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Abstract 
 
The fractional Fourier transform (FRFT) is the generalization of the classical Fourier transform. It depends on a 
parameter α (= aπ/2) and can be interpreted as a rotation by an angle α in the time-frequency plane or decomposi-
tion of the signal in terms of chirps. This paper discusses discrete FRFT (DFRFT), time-frequency distributions 
related to FRFT, optimal filter and beamformer in FRFT domain, filtering using window functions and other frac-
tional transforms along with simulation results. 
 
Keywords: Fractional Fourier transform, signal processing and analysis. 

 
1. Introduction 

The Fourier transform (FT) is undoubtedly one of the most valuable and frequently used 
tools in signal processing and analysis [1]. A generalization of Fourier transform, the frac-
tional Fourier transform (commonly referred to as FRFT in the literature), was first intro-
duced by Victor Namias in 1980 [2]. He was apparently unaware of the previous works of 
N. Wiener in 1929, H. Weyl in 1930, E. U. Condon in 1937, H. Kober in 1939, A. P. Gui-
nand in 1956, A. L. Patterson in 1959, V. Bargmann in 1961, De Bruijn in 1973 and R. S. 
Khare in 1974 [3–4], and of others. Though the idea was the same, these authors discussed 
the FRFT in a broader context and not by the same name. Mustard [5] in 1987 did consider-
able work considering Condon and Bargmann as his base without citing Namias’ work. 
Moreover, as FRFT is a special case of linear canonical transform (LCT), all the work pre-
viously done on LCT covers FRFT in some sense. In some cases, FRFT is not given any 
special attention but in other cases the authors have commented on it as one-parameter sub-
class with the FT as a special case. 

 In 1980, Victor Namias established that the other transforms could also be fractionalized 
[6]. The refinement and mathematical description was given by McBride and Keer in 1987 
[7]. FRFT has established itself as a powerful tool for the analysis of time-varying signals 
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in a very short span of time [8]. Furthermore, a general definition of FRFT for all classes of 
signals (one- and multidimensional, continuous and discrete, and periodic and nonperiodic) 
was given by Cariolario et al. [9]. With the advent of computers and enhanced computa-
tional capabilities, the discrete Fourier transform (DFT) came into existence in the evalua-
tion of FT for real-time processing. Further, these capabilities are enhanced by the 
introduction of DSP processors and fast Fourier transform (FFT) algorithms. On similar 
lines, there arises a need for discretization of FRFT. DFT has only one basic definition and 
nearly 200 algorithms are available for fast computation of DFT. But when FRFT is ana-
lyzed in discrete domain, there are many definitions of discrete fractional Fourier transform 
(DFRFT) [10–13]. It is also established that none of these definitions satisfies all the prop-
erties of continuous FRFT [14]. Santhanam and McClellan [11] first reported the work on 
DFRFT in 1995. Thereafter, within a short span of time, a lot many definitions of DFRFT 
came into existence. These are classified by Pei and Ding [15] in 2000 according to the 
methodology of its calculation. 

 The FRFT has been found to have several applications in the areas of optics [8, 16] and 
signal processing [17–19]. It also leads to generalization of notion of space (or time) and 
frequency domains which are central concepts of signal processing. It has many applica-
tions in solution of differential equations, optical beam propagation and spherical mirror 
resonators, optical diffraction theory, quantum mechanics, statistical optics, optical system 
design and optical signal processing, signal detectors, correlation and pattern recognition, 
space or time-variant filtering, multiplexing [14], signal and image recovery, restoration 
and enhancement [20, 21], study of space or time-frequency distributions (TFDs) [22], etc. 
The fractional Fourier transform is likely to have something to offer in every area in which 
FT and related concepts are used. Therefore, applications of the transform have been stud-
ied mostly in the areas of optics and wave propagation, and signal analysis and processing. 
 
