For this matrix the pseudo-inverse is calculated and substituted in eqn (11) to get proportional, 
integral and derivative gains. As discussed in Section 2.1.1 tuning parameters are calculated. 
Simulation is carried out for the designed controller and the tuning parameter values obtained 
are: δ = 1, ε = 0.22, γ = 0.9. Controller with these tuning parameter values gives better per-
formance and minimum ISE values. The final controller transfer function is given by eqn (23). 
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(a) (b) (d) (c) 
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5.2. Tanttu and Lieslehto method 

For the crude distillation problem, a centralized PID controller is designed using the Tanttu 
and Lieslehto method as discussed in Section 2.2. The initial value of the tuning parameter 
is λ = 11 (λ > 1.7*time delay). Simulation studies are carried out for the system with differ-
ent tuning parameter values and the recommended value is λ = 30. The controller with this 
tuning parameter value gives better performance and lower ISE values. The final PID con-
troller matrix with this λ value is given by: 
 

0.011 0.004 0.002 0.004

0.005 0.007 0.002 0.004

0.00002 0.009 0.009

0.143 0.689 0.071 0.36 0.021 0.027

0.072 0.453 0.129 0.519 0.019 0.202 0.025

0.037 0.075 0.032 0.556 0.068 0.215 0.

s s s s

s s s s

s s s

s s

s s s

G s sc

+ + − − + + +

− − − + − − − − − −

= − − − − − − + − −
0.00007

0.021 0.017 0.021 0.055

0.008 0.004 0.002 0.005

013 0.121

0.005 0.032 0.043 0.118

0.191 1.959 0.171 1.309 0.024 0.032

s

s s s s

s s s s

s

s s

− −

− − − + − − − −

− − − + + + +

 
 
 
 
 
 
 
 
  

  (24) 

Tanttu and Lieslehto method is based on IMC method which gives only PI controller [eqn (24)] 
for the FOPTD transfer function models. IMC method gives PID controller settings for higher-
order systems, whereas in Davison’s method we can calculate KD as well as get PID controllers 
too [eqn (23)]. 
 
4.3. Simulation results  

Crude distillation is a large-scale problem with 4 outputs and 5 inputs. For this example, cen-
tralized controllers are designed using two proposed methods. Simulations are carried out on 
the two designed controllers for both the servo and regulatory problems. These are compared 
based on the ISE values given in Tables IV and V for servo and regulatory problems, respec-
tively. ISE values show that the Davison’s method gives good response and low ISE values than 
 
Table IV 
ISE values of the servo problem for centralized con-
troller crude distillation column example 

Method Step ISE values   Sum  
 in Y1 Y2 Y3 Y4 of ISE 
 

Davison’s Y1 3.194 0.134 0.792 0.066 4.185 
 Y2 1.033 7.128 1.758 0.264 10.18 
 Y3 0.061 0.071 5.031 0.239 5.403 
 Y4 0.074 0.088 0.142 3.153 3.457 
Tanttu & Y1 13.57 0.769 1.262 0.022 15.62 
Lieslehto Y2 0.254 18.0 1.264 0.016 19.54 
 Y3 0.078 0.068 17.28 0.915 17.82 
 Y4 0.377 0.366 0.376 16.57 17.69 

 
 

Table V 
ISE values for the regulatory problem for the crude distil-
lation column example with disturbances at the input 

Method Step ISE values   Sum  
 in Y1 Y2 Y3 Y4 of ISE 
 

Davison’s V1 17.23 17.20 15.02 2.70 52.17 
 V2 10.22 31.57 23.16 2.22 67.17 
 V3 0.098 0.108 13.69 2.143 16.04 
 V4 0.021 0.025 0.038 0.371 0.457 
 V5 0.796 2.23 4.428 0.079 6.534 
Tanttu & V1 204.1 133.9 125.4 27.7 491.2 
Lieslehto V2 8.98 392.3 324.8 22.43 827.5 
 V3 0.128 0.200 148.1 21.98 170.4 
 V4 0.134 0.131 0.131 5.239 5.636 
 V5 6.121 3.148 7.211 1.108 17.58 
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FIG. 4. Performance comparison of Davison’s method and Tanttu and Lieslehto method for unit step changes in 
(a) y1, (b) y2, (c) y3 or (d) y4 for crude distillation process. Legend: Solid–Tanttu and Lieslehto method, Dot–
Davison’s method. 

 
the Tanttu and Lieslehto method. ISE values of the Tanttu and Lieslehto method are about 2–3 
times, compared to Davison’s method for the servo problem, whereas for the regulatory prob-
lem still larger ISE values are obtained in Tanttu and Lieslehto method. Simulation results are 
given in Fig. 4 for servo problem for step changes in all the controlled variables each at a time. 
The settling time for the Tanttu and Lieslehto method is more than that of Davison’s method. 
The Tanttu and Lieslehto method gives sluggish response. 
 
