
J. Indian Inst. Sci., Sept.–Oct. 2004, 84, 141–154
© Indian Institute of Science.

*Author for correspondence.

Object-oriented power system analysis

M. P. SELVAN AND K. S. SWARUP
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India.
email: swarup@ee.iitm.ac.in; Phone: +91-44-22578404; Fax: +91-44-22570509.

Received on April 13, 2004; Revised on August 24, 2004.

Abstract

The software design of power system computation often requires modifications due to modernization of existing
network and automation of the power system operation. Object-oriented design has gained widespread importance
and acceptance in software development due to its advantages over other methodologies. An object-oriented de-
sign for power system analysis is proposed in this paper with greater concentration on power system equivalents
and distribution system. The important contribution of this paper is the development of software objects for vari-
ous transmission and distribution system components, which can be reused in most of the power system analysis
programs.

Keywords: Power system computation, object-oriented design, REI equivalents, distribution system.

1. Introduction

Steady-state analysis and time-domain simulations of physical systems are carried out by
digital computers to understand their behaviour completely. Behaviour of a system is repre-
sented mathematically by linear and nonlinear, algebraic and differential equations. Figure
1 shows the steps involved in the development of analysis and simulation software. Soft-
ware modeling plays a significant role in representing the mathematical model of the sys-
tem into the computer memory. In traditional procedural programming the behaviour of the
system is completely decoupled from the characteristics or attributes of the system, which
reduces the one-to-one matching between the physical system and the software model. So,
the software model turns out to be very difficult to realize when the physical system be-
comes more complex. This is where the object-oriented modeling can provide better solu-
tion. Software objects in object-oriented modeling represent the physical components,
which build the physical system. Object is an entity, which encapsulates both the character-
istics and behaviour of the component. So, the physical system can be considered as a com-
position of such objects. These objects can interact with each other by message passing and
thus can perform the task of a physical system. This paper deals with the object-oriented
methodology and its applications to power system analysis.

2. Object-oriented methodology

Object-oriented technology is a new methodology, which is being extensively applied in the
area of software development. This is a supreme technique to solve complex problems by tear-

M. P. SELVAN AND K. S. SWARUP 142

ing the problem into sub-tasks. This methodology is well suited for developing not only the
business application software but also engineering application software. In the object-oriented
paradigm, the world is viewed as a collection of objects interacting with each other to achieve a
meaningful behaviour. The basic principle of object-oriented technique is to represent each
component by an element called ‘object’ and the relationship between objects is represented by
links called ‘messages’ and ‘responses’.

2.1 Main features

Object-oriented programming (OOP) generally leads to more flexible, modular and reusable
code. Using OOP approach, programs can be written in a more general way. Software sys-
tems built on an object structure are more robust in the long run. One important concept in
the object-oriented paradigm is abstraction, which captures the essential characteristics of
the components of the application domain. Encapsulation gives strong coupling between the
data and the operations performed on the data. In object-oriented approach the data and the
functions are encapsulated into an entity called class so that the data is hidden from the
user. Objects are instances of the class. The data or the internal structure of an object can be
accessed only through the interfaces defined for that object. Another key concept in OOP is
inheritance, which allows the classes to be organized into a hierarchy so that the sub-
classes of a super class inherit data and methods unidirectionally from the super class. This
allows incremental modification to the existing class to create a new class. The new class
may include new data and new methods or it can override the method of its super class.
Polymorphism is the prime feature of object-oriented methodology, which allows different
objects to receive same message but respond differently. Operator overloading and function
overloading are two different kinds of polymorphism. These capabilities lead to an evolu-
tionary and incremental approach for software development. In this approach, the software
system can be designed with an open architecture, which allows long-term modifications
and expansion [1].

2.2. Phases of object-oriented methodology

The strengths of object-oriented methodology are exploited well by the efforts involved
during the analysis and design phases rather than from the actual implementation. This
gives three different but interrelated phases to object-oriented methodology (Fig. 2) [2].
Object-oriented analysis (OOA) phase concentrates on finding objects in the problem do
main. Object can be found as naturally occurring entities or items in the domain of interest.
Domain analysis is an attempt to identify the objects. In the object-oriented design (OOD)
phase, essential features of the objects are abstracted and relationships between the objects
are well defined. The proposed design is implemented in the third phase, which is object-
oriented programming (OOP). In OO terminology, a distinction will be made between two
categories of classes. A primitive class is a basic class reusable in a variety of applications;
a class intended to be used in a particular application is application class.