2. Fractional operations 

Going from the whole of an entity to its fractions represents a relatively major conceptual 
leap. The fourth power of 3 may be defined as 34 = 3 × 3 × 3 × 3, but it is not obvious from 
this definition how 33.5 might be defined. It must have taken sometime before the common 

definition 72/75.3 333 ==  emerged. The first and the second derivatives of the function f(x) 
are commonly denoted by: df(x)/dx and  

22

2

( ) ( ) [ ( )/ ]
( ),

d f x d df x d df x dx d
f x

dx dx dx dxdx

   = = =      
 

respectively. Similarly, higher-order derivatives are defined. Now what is the 2.5th deriva-
tive of a function? It may not be clear from the above definition. Let F(µ) denote the FT of 
f(x). The FT of the nth derivative of f(x), [i.e. (dnf(x)/dxn)] is known to be given by 
(i2πµ)nF(µ), for any positive integer n. Now, let us generalize this property by replacing n 
with the real-order a and take it as the ath derivative of f(x). Thus to find daf(x)/dxa, the ath 
derivative of f(x), find the inverse Fourier transform of (i2πµ)aF(µ). Both of these examples 
deal with the fractions of an operation performed on an entity, rather than fractions of the 
entity itself. 40.5 is the square root of the integer 4. The function [f(x)]0.5 is the square root 
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of the function f(x). But d 0.5f(x)/dx0.5 is the 0.5th derivative of f(x), (df(x)/dx)0.5 being the 
square root of the derivative operator d/dx. The process of going from the whole of an en-
tity to its fractions underlies several of the more important conceptual developments, e.g. 
fuzzy logic, where the binary 1 and 0 are replaced by continuous values representing cer-
tainty or uncertainty of a proposition [23]. 
 

3. Fractional Fourier transform (FRFT) 

FRFT is a generalization of FT. It is not only richer in theory and more flexible in applica-
tion, but is also not expensive in implementation. It is a powerful tool for the analysis of 
time-varying signals. With the advent of FRFT and related concepts, it is seen that the 
properties and applications of the conventional FT are special cases of those of the FRFT. 
However, in every area where FT and frequency domain concepts are used, there exists the 
potential for generalization and implementation by using FRFT. In this section, the basic 
concept of FRFT and generalization of FT is described. 

 FT of a function can be considered as a linear differential operator acting on that func-
tion. The FRFT generalizes this differential operator by letting it depend on a continuous 
parameter a. Mathematically, ath order FRFT is the ath power of FT operator. 
 
3.1. Definition 

The FRFT of a function s (x1) can be given as: 

 2 24 2 1
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[ ( )] ( ) exp cot exp cot ( ) ,
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a i ix xi i

F s x S x x x s x dx
π π

α α
απ α

∞

−∞

−   = = − − −   
   ∫  (1) 

and the inverse FRFT can be given as 
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where α = aπ/2. 

 Different cases are discussed in the following section. 

i) When α = π/2, i.e. a = 1 

 1
1 1 1 1 1

1
[ ( )] [ ( )] ( ) exp( ) ,

2
aF s x F s x s x ixx dx

π

∞

−∞

= = −∫  (3) 

is the ordinary Fourier transform. 

ii) When α = 0, i.e. a = 0, the transform kernel reduces to identity operation. When α ap-
proaches 0, sinα approaches α, cotα approaches 1/α and using the fact in the sense of gen-
eralized functions 
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so that we have, 
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Table 1 
Various kernels available with FRFT 

Value of  α = aπ/2 Kernel Fractional Operation on 
parameter a   operator signal 
 

0 or 4 0 or 2π δ (x – x1) F 0 = F4 = I  Identity operator 
1 π/2 exp (ixx1) F 1 = F Fourier operator 
2 π δ (x + x1) F 2 = FF = I Reflection operator 
3 3π/2 exp (-ixx1) F 3 = FF 2 = F –1 Inverse Fourier operator 

 ).()()()]([ 11111
0 xsdxxsxxxsF =−= ∫

∞

∞−

δ  (5) 

A similar procedure can be applied to the case. 

iii) When α = π, i.e. a = 2 and the result turns out to be 

 ).()()()]([ 11111
2 xsdxxsxxxsF −=+= ∫

∞

∞−

δ  (6) 

 So, for an angle from 0 to 2π, we have the values of a from 0 to 4. It can be shown that 
the transform kernel is periodic with a period 4. Table I gives the various kernels of FRFT 
for variation of a from 0 to 4. 

