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Abstract 
 
This paper presents a design of prototype filters for quadrature mirror filter (QMF) banks. To minimize the value 
of reconstruction error for near-perfect reconstruction (NPR), linear optimization has been applied. Variable and 
combinational window functions with high side-lobe-fall-off-rate (SLFOR) have been used to design lowpass 
prototype filters. Use of window functions resulted in simple implementation. High SLFOR of combinational 
windows reduced the energy leakage due to aliasing from one sub-band to the other. The proposed optimization 
algorithm takes a few seconds on Pentium processor. 
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1. Introduction 

Quadrature mirror filter (QMF) bank finds wide application in the area of signal processing, 
particularly in the sub-band coding of speech, digital audio applications, communication 
systems, and short-time spectral analysis [1]. A two-band, linear phase, quadrature mirror 
filter bank was introduced by Johnston [2]. The theory and design of these filterbanks have 
been dealt with extensively by other researchers [3, 4]. In QMF bank, the input signal x(n) 
is split into two equally spaced frequency sub-bands by two-band analysis filters H0(z) and 
H1(z), followed by two-fold decimation. At the receiving end, the corresponding synthesis 
bank has two-fold interpolation in both sub-bands followed by G0(z) and G1(z) synthesis fil-
ters, and finally, an adder to add both bands. Figure 1 shows the QMF–analysis/synthesis 
framework. The reconstructed output signal y(n) suffers from three distortions, viz., alias-
ing, amplitude, and phase distortions [1]. Ideally, these distortions can be completely elimi-
nated, called perfect reconstruction (PR). However, in practice, PR is not possible. To 
eliminate the aliasing and phase distortions, all the analysis and synthesis filters must be 
translated to a single lowpass prototype of even-order symmetric FIR linear-phase filter 
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[1, 3, 5]. Thus, the design of the whole filterbank reduces to that of the prototype filter. 
Amplitude distortion still needs to be eliminated. Direct approach to the design of lowpass 
filters using window technique is not applicable to eliminate the amplitude distortion; this 
involves optimization techniques [2, 5]. Johnston [2] used Hanning window to design the 
lowpass prototype FIR filter and proposed nonlinear objective function, which requires 
nonlinear optimization algorithm to obtain minimum reconstruction error. Creusere and Mi-
tra [4] used a different objective function, which is linear in nature. Linear optimization al-
gorithm has been used to obtain near-perfect reconstruction. Parks–McClellan algorithm 
has been used to design the lowpass prototype filter. Lin and Vaidyanathan [6] used win-
dow method to design lowpass prototype FIR filter. A different objective function linear in 
nature has been used to minimize the reconstruction error. In both [4] and [6] a single para-
meter has been optimized. 

 This work uses the algorithm as proposed in Creusere and Mitra [4] with certain modifi-
cations to optimize the objective function. Two combinational window functions [7, 8, 10] 
having large SLFOR have been used for designing FIR prototype filters. Due to the closed-
form expressions of the window functions, the optimization procedure gets simplified. 
Apart from the combinational windows, Kaiser and Dolph–Chebyshev (DC) windows [11, 
13] have also been used. Finally, a comparative evaluation of the window functions used to 
design the prototype has been done with reconstruction error and far-end attenuation being 
selected as the main figure of merit. 
 
2. FIR filter design using window method 

Impulse response of lowpass prototype filter, h(n), of order (N) designed using window 
function [11] is of the form h(n) = hd(n)w(n), where 
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is the desired impulse response of the ideal filter with cut-off frequency fc = 0.5 (  fp + fs), 
with fs, fp as the stopband, passband frequencies, respectively, and w(n) is the window func-
tion. Window functions used in this work and their filter design relationships are given in 
Appendix I. 