MATHEMATICAL
MODEL

REAL WORLD
MODEL

SOFTWARE
MODEL

PROGRAMMING
IMPLEMENTATION

ANALYSIS &
SIMULATION

FIG. 1. Software development procedure.

OBJECT-ORIENTED POWER SYSTEM ANALYSIS 143

OBJECT-ORIENTED
METHODOLOGY

OBJECT-ORIENTED
DESIGN

 2

OBJECT-ORIENTED
PROGRAMMING

 3

OBJECT-ORIENTED
ANALYSIS

 1

FIG. 2. Three phases of object-oriented methodology.

2.3. Application to power system analysis

Application of object-orientation towards power-system analysis is a fertile area of research
since 1990. Power-system components can be grouped into different classes according to
their tasks and the relationships between them can be realized through inheritance. The
amount of commonality existing in the power system components, which can be exploited
using inheritance and virtual function, ensures the applicability of object-oriented pro-
gramming in the area of power systems. Some structure-oriented programming also sup-
ports these techniques of programming but it takes exceptional effort or exceptional skill to
write such programs. Application of OOP in power system has generally concentrated on
mapping a traditional problem into data modeling and message-sending features. Neyer et
al. exploited the local processing of object-oriented approach for Newton Raphson load
flow, which is the first paper in this area [3]. Several papers have been published on power-
system modeling focusing on object-oriented analysis and design rather than focusing on a
particular application [4–7]. Object-oriented design for sparse matrix operations was devel-
oped and significant amendments are still in progress [8, 9]. Zhou has defined a network
container base class, which contains classes for power-system apparatus. AC load flow was
treated as a derived class, which has load flow as a method [10]. Fuerte et al. developed ob-
ject-oriented load flow program incorporating FACTS-controlled branches [11]. Foley and
Bose proposed object-oriented online network analysis [12]. Little attention is paid to ob-
ject-oriented development for dynamic simulation, deregulated market and distribution sys-
tem modeling [13–15]. This paper deals with object-oriented modeling of power system
with more stress on power-system equivalents and distribution system modeling. The main
contribution of this paper is expressing the extensibility and modularity of the object-
oriented design through distribution system modeling and exploiting the flexibility in
power-system equivalent computation with a hierarchy of equivalents using inheritance,
which is the key issue of reusability. Figure 3 shows the physical and conceptual objects
modeled and application programs developed using them. Circles are the modeled objects.
Individual circles represent the modular nature of object-oriented programming. The inter-
section of circles indicates reusability and extensibility.

2.4. Power system computation

Power-system computation involves huge amount of data. Representations of data and re-
sults as well as storing the data in the computer memory as per the requirement of the

M. P. SELVAN AND K. S. SWARUP 144

analysis software are the typical problems faced by power system engineers. Because of the
nature of the power system network sparse matrix technique becomes familiar to represent
the network matrices. In the past, programming languages used arrays to store matrix ele-
ments in Row Column Entry method. With the introduction of pointers, dynamic data struc-
tures are used for storing the matrix elements. Network equivalents play an important role
in the computations involved in interconnected operation of power system. Equivalents are
used in energy management system software, which requires better software modeling of
the equivalents.

3. Object-oriented design for sparse matrix computations

Power-system analysis involves unwieldy mathematical computations. Most of the compu-
tation problems in power systems are in solving the equation Ax = B, where A is a square
matrix and B, a vector. This makes the computation techniques to move toward matrix al-
gebra. The matrix A is a sparse matrix because of the nature of power-system network. To
store the sparse matrix elements and to perform algebraic operations and factorization on
those matrices, different techniques have been used by researchers for developing efficient
power-system analysis software. In this work, sparse matrix is considered as a software ob-
ject though it is not a real-world object but is a conceptual object. The abstraction of the
sparse matrix is a collection of nonzero elements stored in contiguous memory locations.
Doubly linked list data structure (Fig. 4) is used for storing the nonzero elements. Each

POINTER TO
THE PREVIOUS

ELEMENT

ROW
COLUMN
VALUE

POINTER TO
THE NEXT
ELEMENT

POINTER TO
THE PREVIOUS

ELEMENT

ROW
COLUMN
VALUE

POINTER TO
THE NEXT
ELEMENT

POINTER TO
THE PREVIOUS

ELEMENT

ROW
COLUMN
VALUE

POINTER TO
THE NEXT
ELEMENT

 FIG. 4. Doubly linked list data structure.