4.4. Robustness studies for the crude distillation process  

Robustness studies are carried out for the crude distillation process by increasing the individual 
element process gain by 10% using the same controller settings. The sum of ISE values is 
given in Table VI for both the perfect parameter and the perturbed systems for step change in 
set points. From the table it is clear that the Davison’s method gives ISE values closer to that of 
perfect parameter system and hence this method is more robust than the Tanttu and Lieslehto 
method. 
 
4.5. Comparison of controllers for square and nonsquare crude distillation process 

The crude distillation process transfer function model is given in eqn (21). The columns indi-
cate manipulated variables and rows controlled variables. From the transfer function matrix, it 
is clear that the fourth manipulated variable is effecting only the fourth output variable. So the 
fourth manipulated variable is kept constant so that the transfer function matrix be- 
 
Table VI 
Comparison of ISE values for perfect parameter system 
and perturbed system for crude distillation process 

Method Step Sum of ISE 
 in for perfect para- +10% change in 
   meter system process gain 
 

Davison’s Y1 4.185 4.03 
 Y2 10.18 9.999 
 Y3 5.403 5.32 
 Y4 3.457 3.27 
Tanttu & Y1 15.62 14.262 
Lieslehto Y2 19.54 17.994 
 Y3 17.82 16.18 
 Y4 17.69 16.23 

(c) (d) (b) (a) 

Table VII 
ISE values for the square and non-
square systems 

Step  Sum of ISE  
change  for nonsquare for square 
in system system 
 

Y1 4.185 8.93 
Y2 10.18 19.78 
Y3 5.403 15.16 
Y4 3.457 37.69 

 



CENTRALIZED PI/PID CONTROLLERS FOR NONSQUARE SYSTEMS  213

    
FIG. 5. Performance comparison of the square and nonsquare controllers for step change in y1 for crude distillation ex-
ample. (a) Response of y1, Interaction in (b) y2, (c) y3, and (d) y4. Legend: solid–nonsquare controller, dot–square 
controller. 

 
comes square (4 × 4 system). For this square transfer function matrix centralized controller is 
designed using the Davison’s method. The controller is given by: 

 

1.223 0.918 1.066 2.790
2.038 1.834 1.53 1.377 1.778 1.6 4.651 4.18

0.757 0.663 0.660 1.727
1.261 1.135 1.106 0.995 1.100 0.990 2.878 2.590

0.0086 0.164
0.014 0.012 0.2741 0.246 0..

s s sss s s

s s s ss s s s
c

s ss s

GS

+ + − − − + + + +

− − − + + − − − − − −
=

− − − − − −
0.169 0.019

281 0.253 0.032 0.0293

2.536 2.143 2.929 7.662
4.228 3.805 3.572 3.215 4.882 4.394 12.77 11.49

s ss s

s s s ss s s s

 
 
 
 
 
 
 + + − − − 
 
 + + − − − + + + +  

  

   (25) 

The performance of the square controller is compared with that of the nonsquare controller de-
signed previously (Fig. 5). The square controller gives oscillatory response and large settling 
time. The sum of ISE values for the square and nonsquare controllers for servo problem is also 
compared (Table VII). For square controller, it is two times higher than the nonsquare control-
ler for step changes in y1 or y2 or y3 and three times higher for step change in y4. 
 
5. Conclusion 

The simple centralized controller-tuning methods, Davison’s method and, Tanttu and Lieslehto 
method, are extended to nonsquare systems with right half-plane zeros. The proposed methods 
are applied to two examples: coupled pilot plant distillation columns and a crude distillation 
unit. Simulations are carried out for both servo and regulatory problems. ISE values are given. 
For the crude distillation process the two centralized controller methods are compared. Davi-
son’s method gives better performance and less settling time than Tanttu and Lieslehto method. 
Tanttu and Lieslehto method gives sluggish response. ISE values of the Tanttu and Lieslehto 
method are ~2–3 times as compared to Davison’s method for the servo problem. The perform-
ances of the square and nonsquare controllers is compared. Improved performance is observed 
in the nonsquare controller. 
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Nomenclature 

Kc Proportional gain matrix of the centralized controller 
KI Integral gain matrix of the centralized controller 
kcij Proportional gain of a SISO IMC controller 
C Decentralized controller in Loh and Chiu method 
Q Decentralized IMC controller Loh and Chiu method 
GM Block diagonal model of the actual plant 
G–

M Minimum phase part of the block diagonal model 
Gc Centralized nonsquare PI/PID controller 
GSc Centralized square PI/PID controller 
F Low-pass diagonal filter  
y1, y2 System outputs 
u1, u2, u3  Manipulated variables 
V1,

 V2,V3 Load variables 
 
Greek letters 

δ Tuning parameter for the proportional gain in the Davison’s method 
ε Tuning parameter for the integral gain in the Davison’s method 
γ Tuning parameter for the differential gain in the Davison’s method 
λ Tuning parameter and filter time constant in the Tanttu and Lieslehto method 
ε1, ε2 Tuning parameters in the Loh and Chiu method 
 

Superscripts 
† Moore–Penrose pseudo-inverse 
H Hermitian operator 