 

   
FIG. 1. Two-band QMF system. 
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 The filter designed using the window is specified by three parameters–cut-off frequency 
(fc), filter order (N), and window shape parameter (γ6, γ4, β). For desired stopband attenua-
tion (∆s) and transition bandwidth, the order of the filter (N) can be estimated by 

  ,1+




∆

=
sF

DN  (2) 

where D is the normalized window width, ∆Fs, the normalized transition width = (  fs
 – fp)/Fs, 

and Fs, the sampling frequency in Hertz. The window shape parameter can be determined 
by the desired stopband attenuation. 
 
3. Design of NPR filters using optimization algorithm 

To get the high-quality reconstructed output y(n), the frequency response of lowpass proto-
type filter, H(ej2πf), must satisfy (3) and (4) [4]: 
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by assuming that filters have even number of coefficients. 

 If (4) is satisfied exactly, aliasing is eliminated between nonadjacent bands. In case (3) is 
satisfied, then amplitude distortion is eliminated [4]. Phase distortion is removed by select-
ing even-order FIR prototype filter [1, 5]. Constraints (3) and (4) cannot be satisfied exactly 
for finite length filter order so it is necessary to design a filter which approximately satisfies 
(3) and (4). Johnston [2] combined the passband ripple energy and out-of-band energies 
into a single cost function having nonlinear nature and then minimized it using Hooke and 
Jeaves algorithm [12]. Creusere and Mitra [4] designed filters using Parks–McClellan algo-
rithm that approximately satisfied (3) and (4). The filter length, relative error weighting, 
and stopband edge were fixed before optimization procedure started, while the passband 
edge was adjusted to minimize the objective function 
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Lin and Vaidyanathan [6] used different objective function called φnew and designed the 
prototype filters using Kaiser window. 

 In this work, the objective function (5) has been used to minimize the reconstruction er-
ror and to obtain near-perfect reconstruction. High SLFOR combinational window func-
tions have been used to design the prototype lowpass FIR filters. In Creusere and Mitra [4], 
passband frequency (  fp) is changed in each iteration to minimize the objective function; 
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Initialize: passband and stopband frequencies,  
t-error, step, dir, Calculate Cut-off frequency, 

Filter order, and Window coefficients  

Design prototype filter and determine 
reconstruction error (|error|) 

|prev-error| ⇐ |error| 
Cut-off frequency = Cut-off frequency + (step × dir) 
Redesign prototype filter using new value of Cut-off  
frequency and determine reconstruction error (|error|) 

Is |error| ≤ |t-error|  
or 

 |prev-error| = |error| 

Is 
|error| > |prev-error| 

step = step/2 
dir = - dir 

Stop 

Specify stopband attenuation and 
passband ripple 

Yes 

No

No 

Yes 

 

FIG. 2. Proposed flowchart for optimization algorithm. 
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however, in this algorithm the cut-off frequency (  fc) is varied to get the smallest recon-
struction error. The initial window coefficients have been calculated before calling the opti-
mization routine. The modified flowchart of the optimization algorithm is given in Fig. 2. 
This algorithm adjusts the cut-off frequency in each iteration to minimize the objective 
function by the stepsize denoted by step, calculates the new filter coefficients, and then 
computes the reconstruction error, φ (denoted error in the flowchart). Whenever the error 
increases from the pervious error (depicted as prev-error in the algorithm) stepsize is 
halved and the search direction labeled dir is changed. The iterations are stopped either 
when the error of the current iteration is within the specified tolerance (depicted as t-error), 
which is initialized before the optimization process begins or when prev-error equals error. 

 There is no demarcation between the passband and transition band [2]; however, the ap-
proximation in constraint (4) can be achieved by keeping the stopband frequency fs at Fs/4 
and then the only constraint is that the response of the filter set must be very close to –3dB 
at Fs/4, so that the sum of (H2(  f) + H2(Fs/2 – f)) must remain close to unity about that point 
[2]. It is observed that the best way to achieve this is to initialize the passband edge at Fs/6 
in the optimization algorithm. Depending on the transition width, filter order is obtained 
and then the window coefficients are calculated. Once the window coefficients have been 
calculated they are not disturbed, while varying the cut-off frequency which varies the filter 
coefficients. The magnitude and direction of the cut-off frequency change is varied to ob-
tain filter coefficients, which can minimize the objective function given by (5). Changes in 
the cut-off frequency are of the magnitude that they do not affect the filter order but the ob-
jective function is affected. 