CONCEPTUAL
OBJECTS

Matrix ,Vector
Sparse Matrix

Linear System Solver

POWER SYSTEM
PHYSICAL
OBJECTS

Transmission System
Devices

POWER SYSTEM
PHYSICAL
OBJECTS

Distribution System
DevicesPOWER SYSTEM

EQUIVALENT
OBJECTS

REI Equivalent
REI_SLE, REI_SGE,

REI_SGLE

THREE PHASE
DISTRIBUTION

SYSTEM
OBJECTS

UNBALANCED
 LOAD FLOW ANALYSIS

RADIAL LOAD FLOW

LOAD FLOW WITH MESHES

LOAD FLOW WITH
DISPERSED GENERATIONS

NETWORK TOPOLOGY
PROCESSOR

STABILITY ANALYSIS

INTER CONNECTED POWER SYSTEM
ANALYSIS

FIG. 3. Reusability and extensibility of the objects.

OBJECT-ORIENTED POWER SYSTEM ANALYSIS 145

 Class spmatrix
 {
 Private :
 Dimension
 Number of non zero elements
 Location pointers: first, current,last

 Public :
 Spmatrix () ;
 Addelement();
 Operator +();
 Operator (r,c);
 .
 .
};

 FIG. 5. Pseudo-code for sparse matrix.

element in the doubly linked list data structure has two pointers to address the previous and
next elements. Each element of the sparse matrix has been modeled as a structure, which
includes information about its location in the matrix and its value. Figure 5 shows the ob-
ject-oriented design of sparse matrix. The sparse matrix object holds three pointers. Two
pointers address the first and last locations of the sparse matrix object. Another pointer,
named ‘current’, moves along the data structure to locate a particular element. With object-
oriented design it is easy to perform algebraic operations on the matrices by overloading the
basic arithmetic operators. Individual elements, for instance A (2, 3), can be accessed by
overloading the operator (), which makes user-friendly environment. The vector B in equa-
tion Ax = B is also treated as an object. A method called matvectprod () has been imple-
mented in the sparse matrix class to obtain the product of a sparse matrix and a vector.
Actually, this method has to deal with the private data of two different objects. This situa-
tion can be easily handled using the friend function technique of object-oriented program-
ming.

3.1 LU factorization

The solution of Ax = B involves factorization of matrix A. Usually, linear system solvers
use LU factorization for factorizing matrix A and forward, backward substitutions to obtain
the solution vector x. Figure 6 shows the basic operations involved in linear system solver.
In the object-oriented design, linear system solver is designed as a conceptual object since it
is a black box which takes matrix A and vector B as inputs, and performs some mathemati-
cal calculations which are not necessarily shown to the outside world and gives the vector x

LU
FACTORIZATION

FORWARD
ROLLING

BACKWARD
SUBSTITUTION

B

A

L

U

X '

X

FIG. 6. Linear system solver.

M. P. SELVAN AND K. S. SWARUP 146

OBJECT N

MATRICES (A)

&

VECTORS (B)

STORAGE
METHOD

&

ELEMENTARY
MATRIX

OPERATIONS
OBJECT N-1

STATE
ESTIMATION

OBJECT 3

SHORT CIRCUIT
STUDY

OBJECT 2

LOAD FLOW
STUDY

OBJECT 1

 REQUIRES MODIFICATIONS AS THE

COMPUTER METHODS AND
TECHNIQUES

IMPROVES TO IMPROVE THE
EFFICIENCY

FIG. 7. Interfaces between objects.