 Many FRFT definitions are found in the literature, which converge to the original defini-
tion. Among them the most commonly used is: 

  2 2[ ( )] 1 cot exp[ ( cot 2 csc cot )] ( )aF s t i i f ft t s t dtα π α α α
∞

−∞

= − − +∫  (7) 

  = 2 24 csc exp( ) exp ( cot ) exp ( cot 2 csc ) ( ) ,i a i f t ft s t dtα π π α α α
∞

−∞

− −∫  (7a) 

where α = aπ/2 and 4 .  denotes the complex fourth root z, with –π/4 ≤ arg z ≤ π/4. 

 The FRFT of a function is equivalent to a four-step process: 

1. Multiplying the function with a chirp, 
2. Taking its Fourier transform, 
3. Again multiplying with a chirp, and 
4. Then multiplication with an amplitude factor. 

 The above-described type of FRFT is also known as Chirp FRFT (CFRFT). A version of 
weighted FRFT (WFRFT) is also available in the literature. It gives inferior results compa-
red to CFRFT and hence is not popular and is not in common use [9]. 

 The FRFT kernel can be written as ϕa(  f, t): 

 [ ( )] ( , ) ( ) ( ).a
a aF s t f t s t dt S fϕ

∞

−∞

= =∫  (8) 
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Let F a be an operator generating an FRFT, for any given fraction; a belongs to R, maps a 
signal s(t), t belongs to R. F a will be an FRFT operator if it is: 

i) linear 

ii) verifies FT condition F 1 = F. 

iii) has additive property F a+b = F aF b  for every choice of a and b. 

 It can be seen from here that the order parameter or fraction a can be freely manipulated, 
as if it denotes a power of FT operator. 

 Given the widespread use of conventional FT in science and engineering, it is important 
to recognize this integral transform as the fractional power of FT. Indeed, it has been this 
recognition, which has inspired most of the recent applications replacing the ordinary FT 
with FRFT (which is more general and includes FT as special case) adding an additional 
degree of freedom to problem, represented by the fraction or order parameter a. This, in 
turn may allow either a more general formulation of the problem or improvement based on 
possibility of optimization over a (as in optimal Wiener filter resulting in smaller mean 
square error at practically no additional cost). 

 
4. Generalized operations 

In this section, some of the important properties of FRFT are discussed. The properties of 
FRFT are useful not only in deriving the direct and inverse transform of many time-varying 
functions but also in obtaining several valuable results in signal processing. 

 As in the case of the conventional Fourier and Laplace transforms, an operational calcu-
lus exists in FRFT also. McBride and Keer developed the necessary framework for the idea 
of operational calculus of Victor Namias in a function-space setting [7]. The critical analy-
sis of Namias approach of fractionalization was done in order to clarify some ambiguities 
and modifications. 

 Recalling some of the well-established properties of Fourier transform, the operational 
calculus for FRFT is described in Table II. The fractional Fourier transform of some simple 
functions is given in Table III. 

 When two functions multiply (or convolve) in time domain (a = 0) they get convolved 
(or multiplied) in frequency domain (a = 1). More generally, multiplication (or convolution) 
in the ath domain is convolution (or multiplication) in (a ± 1)th domain (which is orthogonal 
to ath domain). In (a ± 2)th domain (which is sign-flipped version of the ath domain) convo-
lution (or multiplication) operation in the ath domain remains the same. The concept of frac-
tional convolution and correlation has been developed differently by various authors [14, 
18, 24]. 

 Now the question is how to evaluate FRFT? The answer obviously comes with the help 
of computers because of its computational complexity. So this leads to the requirement of 
the discrete version of FRFT so that it can be evaluated with the help of a computer. In con-
trast to the case of DFT where it has one basic definition and a lot of algorithms are avail-
able for its fast computation, FRFT has many definitions in discrete domain. The basic 
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problem for the signal-processing community is the exact definition of DFRFT. Which one 
can be used for signal-processing applications with the least possible error and which one 
has the fastest evaluation? 
 

5. Types of DFRFT 

There are a lot of definitions of DFRFT in the literature but none obeys all the properties of 
continuous FRFT. So in 2000, Pei and Ding [15] classified these definitions according to 
the methodologies used for calculations. This is given as under. 
 
5.1. Direct form of DFRFT 

The simplest way to derive the DFRFT is sampling the continuous FRFT and computing it 
directly, but this method of evaluation loses the properties of unitary, additivity, reversibil-
ity and closed-form properties. Its domain is therefore confined. 
 