 For example, Kaiser window has been used to design a lowpass prototype filter with de-
sired stopband attenuation of 88 dB. The values of passband and stopband frequencies are 
fixed before calling the optimization algorithm and these normalized values are 0.1666 and 
0.2500, respectively. The order of the prototype filter is estimated by eqn (2), which is 
equal to 68. By optimization, the cut-off frequency fc is adjusted. When fc = 0.51549, the 
reconstruction error has a minimum value of 0.01098 dB. 
 
4. Comparative performance analysis 

QMF banks were designed using window functions described in Appendix I. Results are 
shown in Tables I–III. In Table I, the value of stopband attenuation was selected as 50 dB, 
resulting in different filter orders for different window functions. In Table II results 

Table I 
Performance of QMF filter at 50 dB stopband  
attenuation 

Window Reconstruc- Filter Far-end  
function tion error order attenuation  
  (dB) (N) (dB) 
 

Kaiser window 0.3208 38 75 
DC window 0.1718 32 50 
PC4 window 0.1298 66 110 
PC6 window 0.1060 50 74 

 

Table II 
Performance of QMF filter at N = 80 

Window Reconstruc- Stopband Far-end  
function tion error attenuation attenuation  
  (dB) (dB) (dB) 
 

Kaiser window 0.0116 90 107 
DC window 0.0152 82 82 
PC4 window 0.0171 64 160 
PC6 window 0.0656 52.5 89 
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corresponding to filter designs with an order (N) of 80 are shown. Same value of filter order 
resulted in different levels of stopband attenuations. Finally, in Table III, a comparison is 
made of the optimum performance that can be attained with the four window functions. 

 Apart from the reconstruction error, the far-end attenuation (amplitude of the last ripple 
in the stopband) is also selected as one of the figures of merits for the comparative study. 
This parameter is of significance when the signal to be filtered has great concentration of 
spectral energy. In a sub-band coding, the filter is intended to separate out various fre-
quency bands for independent processing. In the case of speech, e.g. the far-end rejection of 
the energy in the stopband should be more so that the energy leak from one band to another 
is minimum. From Tables I and II, it is inferred that as the stopband attenuation increases 
the value of reconstruction error decreases. The Kaiser window-designed FIR filter gives 
better performance as compared to the other window functions. Far-end attenuation 
 

   

   

FIG. 3. QMF filter and reconstruction error using combinational and variable windows for N = 36. 

Table III 
Optimum performance in terms of reconstruction error 

Window Recon- Stopband  Filter Far-end 
function struction  attenuation  order attenuation 
  error (dB) (db) (N) (dB) 
 

Kaiser window 0.0097 88.00 90 107 
DC window 0.0086 86.00 36 86 
PC4 window 0.0135 59.50 30 110 
PC6 window 0.0120 55.00 22 72 
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FIG. 4. Variation of reconstruction error with window shape parameter/ripple ratio. 

 
is maximum for PC4 window-based FIR filters. As from Table III, the optimum perform-
ance in terms of reconstruction error has been obtained in Dolph–Chebyshev window func-
tion. Reconstruction error for the four prototype filters designed with N = 36 are shown in 
Fig. 3 along with their magnitude frequency response. It is also observed practically that the 
reconstruction error depends on the window shape parameter for Kaiser and combinational 
windows, whereas for Dolph–Chebyshev window reconstruction error is dependent on the 
ripple-ratio (r). Plots corresponding to these variations are shown in Fig. 4 for the four win-
dows. 
 