as output solution. Linear system solver object has methods to calculate LU factorization,
forward rolling and backward substitution. These methods can be invoked from external to
the object. As discussed above, object-oriented design treats each object as a black box to
other objects. They can communicate themselves to get the work done. In power-system
analysis the algorithms such as load flow, fault analysis and state estimation can be mod-
eled as different conceptual objects. These algorithm objects can communicate with the
sparse matrix object (Fig. 7). The ‘Load flow’ algorithm object, while building the Y-bus
matrix, gives a message addelement (r, c, value) to the object ‘sparse matrix’, where r and c
represent the row and column numbers, respectively. Similarly, the overloaded operator
(r, c) gives the value stored in the location (r, c) of the matrix to the load flow object. The
load flow object does not need to know how the elements are stored in the sparse matrix ob-
ject. If the data structure of the matrix object is changed, it will not affect the load-flow al-
gorithm since load flow does not have the knowledge of internal structure of the matrix. It
can only communicate with the object. But in the function-oriented methodology of soft-
ware development, if the data structure is changed, then each and every algorithm needs
amendments accordingly, which is a tedious process. Moreover, in object-oriented design,
if some modifications are done in the algorithm objects, data structure of the matrix object
does not require any changes, since for matrix object the algorithm object is a black box
and it can only communicate with it.

4. Object-oriented design for REI equivalent

4.1. REI (Radial Equivalent and Independent) equivalent

Network equivalents are used in power-system computation to reduce the huge computa-
tional burden. REI equivalent is one such equivalent proposed by Paul Dimo, which leads
to a reduced standardized net, which is radial (R) and equivalent (E) to the rest of the sys-
tem for the node under consideration and independent (I) of any other circumstances pro-

OBJECT-ORIENTED POWER SYSTEM ANALYSIS 147

vided the real voltages applied to the terminals of the radial branches are known [16]. Re-
cent publications on REI equivalents show the potential application of REI–Dimo equiva-
lent for security analysis, steady-state stability analysis and fast maximum transfer
capability prediction for open access transmission in an energy management system [17].
When REI equivalents are used in energy-management system, its software modeling
should be flexible and extensible which can be met by object-oriented design. This section
gives the details of object-oriented modeling of various REI equivalents.

4.2. Different types of REI equivalents

It is possible to make three different REI equivalents for a system depending on the re-
quirements of the applications. (1) Single load equivalent (SLE), (2) Single generator
equivalent (SGE) and (3) Single generator and single load equivalent (SGSLE). Even
though these equivalents differ in the number of generators and the number of load nodes
they include, they are radial in nature. For the 6-bus system [4], shown in Fig. 8(a), which
has three generator nodes and three load nodes, the SLE, SLG and SGSLE are shown in
Fig. 8(b), (c) and (d), respectively.

4.3. Object model for power system

In object-oriented design, the power system is considered as an object, which aggregates
the objects node and branch. With this basic abstraction, the system equivalent classes can

G G G

1 2 3

4 5 6

G G G

1 2 3

LEQ

G

5 6

GEQ

4

G

GEQ

LEQ

FIG. 8. (a) 6-bus system. (b) 6-bus system SLE, (c) SGE, and (d) SGSLE.

(a) (b)

(c) (d)

M. P. SELVAN AND K. S. SWARUP 148

BRANCH

LINE TRANSFORMER SHUNT ELEMENT

TAP CHANGING
TRANSFORMER

PHASE SHIFTING
TRANSFORMER

NODE

SNODE GNODE

FIG. 9. Class hierarchy of power system components.

be derived. Object system has dynamically created arrays for nodes and branches as their at-
tributes. The system admittance matrix is stored in a sparse matrix object. The developed
sparse matrix class is reused here without any modifications, since our new object can
communicate with the object sparse matrix. Thus the reusability of the object-oriented de-
sign is validated. Class Node and class Branch are the base classes. Several specialized
classes have been derived from these base classes. The hierarchy of the physical objects in
power system is shown in Fig. 9. Line and Transformers are the specialized classes of class
Branch which is connected between two nodes. Shunt element is a special class of Branch,
which is connected between a node and ground. Classes SNode and GNode represent the
load nodes and generator nodes, respectively. Bus admittance matrix can be built by com-
municating with each branch object. Specialized objects tap changing transformer and
phase shifting transformer respond to the same message in a different manner since the
‘Ybus’ of these specialized objects is not symmetrical. Dynamic binding and polymorphism
have been exploited to implement the different responses of objects to the same message.
Every branch object can respond to four different messages to give the four elements (Yff,
Yft, Ytf, Ytt) of the ‘Ybus’ matrix.