5.2. Improved sampling-type DFRFT 

In this class of DFRFT, the continuous FRFT is properly sampled and it is observed that the 
resultant DFRFT has fast algorithm. It gives results similar to those of continuous FRFT. 
The major constraint in this class is that it is nonorthogonal, nonadditive and is applicable 
to only a set of signals [10]. 

Table II 
Important properties of FRFT 

Sl no Properties Calculus 
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1
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Table III 
Fractional Fourier transforms of simple functions 

Function f (x) Fractional Fourier transform Fα f (x) 
 

exp (–x2/2) exp (–x2/2) 
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2 2exp tan ( ) sec
2cos

ie i
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α
α α

α

−  + +  
 

 

5.3. Linear combination-type DFRFT 

This DFRFT is derived by using the linear combination of identity operator, DFT, time in-
verse operation and IDFT. The results do not match with the continuous FRFT. The trans-
form matrix is orthogonal, additive and reversible [9, 11, 25]. 
 

5.4. Eigenvector decomposition-type DFRFT 

Pei and Ding derived another type of DFRFT by searching the eigenvectors and eigenvalues 
of the DFT matrix and computed the fractional power of the DFT matrix. This type of 
DFRFT will work similar to the continuous FRFT and will also satisfy the properties of or-
thogonality, additivity and reversibility. The eigenvectors cannot be expressed in closed 
form and they also lack the fast computational algorithms [12]. 
 

5.5. Group theory-type DFRFT 

The concept of group theory is used in deriving this definition of DFRFT as the multiplica-
tion of DFT and periodic chirps. It satisfies the rotational property of Wigner distribution, 
the additivity property and the reversibility property of FRFT but can be derived only when 
the fractional order equals some specified angles [26]. 
 

5.6. Impulse train-type DFRFT 

This DFRFT can be viewed as a special case of continuous FRFT in which the input func-
tion is periodic and equally spaced impulse train. In this, if in a period ∆o, the number of 
impulses are N, then N should be equal to ∆o

2. It satisfies many properties of the FRFT and 
has fast computational algorithms but is not defined for all fractions [13]. 

 The problem of nonavailability of perfect and proper DFRFT expression in closed form 
still persists. Researchers have started the use of available DFRFTs for convolution, filter-
ing and multiplexing in the fractional Fourier domain [14]. 
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 Subsequently, FRFT can be generalized into special affine Fourier transforms (AFT). 
Work has started to find out discrete affine Fourier transform (DAFT) by sampling the 
AFT. The DAFT appears good in concept by sacrificing the additivity property. It is suit-
able for practical applications due to simpler and closed-form expression of discrete frac-
tional convolution and correlation. It is being used for computing FRFT, discrete filter 
design and pattern recognition [15]. 
 
6. TFDs similar to FRFT 

Time or space/frequency distributions are functions of time (or space) and temporal (or spa-
tial) frequency content of signals for different times (or locations). It is tempting to view 
time–frequency representations of a signal, just as the time domain and frequency domain 
representations. This is justified by the fact that they often contain the same (or almost the 
same) information as these other representations. Time-frequency distribution functions 
similar to FRFT are included [27]. 
 
6.1. Wigner distribution function (WDF) 

The WDF is a time-frequency representation that maps an one-dimensional (1D) time (or 
space in optics)-varying signal into a two-dimensional (2D) signal representation of both 
time and frequency. The WDF can be interpreted as a joint time-frequency power spectrum 
distribution function under the restriction of the uncertainty principle. A more general defi-
nition is known as the cross-WDF. The cross-WDF can be interpreted as a joint time-
frequency cross spectrum distribution function and is defined as 

  
0 0

2 '*
, 0

0

' '
( , ) '.