5. Conclusion 

A simple algorithm for designing the lowpass prototype filters for QMF banks has been 
used to optimize the reconstruction error by varying the filter cut-off frequency. Prototype 
filters designed using high SLFOR combinational window, Kaiser window and Dolph–
Chebyshev window functions have been compared. Reconstruction error was found to be 
dependent on the window shape parameter. Optimum performance with respect to recon-
struction error was observed for Dolph–Chebyshev window function. Combinational win-
dows provided better far-end rejection of the stopband energy. This feature helps to reduce 
the aliasing energy leak into a sub-band from that of the signal in the other sub-band. Simu-
lation studies reveal that the algorithm converges between 270 and 310 iterations and takes 
a few seconds to optimize the filter coefficients on a Pentium processor. 

Dolph–Chebyshev window 
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Appendix I 
 
Window functions and their filter design relationships 

1. Parzen-cos6(nπ/N) combinational window (PC6): The expression for Parzen-cos6(nπ/N) 
combinational window with γ6 as window shape parameter is given as [7]: 
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FIR filter design relationships are given by the following equations [8] 

  γ6 = a + (b∆s) + (c∆s
2) 

where, 

  a = 8.15414; b = –0.236709; c = 0.00218617, for 30.32 ≤ ∆s ≤ 51.25 

  a = 21.3669; b = –0.605789; c = 0.00434808, for 51.25 < ∆s ≤ 68.69 

  D = a + (b∆s) + (c∆s
2) 

where, 

a = 1.82892; b = –0.0275481; c = 0.00157699, for 30.32 ≤ ∆s ≤ 43.60 

a = 1.67702; b = 0.0450205; c = 0.00,     for 43.60 < ∆s ≤ 49.44 

a = 85.4738; b = –3.41969; c = 0.035784,   for 49.44 < ∆s ≤ 57.48 

a = –8.60006; b = 0.477004; c = –0.00355655, for 57.48 < ∆s ≤ 68.69 

2. Papoulis-cos4(nπ/N) combinational window (PC4): The combinational window of Pa-
poulis-cos4(nπ/N) with γ4 as window shape parameter is given by [7]: 

  

[ ] [ ]4 4 4 4

4

4

( ) (1 ) ( ) , | |
2( )

0, | |
2

0 8.235

PC

Nl n d n n
w n

Nn

γ γ

γ

 + − ≤
= 

 >


≤ ≤

 

where, 

  ( ) ( )4
1 2 2( ) sin 1 2 cos , | |

2
nn n Nl n n

N N N
π π

π
 

= + − ≤ 
 

. 

 ( )4
4 ( ) cos , | |

2
n Nd n n
N
π= ≤ . 

FIR filter design relationships have been established using the method of Prabhu [9], and 
Sharma et al. [10]. These relationships are described as: 

  2 3 4
4 ( ) ( ) ( ) ( ),s s s sa b c d eγ = + ∆ + ∆ + ∆ + ∆  for 26.19 < ∆s ≤ 61.08 

where, 

a = –69.058755; b = 8.409918; c = –0.321364; d = 0.005044; e = –0.000028 

2 3 4( ) ( ) ( ) ( ),s s s sD a b c d e= + ∆ + ∆ + ∆ + ∆ for 26.19 < ∆s ≤ 61.08 

where, 

a = 8.728537; b = –0.412899; c = –0.000713; d = 0.000355; e = –0.000004 
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3. Kaiser window: The window function is given by [11]: 

( )
[ ]

221 1
1

( ) , 0 ( 1)

o

o

nI
N

w n n N
I

β

β

 
− − 

−  = ≤ ≤ −  

where Io[.] is the modified zeroth-order Bessel function, and β, the window shape parame-
ter. The empirical design equations developed by Kaiser [11] are given by 
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4. Dolph–Chebyshev Window (DC): The window function is given by [13]: 
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where ∆p is the desired passband ripple and ∆s, the desired stopband attenuation. 

 The empirical design equation developed by Kaiser has been modified by Saramaki [13] 
for computation of D. The modified equation is given by 

0.9222, for | | 21

( 5.45)
, for | | 21

14.36

s

s
s

D
∆ ≤

=  ∆ −
∆ >

 