4.4. Object model for REI equivalent

We are interested in node voltages and the system admittance matrix, when we form the
REI equivalent. As mentioned earlier, three equivalents differ in the number of generator
and load nodes they have. So it is attractive to make an abstract class of REI equivalent
called ‘REI equivalent’, which has a dynamic array of object of class Node and an object of
class Sparse matrix as its attributes. Different types of REI equivalents, which will be used
in different applications, can be derived from this abstract class. Class REI_SLE, REI_SGE
and REI_SGSLE are such specialized classes. The hierarchy of the REI equivalent is shown
in Fig. 10. The object system has three methods called singleloadrei (), singlegenrei () and
singleloadgenrei () to form these equivalents, when it is communicated to do so. To elimi-
nate the nodes with zero current injections they use the method kronreduction () of object
“sparse matrix”.

OBJECT-ORIENTED POWER SYSTEM ANALYSIS 149

REI
EQUIVALENT

REI_SLE REI_SGE REI_SGSLE

REI_SLE_SSS

 FIG. 10. Class hierarchy of REI equivalent.

 Class REI_SLE_SSS is a specialized class of the base class REI_SLE. It includes the in-
ternal reactance and internal voltage of each generator. This equivalent is used for the
steady-state stability analysis. In future, more classes can be derived from the base classes
REI_SGE and REI_SGSLE to perform studies on security analysis and interconnected op-
eration of power system. Figures 11(a)–(d) show the IEEE 14-bus system and its REI
equivalents. Table I shows the node voltage magnitude and angle of IEEE 14-bus system
for the reference state and its equivalents.

C
C

C

G

G

1

2

3

45

6

7

8
9

10
11

14

13

12

C
C

C

G

G

1

2

3

6
8

EQUIVALENT
LOAD NODE

G

EQUIVALENT
GENERATOR

NODE

2

3

4

5

6 9

1 0
1 1

1 4

1 3

1 2

Loads may be aggregated
at Bus 6 or at Bus 9

Interconnection
between Load Buses

G

EQUIVALENT
GENERATOR NODE

EQUIVALENT
LOAD NODE

FIG. 11(a). IEEE 14-bus system, (b) IEEE 14-bus system SLE, (c) SGE, and (d) SGSLE.

(a) (b)

(c) (d) Loads may be aggregated
at Bus 6 or at Bus 9

Inter connection
between Load Buses

M. P. SELVAN AND K. S. SWARUP 150

Table I
Node voltage magnitude and angle (in degrees) of IEEE 14 bus system

Sl. no. Node no. Reference state Single load Single gen Single gen
 equivalent (SLE) equivalent (SGE) single load
 equivalent (SGSLE)
 V (Mag) V (Ang) V (Mag) V (Ang) V (Mag) V (Ang) V (Mag) V (Ang)

 1 GEQ – – – – 1.141 –1.7922 1.141 –1.7922
 2 1 1.060 0.000 1.060 0.000
 3 2 1.045 –4.9530 1.045 –4.9530 1.045 –4.9530
 4 3 1.010 –12.626 1.010 –12.626 1.01 –12.626
 5 6 1.070 –14.377 1.070 –14.377 1.07 –14.377
 6 8 1.090 –13.379 1.090 –13.379
 7 LEQ 1.029 –12.081 1.029 –12.081
 8 4 1.027 –10.374 1.027 –10.374
 9 5 1.034 –8.946 1.034 –8.946
10 7 1.054 –13.379
11 9 1.048 –14.963 1.048 –14.963
12 10 1.044 –15.144 1.044 –15.144
13 11 1.053 –14.886 1.053 –14.886
14 12 1.054 –15.227 1.054 –15.227
15 13 1.049 –15.287 1.049 –15.287
16 14 1.029 –16.091 1.029 –16.091

Note: Bold numbers correspond to the equivalent nodes in Fig. 11.

4.5. Power distribution system

A power distribution system consists of several components which are generally radial in
nature [18]. Figure 12 shows the single line diagram of a typical radial distribution system.
Radial distribution system is fed at a single node called root node, marked as ‘R’ in Fig. 12.
Single main and several lateral feeders are there in a distribution system. Feeders comprise
branches, which may be either a transformer or a transmission line section. Usually, a bus is
connected with two branches and it sends end bus for one branch and receives one for an-
other branch. Fork node is a bus to which more than two branches are connected (marked as

S
R F F

T

T

T

0 1 2 3 4 65 7

8 9 10

11 12 13

1 2 3 4 5 6 7

8 9 10

11 12 13

FIG. 12. Single line diagram of a typical radial distribution system.