2 2
i x v

u v
x x

W x v u x v x e dxπ−   = + −   
   ∫  (9) 

 The cross-WDF satisfies a large number of desirable mathematical properties. Among 
these are the marginal properties 
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where we use the FT notation as )}.({)( 01 xuFTvu =  

 
6.2. Ambiguity function (AF) 

The AF can be interpreted as a joint time–frequency autocorrelation function. Once again, a 
more general definition known as the cross-AF is seldom used. The cross-AF can be inter-
preted as a joint time-frequency cross-correlation function and is defined as 
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2 2
i y

u vA y u v e dπ ηη η
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 The cross-WDF and the cross-AF are related by a double Fourier connection [27] 

 
0 0 0 0

2 ( )
, ,( , ) ( , ) .i x yv

u v u vA y W x v e dxdvπ ηη − += ∫∫  (13) 

6.3. Radon–Wigner transform 

The Radon transform of the WDF (RW) has already been investigated and associated with 
the FRFT. The RW with an angle φ = P(π/2) is equal to 

 
0

2 2
0{ ( , )} | ( /2) | FRFT [ ( )] |] | ( ) | .U p pR W x p u x u xφξ π= = =  (14) 

The 2D convolution of two auto-WDFs is related to an 1D radial convolution of modulo 
square FRFTs [23]. 
 
7. Applications in signal processing 

The intimate relationship of the FRFT to time-frequency representations as well as the cen-
tral importance of FT suggests that the FRFT should have many applications in optics, sig-
nal analysis and processing, especially for wave and beam propagation, wave field 
reconstruction, phase retrieval and phase–space tomography, study of time- or space-fre-
quency distributions. It is now also being used in biometrics for iris verification. 

 In signal-processing application, it is basically used for filtering, signal recovery, signal 
reconstruction, signal synthesis, beamforming, signal detectors, correlators, image recovery, 
restoration and enhancement, pattern recognition, optimal Wiener filtering and matched fil-
tering. It can also be used for multistage and multichannel filtering, multiplexing in frac-
tional Fourier domains, fractional joint transform correlators, adaptive windowed FRFT and 
applications with different orders in the two dimensions. Some of the above applications are 
discussed in detail from the point of view of signal processing. 
 
7.1. Filtering using FRFT 

In signal recovery typically the received signal is related to the transmitted signal through 
some system and it is desired to estimate the transmitted signal. The received signal can be 
observed with some finite accuracy determined by noise or other errors. Signal restoration 
problems are signal recovery problems where the received signal is a distorted, noisy or 
otherwise degraded version of the transmitted signal. Signal reconstruction problems are 
signal recovery problems where the received signal is some, perhaps quite complicated, 
mapping of the transmitted signal to another space such that the received signal has no di-
rect resemblance to the transmitted signal. In signal synthesis a desired output signal is 
specified and input to the system is to be chosen so that the required signal is observed at 
the output. All these inverse problems are mathematically similar. In each case the problem 
is to estimate the input from knowledge of output, also using any available prior knowledge 
regarding the nature of the input and/or the nature and statistics of the measurement error or 
noise or the specified tolerance [14, 17]. 

 In most of the signal-processing applications, the signal which is to be recovered is de-
graded by known distortion, blur and/or noise and the problem is to reduce or eliminate 
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these degradations. The concept of filtering in fractional Fourier domain is to realize, flexi-
bly and efficiently, general shift-variant linear filters for a variety of applications. Figure 1 
shows Wigner distribution of a desired signal and noise superimposed in single plot. It is 
clear from here that signals with significant overlap in both time and frequency domains 
may have little or no overlap in a fractional Fourier domain. The solution to such problems 
depends on the observation model and the objectives, as well as the prior knowledge avail-
able about the desired signal, degradation process and noise. The problem is then to find the 
optimal estimation operators with respect to some design criteria that removes or minimizes 
these degradations. The most commonly used observation model is: )()(*)()( tntxthty +=  
where h(t) is a system that degrades the desired signal x(t), and n(t) is additive noise, possi-
bly nonstationary noise and y(t) is the signal at the input of the proposed filter. A frequently 
used criterion for optimal filtering is mean square error (MSE). For an arbitrary degradation 
model (nonstationary processes), the resulting optimal recovery will not be time invariant 
and thus cannot be expressed as a convolution and cannot be realized by filtering in con-
ventional Fourier domain (multiplying the Fourier transform of a function with its filter 
function in that domain). The optimal filtering can be obtained depending upon the criteria 
of optimization. The main criteria of optimization are minimum mean squared error 
(MMSE), maximum signal-to-noise ratio (SNR) and minimum variance. Each criterion has 
its own advantages and disadvantages. The problem considered in this paper is to minimize 
the MSE for arbitrary degradation model and nonstationary processes by filtering in frac-
tional Fourier domains. The MMSE method has been used to obtain the optimum weights. 
The objective is to recover the desired signal free from noise and fading in the received sig-
nal, in stationary and moving source problems. Let the filter input be y(t) and the reference 
signal be x(t). The weights of the filter can be chosen in order to minimize the MSE bet-
ween the output and the reference signal. 

