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Abstract 
 
This paper presents a Gauss Legendre quadrature method for numerical integration over the standard triangular 
surface: {(x, y) | 0 , 1, 1}x y x y≤ ≤ + ≤  in the Cartesian two-dimensional (x, y) space. Mathematical transforma-
tion from (x, y) space to (ξ, η) space map the standard triangle in (x, y) space to a standard 2-square in (ξ, η) 
space: {(ξ, η)|–1 ≤ ξ, η ≤ 1}. This overcomes the difficulties associated with the derivation of new weight coeffi-
cients and sampling points and yields results which are accurate and reliable. Results obtained with new formulae 
are compared with the existing formulae. 
 
Keywords: Finite-element method, numerical integration, Gauss Legendre quadrature, triangular elements, stan-
dard 2-square, extended numerical integration. 

 
1. Introduction 

In recent years, the finite-element method (FEM) has become a very powerful tool for the 
approximate solution of boundary-value problems governing diverse physical phenomena. 
Its use in industry and research is extensive and without it many practical problems in sci-
ence and engineering would be incapable of solution. The triangular elements with either 
straight or curved sides are very widely used in finite-element analysis. The versatility of 
these triangular elements can be enhanced further by improved numerical integration 
schemes. In FEM, various integrals are to be determined numerically in the evaluation of 
the stiffness matrix, mass matrix, body force vector, etc. 

 The basic problem of integrating an arbitrary function of two variables over the surface of 
triangle was first given by Hammer et al. [1] and Hammer and Stroud [2, 3]. With the advent 
of the finite-element method, the triangular elements proved to be versatile. There has been 
considerable interest in the area of numerical integration schemes over triangles. Cowper [4] 
provided a table of Gaussian quadrature formulae for symmetrically placed integration points. 
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Lyness and Jespersen [5] made an elaborate study of symmetric quadrature rules by formulat-
ing the problem in polar coordinates. Lannoy [6] discussed the symmetric 4-point integration 
rule [4]. Laurie [7] derived a 7-point integration rule and discussed the numerical error in inte-
grating some functions. Laursen and Gellert [8] gave a detailed table of symmetric integration 
formulae and suggested some new higher-order formulae of precision up to degree 10. Lether 
[9], Hillion [10] and Lague and Baldur [11] considered the product formulae derivable from 
one-dimensional Gaussian quadrature rules. Reddy [12], and Reddy and Shippy [13] derived  
3-, 4-, 6- and 7-point formulae which give improved accuracy. However, Lague and Baldur 
have not listed the explicit weighting coefficients and sampling points for numerical applica-
tions. The present work aims to provide this information in a systematic manner for future ref-
erence. There is a great need for higher-order quadrature rules over the triangular surface [14]. 
A similar suggestion was also made by Lague and Baldur [11]. 
 
2. Formulation of integrals over a triangular area 

The finite-element method for two-dimensional problems with triangular elements requires 
the numerical integration of shape functions on a triangle. Since an affine transformation 
makes it possible to transform any triangle into the two-dimensional standard triangle T 
with coordinates (0,0), (0,1), (1,0) in Cartesian frame, we have to consider just the numeri-
cal integration on T. The integral of an arbitrary function, f, over the surface of a triangle T 
is given by  

  I = ( , )
T

f x y dxdy∫∫  =
1 1

0 0

( , )
x

dx f x y dy
−

∫ ∫ =
11

0 0

( , ) .
y

dy f x y dx
−

∫ ∫   (1) 

It is now required to find the value of the integral by a quadrature formula: 

  I = ,

1

( )
N

m m m

m

c f x y
=

∑  (2) 

where cm are the weights associated with specific points (xm, ym) and N is the number of 
pivotal points related to the required precision. One such accurate method known to the 
present authors is based on 13 integration points [4]. It is not likely that this technique will 
be extended further to give greater accuracy which may be demanded in future. The other 
method is the approximation of I by product formulae [10] which is of type (2) based on the 
roots and weights of Gauss Legendre and Gauss Jacobi polynomials. The precision of these 
formulae is limited to polynomials of degree seven; this is because the weights and roots of 
Jacobi polynomials are not tabulated in standard texts for sufficiently higher degree poly-
nomials. The product formulae proposed in this paper and in the work of Lague and Baldur 
[11] are based only on the roots and weights of Gauss Legendre polynomials. 