OBJECT-ORIENTED POWER SYSTEM ANALYSIS 151

‘F’ in Fig. 12). A bus, which is connected to only one branch is called terminal node and
marked ‘T’. The bus numbers are marked with bold letters and the branch numbers are
marked with italic letters. A feeder section may start either from the root node or from a
fork node and terminates either at a fork or at a terminal node.

5. Object-oriented modeling of distribution system

By analysing the distribution system we can come up with the physically existing compo-
nents such as feeder, bus, branch, source, load and shunt devices (shunt capacitor), etc. to
be modeled as software objects. The distribution system itself can be modeled as an abstract
object since it is a composition of other physically existing objects. The classes Root Node,
Fork Node and Terminal Node are specialized classes derived from the class Bus. They in-
herit all the prime attributes from the base class. Root node has the special property of hav-
ing the source connected to it. Fork node is a bus with more than two branches connected to
it. Terminal node is a bus with only one branch connected to it.

 When the modeled objects are extended to accommodate the loops, a few new specialized
classes have been derived. They are Ties and Dummy buses. Tie is an object which models
the tie line that makes a loop. In the proposed object-oriented design the Tie is modeled as
specialized class of feeder kind consisting of only one branch. It is derived from the class
Feeder.

DISTRIBUTION

SYSTEM

BUS FEEDER LOAD SHUNT

BRANCH

TIE LINE

DUMMY BUS ROOT NODE FORK NODE
TERMINAL

NODE PV BUS

PV FORK
NODE

PV TERMINAL
NODE

REACTORCAPACITOR

FIG. 13. Class diagram of the distribution system with dispersed generation.

M. P. SELVAN AND K. S. SWARUP 152

Table II
Details of dispersed generation

PV bus Generated power (p.u.)

 Real Reactive
 power power

9 0.35 0.17
15 0.60 0.30
22 0.80 0.40
30 0.80 0.40
35 0.40 0.20

 Recent distribution networks are associated with dispersed generators driven by renewable
energy such as wind, geothermal, etc. So it is essential to incorporate the dispersed generators
into the radial load flow. These generators are modeled as PV buses. Compensation-based load
flow algorithm gives an efficient technique to incorporate the PV buses and to maintain their
voltage constant, provided the required reactive power supply is available. Object-oriented
technique gives an elegant design to include PV buses in the existing distribution system
model. Figure 13 shows the class diagram of the radial and weakly meshed distribution system
with dispersed generation. A new class called PV bus, which is specialized from the class Bus,
is introduced. This specialization has been done because PV bus is a Bus having a generator
connected to it. Moreover, in practical distribution system the local generators may be located
at the fork or terminal node or at any one bus along the feeder. So a fork or a terminal node
may be a PV bus. To handle this condition, the class FPVNode (Fork PV node), which is a fork

Table III
Bus voltage magnitudes of the 37-bus system with dispersed generation at five nodes
Bus Voltage magnitude (p.u.) Bus Voltage magnitude (p.u.)

no. Without dispersed With dispersed Without dispersed With dispersed
 generation generation generation generation

 0 1.0000 1.0000 19 0.9819 0.9843
 1 0.9871 0.9887 20 0.9778 0.9810
 2 0.9821 0.9845 21 0.9777 0.9809
 3 0.9780 0.9811 22 0.9776 0.9809
 4 0.9765 0.9799 23 0.9775 0.9808
 5 0.9761 0.9795 24 0.9759 0.9794
 6 0.9761 0.9795 25 0.9754 0.9790
 7 0.9816 0.9841 26 0.9753 0.9789
 8 0.9809 0.9836 27 0.9748 0.9785
 9 0.9802 0.9830 28 0.9739 0.9778
10 0.9809 0.9835 29 0.9732 0.9773
11 0.9808 0.9834 30 0.9729 0.9771
12 0.9801 0.9830 31 0.9728 0.9769
13 0.9801 0.9829 32 0.9727 0.9768
14 0.9798 0.9828 33 0.9737 0.9777
15 0.9797 0.9828 34 0.9736 0.9775
16 0.9797 0.9827 35 0.9737 0.9777
17 0.9819 0.9843 36 0.9727 0.9769
18 0.9818 0.9843

no.

no.