  },||)()({||)( 2txtyEwJ −=  (15) 

where ||•|| is the L2 norm given by .)()(||)(|| *2 dttytyty ∫
∞

∞−
=  The optimum weights can be 

found by setting the derivative of J(w) to w* equal to zero. They are given as 

  ,1
yxyopt rRw −=  (16) 

where Ry is the covariance matrix of the received signal and ryx is the cross-covariance be-
tween the input of the filter and the desired signal. 

 Figure 2 shows that the MSE is less in the case of a = –0.3 domain (optimum FRFT do-
main) as compared to a = 0 (time domain) and a = 1(frequency domain). So filtering is to 
be done in optimum FRFT domain for least MSE. 
 
7.2. Filtering using window functions 

In the case of FT, the limits to evaluate the integral are from –ve infinity to infinity and for 
calculation with computer (discrete Fourier transform) the truncation is done up to N points. 
This gives oscillations at the discontinuity (Gibbs phenomenon) when the signal is recon-
structed back. In order to suppress the Gibbs phenomenon, window functions are used. 
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Similarly, for computation of FRFT with computer (i.e. DFRFT), the window functions are 
to be analyzed. This section describes the behavior of window functions in various fraction 
domains. 

 Window functions have been successfully used in various areas of signal processing and 
communications such as spectrum estimation, digital filter design, speech processing, and 
in other fields. These functions are frequently used to produce realizable systems in diverse 
engineering disciplines. A complete review of many window functions and their properties 
was presented by Harris [28]. Discussions on this topic have been going on quite intensely 
[29]. A quick check of the literature reveals that there are no fewer than 46 different com-
mon window functions. All windowing functions are designed to reduce the side lobes of 
the spectral output of FFT routines. Whilst applying the window function reduces the side 
lobe leakage, it causes the main lobe to broaden reducing the resolution. This is a trade-off 
that has to be made, one should choose the weighing function, which best suites the appli-
cation. 

 Recently, the FRFT has been invented by a number of researchers, and being used in al-
most all applications where Fourier transforms were used. The windows can also be ana-
lyzed using FRFT. An attempt is made to evaluate the FRFT of the cos window. 

 The window functions are selected in the duration from x1 = –2 to 2 and the maximum 
magnitude of the window is taken as unity. The expression used to evaluate the FRFT of 
cos window functions is given by eqn (1). 
 
7.2.1. FRFT of cos window 

The cos window function is defined by the following expression: 

 .2||
4
1cos)( 111 ≤



= xxxs π  (17) 

  
FIG. 1. Filtering in fractional Fourier domain as ob-
served in time-frequency or time-space plane; a = 0.5 
is drawn. 
 

FIG. 2. Plot for variation of mean squared error for 
various FRFT domains. 
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FIG. 3. (Contd.) 
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 (i) Imaginary part at α = 0.4 (j) Real part at α = Pi/4 
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 (m) Imaginary part at α = Pi/2    FIG. 3. FRFT of cos window computed at various angles. 

 The FRFT of this window at different values of α is plotted in Fig. 3. 

 
7.2.2. Observations of window functions in FRFT 

In general, it was observed that maximum number of oscillations were present in rectangu-
lar window and the number decreases in both the real as well as imaginary parts as we 
moved from α = 0.01 to α = Pi/2. In cos window the number of oscillations first increased 
up to α = 0.05 and then decreased. 