 The integral I of eqn (1) can be transformed into an integral over the surface of the 
square: {(u, v) |0 ≤ u, v ≤ 1} by the substitution: 

  x = u, y = (1 – u)v.  (3) 

 Then the determinant of the Jacobian and the differential area are: 

  
( , )
( , )
x y y yx x
u v u v v u

∂ ∂ ∂∂ ∂= −
∂ ∂ ∂ ∂ ∂

= (1) (1 – u) – 0 (–v) = 1 – u 
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and  

  dx dy = 
( , )

(1 ) .
( , )
x y

dudv u dudv
u v

∂
= −

∂
  (4) 

 Then, on using eqns (3) and (4) in eqn (1), we have 

  
1 1

0 0

( , )
x

f x y dydx
−

∫ ∫ =
1 1

0 0

( ,(1 ) )(1 ) .f u u v u dudv− −∫ ∫  (5) 

 The integral I of eqn (5) can be transformed further into an integral over the standard 2-
square: {(ξ, η)| –1 ≤ ξ, η ≤ 1} by the substitution  

  u = (1 + ξ)/2, v = (1 + η)/2, (6) 

then clearly the determinant of the Jacobian and the differential area are: 

  
( , )
( , )
u v u v u v
ξ η ξ η η ξ

∂ ∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂ ∂

= (1/2)(1/2) – (0) (0) =1/4 

  dudv = 
( , ) 1
( , ) 4
u v

d d d dξ η ξ η
ξ η

∂
=

∂
. (7) 

Now, on using eqns (6) and (7) in eqn (5), we have: 
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Equation (8) represents an integral over the surface of a standard 2-square: {(ξ, η)|–1 ≤ 
ξ, η ≤ 1}. Efficient quadrature coefficients are readily available in the literature so that any 
desired accuracy can be readily obtained [15]. 

 From eqn (8), we can write: 
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1 1

1 1
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where ξi, ηi are Gaussian points in the ξ, η directions, respectively, and wi and wj are the 
corresponding weights. 

 We can rewrite eqn (9) as: 

  I = 
1

( , )
N n n

k k k

k

c f x y
= ×

=
∑  (10) 
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Table I 
Gauss points and weighting coefficients 
over a triangle 
xi yi ci 
 

n = 2 

0.211324865 0.166666667 0.197168783 
0.211324865 0.622008467 0.197168783 
0.788675134 0.044658198 0.052831216 
0.788675134 0.166666667 0.052831216 

n = 3 

0.112701665 0.100000000 0.068464377 
0.112701665 0.443649167 0.109543004 
0.112701665 0.787298334 0.068464377 
0.500000000 0.056350832 0.061728395 
0.500000000 0.250000000 0.098765432 
0.500000000 0.443649167 0.061728395 
0.887298334 0.012701665 0.008696116 
0.887298334 0.056350832 0.013913785 
0.887298334 0.100000000 0.008696116 

 

where ck, xk and yk can be obtained from the relations: 

  
(1 )

,
8

i
k i jc w w

ξ−
=  

(1 )
,

2
i

kx
ξ+

=  
(1 )(1 )

4
i j

ky
ξ η− +

=   

  (k = 1, 2, ……, n), (i, j = 1, 2, 3, ….., n).  (11) 

The weighting coefficients ck and sampling points (xk, yk) of various orders can now be eas-
ily computed by formula of eqns (10) and (11). We have tabulated a sample of these weight 
coefficients and sampling points for n = 2, 3 (Table I). 
 
3. Some numerical results 

We consider some typical integrals with known exact values [13]. 
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Table II 
Numerical results of double integration 
n I1 I2 I3 I4 I5 
 

 2 0.401077171 0.648611850 0.773333314 0.997971215 0.713057545 
 3 0.400179978 0.660068693 0.826947872 1.000010067 0.716488207 
 4 0.400049569 0.663549499 0.848619059 0.999999973 0.719259751 
 5 0.400017920 0.664954585 0.859506833 1.000000004 0.718518356 
 6 0.400007718 0.665627534 0.867623963 1.000000007 0.717469550 
 7 0.400003754 0.665989386 0.869644421 1.000000001 0.718432382 
 8 0.400002008 0.666201003 0.872247990 1.000000000 0.718568842 
 9 0.400001147 0.666332910 0.874071505 1.000000006 0.718126535 
10 0.400000697 0.666354438 0.875398197 0.999999996 0.718253208 
15 0.400000094 0.666589692 0.878533306 0.999999999 0.718352298 

 

 
1

1
5

0 0

y

x yI e dxdy+ −= ∫ ∫  = 0.71828183. 

These integrals were evaluated using the integration schemes derived in the present paper and 
it is found that excellent convergence occurs to the exact values. The calculations give very ac-
curate results and are reliable as proved by Lague and Baldur [11]. The results are summarized 
in Table II. 
 
4. Conclusions 

We have derived various orders of extended numerical integration rules based on classical 
Gauss Legendre quadrature over a triangle (Table I). This is made possible by transforming 
the triangular surface: 0 ≤ x, y ≤ 1, x + y ≤ 1 to a standard 2-square; –1 ≤ ξ, η ≤ 1. Over the 
2-square, the Gauss Legendre quadrature rule of all orders is applicable. It may be noted 
that a lot of mathematical effort is needed to derive the numerical integration rules over the 
triangular surface and the integration formulae available at this moment in the literature are 
confined to a precision of degree up to ten. With the proposed method, this restriction is 
removed and one can now obtain numerical integration rules of very high degree as the 
derivations proposed here rely on the standard Gauss Legendre quadrature rules. This is es-
sential as the demand for higher-order integration rules in the finite-element method is in-
creasing. 
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