OBJECT-ORIENTED POWER SYSTEM ANALYSIS 153

node and is a PV bus, and the class TPVNode (Terminal PV node), which is a terminal node
and is a PV bus, have been derived using multiple inheritance technique of object-oriented
methodology. FPVNode is derived from Fork Node and PVBus. TPVNode is derived from
Terminal Node and PVBus. Using the developed object-oriented model of the distribution sys-
tem, load-flow analysis program has been implemented and tested on various standard test sys-
tems. Table III shows the results obtained for the IEEE 37-bus system with and without
dispersed generations (details are given in Table II). These results are in agreement with the re-
sults given in Shehidehpour and Wang [19].

6. Conclusion

Flexible and extendable object-oriented design for power system has been discussed in de-
tail. The proposed design has been used for deriving REI equivalent of a system, which can
be used for different analyses in interconnected power system. Object-oriented modeling
for radial and weakly meshed distribution system with dispersed generation has been dis-
cussed and it is found that the object-oriented approach is better at modeling the physical
system than procedural programming.

References

1. S. W. Ambler, The object primer–The application developer’s guide to object orientation and the UML,
Second edition, Cambridge University Press (2001).

2. G. Booch, Object-oriented analysis and design with applications, Second edition, Addison-Wesley (1994).

3. A. F. Neyer, F. F. Wu and K. Imhof, Object-oriented programming for flexible software: Example of a load
flow, IEEE Trans. Power Systems, 5, 689–696 (1990).

4. T. S. Dillon and E. Chang, Solution of power system problems through the use of the object-oriented para-
digm, Electl Power Energy Systems, 16, 157–165 (1994).

5. J. Zhu and D. L. Lubkeman, Object-oriented development of software systems for power system simulations,
IEEE Trans. Power Systems, 12, 1002–1007 (1997).

6. S. Pandit, S. A. Soman, S. A. Khaparde, Object-oriented design for power system applications, IEEE Com-
puter Applic. Power, 43–47 (2000).

7. S. J. Pollinger, C. C. Liu and M. J. Damborg, Design guidelines for object-oriented software with and EMS
man-machine interface application, Electl Power Energy Systems, 14, 1227–1230 (1992).

8. B. Hakavik and A. T. Holen, Power system modeling and sparse matrix operations using object-oriented
programming, IEEE Trans. Power Systems, 9, 1045–1051 (1994).

9. S. Pandit, S. A. Soman and S. A. Khaparde, Design of generic direct sparse linear system solver in C++ for
power system analysis, IEEE Trans. Power Systems, 16, 647–652 (2001).

10. E. Z. Zhou, Object-oriented programming, C++ and power system simulation, IEEE Trans. Power Systems,
11, 206–215 (1996).

11. C. R. Fuerte, E. Acha, S. G. Tan and J. J. Rico, Efficient object oriented power systems software for the
analysis of large scale networks containing FACTS-controlled branches, IEEE Trans. Power Systems, 13,
464–472 (1998).

12. M. Foley and A. Bose, Object-oriented on-line network analysis, IEEE Trans. Power Systems, 10, 125–132
(1995).

13. A. Manzoni, A. S. de Silva and I. C. Decker, Power systems, dynamics simulation using object-oriented pro-
gramming, IEEE Trans. Power Systems, 14, 249–255 (1999).

14. E. Handschin, M. Heine, D. Konig, T. Nikodem, T. Seibt and R. Palma, Object-oriented software engineer-
ing for transmission planning in open access schemes, IEEE Trans. Power Systems, 13, 94–100 (1998).

M. P. SELVAN AND K. S. SWARUP 154

15. A. Losi and M. Russo, Object-oriented load flow for radial and weakly meshed distribution networks, IEEE
Trans. Power Systems, 18, 1265–1274 (2003).

16. D. Paul, Nodal analysis of power systems, Abacus Press, Kent, England (1975).

17. S. C. Savulescu, Solving open access transmission and security analysis problems with the short-circuit cur-
rents method, Latin America Power 2002 Conf., Controlling and Automating Energy Session, August 27,
2002, Monterrey, Mexico, pp. 1–7 (2002).

18. D. Shirmohammadi, H. W. Hong, A. Semlyen and G. X. Luo, A compensation based power flow method for
weakly meshed distribution and transmission networks, IEEE Trans. Power Systems, 3, 753–762 (1988).

19. M. Shahidehpour and Y. Wang, Communication and control in electric power systems–Applications of par-
allel and distributed processing, IEEE Press, Wiley (2003).