 In the FRFT analysis of window functions, it can be concluded that maximum number of 
harmonics are present in the rectangular window at every value of alpha as compared to 
other windows. This can be attributed to the fact that when the rectangular window is used 
to truncate the infinite function, the Gibbs phenomenon occurs and usually an undesirable 
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approximation results. At a discontinuity, the approximation has a fixed percentage over-
shoot with ripples before and after the discontinuity. If the number of terms increases, the 
ripples do not decrease, but are squeezed into narrower interval about the discontinuity. 
Moreover, it is impossible to obtain an infinite slope using only a finite number of terms. 
For this reason, the rectangular window is not of much practical use. To overcome the pres-
ence of large oscillations in both the pass and the stop bands, we should choose a window 
function that contains a taper and decays towards zero gradually instead of abruptly. 

 In all, it can be concluded that the side lobe amplitudes of cos are considerably smaller 
than for the rectangular window and thus eliminate the ringing effect. However, for the 
same size of window, the width of the main lobe is also wider for this window compared to 
the rectangular window. Consequently, these window functions provide more smoothing as 
they are tangentially terminating with very less harmonics. The common feature observed 
in all the windows is that the maximum energy contents are centered in the main lobe. The 
study of different window parameters for different values of α reveals that some of the 
window parameters showed variation with change in the value of α. 
 
7.2.3. Beamforming 

Beamforming is a very useful tool in sensor array signal processing and is used widely for 
direction of arrival estimation, interference suppression and signal enhancement. The FT-
based method of beamforming is out of use these days because of its inherent shortcoming 
to handle time-varying signals. In the active radar problem where the chirp signals are 
transmitted or an accelerating source reflects the sinusoidal signal as a chirp signal, FRFT 
can be applied because of the ability of FRFT to handle chirp signals better than the FT. 
Therefore, as discussed earlier, the replacement of FT with FRFT should improve the per-
formance considerably. As FRFT gives rotational effect to time-frequency plane, a chirp 
signal that is an oblique line in time-frequency plane transforms into a harmonic which is 
vertical line in this plane. The WD gives an idea about the energy distribution of a signal in 
time-frequency plane and FRFT rotates the WD in clockwise direction by an angle α in the 
time-frequency plane. This way, the chirp signal (which is not compact in either spatial or 
time domain) is converted to harmonic signal as there exists an order for which the signal is 
compact. After this, the MSE is calculated for various FRFT domains from a = –1 to a = 1. 
The optimal domain is searched for minimum MSE. Filtering in this optimal domain is seen 
to be significantly better than in conventional Fourier domain [19]. From Fig. 4, it is clear 
that there is a significant improvement in the performance of beamformer in optimum 
FRFT domain as compared to space and frequency domains. The proposed method of ob-
taining optimum a is based on frame-by-frame basis. In practice, the optimum a that gives 
minimum MSE requires an efficient online procedure for its computation. 

 
8. Transforms of fractional orders 

In 1980, Victor Namias established that other transforms can also be fractionalized. This 
has given a lot of motivation to fractional signal processing. Research in every field of sci-
ence and engineering is trying to generalize various transforms on lines similar to FRFT. 
Literature is available for fractional Hartley transform, fractional sine transform, fractional 
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cosine transform, fractional wave packet transform, fractional spline wavelet transform, 
fractional Hilbert transform and fractal approach for image processing, etc. It is obvious 
from this that an era has been opened up for a generalization of the problems to get better 
results in every area of engineering by using fractional domains of a transform [30]. 
 
9. Conclusions 

This paper shows that the fractional Fourier transforms lead to a generalization of time (or 
space) and frequency domains, which are the central concepts in signal analysis and processing 
as well as other areas. The intimate relationship of FRFT to time-frequency representations, as 
well as central importance of the Fourier transforms suggests that FRFT should have many ap-
plications in signal analysis and processing. The merits of FRFT are that it is not only richer in 
theory and more flexible in application but the cost of implementation is also low. The most 
important aspect of the FRFT is its use in time-varying signals for which the FT fails to work. 
The potential for generalization and implementation of FRFT is still there in all the areas where 
FT was used earlier. The FRFT provides additional degree of freedom to the problem as pa-
rameter a gives multidirectional applications in various areas of optics and signal processing in 
particular and physics and mathematics in general. The discrete version of FRFT discussed is 
still not well established and a closed-form expression does not exist. But the available defini-
tions of DFRFT are being used for various applications in signal processing. The demerits of 
FT are known in the field of mobile communication where it was discarded way back, but the 
evolution of FRFT has given a ray of hope for its usage in this field. 
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