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Abstract 
 
The paper deals with the stability of solutions along with their derivatives of a certain system of second-order dif-
ferential equation with respect to certain perturbation. We consider the system  

  d2y(x)/dx2 + A(x)y(x) = 0, (i) 

where y(x) = 1 11 12

2 12 22

( ) ( ) ( )
, ( ) ( ( ))

( ) ( ) ( ) ij

Y x a x a x
A x a x

Y x a x a x

   
= =   

   
 

and aij(x), i, j = 1, 2 is real-valued continuous function of x, x ∈ [0, ∞). 

 Let B(x) = (bij(x)), i, j = 1, 2 (bij(x)s being real-valued continuous function of x ∈ [0, ∞)) be a set of perturba-
tions which changes (1) to  

  d2y(x)/dx2 + (A(x) + B(x))y(x) = 0. (ii) 

 In this paper, certain results on the stability of solutions of the system (i) along with their derivatives, which are 
either bounded or tend to zero as the independent variable x tends to infinity with respect to the perturbation B(x) 
satisfying some conditions, are achieved. 
 
Keywords: Bounded solutions, stable solutions. 

 
1. Introduction 

The basic problems of study of the qualitative theory of differential equations deal with 
their solutions which are either periodic or approaches some known functions asymptoti-
cally or are stable with respect to certain perturbations satisfying some specific conditions. 

 The study of stability theory associated with the solutions of second-order differential 
equations is very old [1, 2]. Later, many mathematicians and physicists like Cesari [3] and 
Knowles [4] worked on the problem extensively. Hence, a study of the methods of mathe-
matical physics is required to know the specific character or behavior of the solutions of the 
differential equations (i.e. equation of motions) considered. Attention was paid in the past 
to the study of the stability properties of solutions of second-order differential equations 



D. SENGUPTA 40

which are either bounded or tend to zero or belong to some L-classes. 

 In this paper we consider the system of second-order differential equation 

  d2y(x)/dx2 + A(x)y(x) = 0, (1) 

where 
1

1 2
2

( )
( ) { ( ), ( )},

( )

y x
y x y x y x

y x

 
= = 

 
 

 A(x) = (aij(x)), i, j = 1, 2; and aij(x)s are assumed to be real-valued continuous functions 
of x, x ∈ [0, ∞). 

 Let B(x) = (bij(x)) i, j = 1, 2 be a set of perturbations which changes (1) to 

  d2y(x)/dx2 + [A(x) + B(x)]y(x) = 0, (2) 

where bij(x)s are assumed to be real-valued continuous functions of x, x ∈ [0, x). 

 Certain results on the stability of solution of the system (1) which belong to suitable L-
classes are available in Chakravarty and Sengupta [5], where the perturbed matrix B(x) sat-
isfies certain conditions. 

 In this paper, some more results on the stability of solution of the system (1), which are 
either bounded or tend to zero as the independent variable x tends to ∞, are available with 
respect to the perturbation B(x) satisfying some specific conditions. The stability of the dif-
ferential coefficients of the first order of the solutions of eqn (1) are also discussed. The def-
inition of the stability of the solutions of the system (1) is defined in Chakravarty and 
Sengupta [5]. We only define the stability of the derivatives of the solution of the first order 
of the system (1) with respect to some property P (i.e. the solutions are either bounded or 
tend to zero or belong to some L-classes) and perturbation B(x) = (bij(x)), i, j = 1, 2 in the 
following way: 

Definition: The derivatives of the solution of the first order of the system (1) which satisfy 
a certain property P are said to be stable with respect to the set of perturbation B(x) and the 
property P, if the solutions of (1) and the solutions of (2) with their derivatives of the first 
order also satisfy the same property P for all B(x) satisfying certain specified conditions. 
 
2. Notations 

We use the following notations: 

(i) The boundedness, the differentiability or the integrability of a matrix means that all 
the elements of the matrix are bounded differentiable or integrable, respectively. We 

use for the matrix A = (aij), i, j = 1, 2 the symbol 
,

|| || | | .ij

i j

A a= ∑  In particular, for the 

vector v = (v1, v2)
T , norm of v defined by ||v|| = |v1| + |v2|. 

(ii) (α, β) represents the scalar product. 
1

( , ) ,
m

j j

j

α β α β
=

= ∑  where  

  α = (α1, α2, …, αm), β = (β1, β2, …, βm). 
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(iii) The determinant det(aij) of order n (≥ 2) is represented in terms of the diagonal ele-
ments aij by |a11, a22, … , ann|. 

(iv) [φi, φj] = |ui, uj′| + |vi, vj′|  is the bilinear concomitant of two vectors φi = (ui,
 vi)

T and 
φj = (uj, vj)

T.  

(v) z(t) = a11(t)a22(t). 

(vi) M(t) = –5/16a 11
–9/4(t)a 22

–1/4(t)a11′
2(t) – 1/8a 11

–5/4(t)a 22
–5/4(t)a11′ (t)a22′ (t) 
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3. Preliminaries 

Let φi = (ui, vi)
T, i = 1, 2; θϕ = (us, vs)

T, j = 1. s = 3; j = 2, s = 4 be the four solution vectors 
of the system (3) satisfying, at x = a ≥ 0, the conditions: 

(i) [φ1, φ2] = [θ1, θ2] = 0 
(ii) [φ1, φj] = δij, i, j = 1, 2, δij being the Kronecker delta. 
 
Let ψ(x) = (ψ1(x), ψ2(x))T be a solution of the system (2). 

 Then, following Chakravarty and Sengupta [5], one obtains 

  
4

1 2 1 1 1
1 0 0

( ) ( ) ( , ( )) ( , ( ))
x x

i i

i

x c u x B t V dt B t U dtψ ψ ψ
=

= + −∑ ∫ ∫  (3) 

where 
U1 = |u1(x), u3(t)| + |u2(x), u4(t)| 

V1 = |u1(x), v3(t)| + |u2(x), v4(t)| 

B1 = B1(t) = (b11(t), b12(t))
T 

B2 = B2(t) = (b21(t), b22(t))
T 

and ci, I = 1, 2, 3, 4 are constants. 

 Differentiating (3) with respect to x once, the first order derivative of ψ1(x) is represented by 
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4

1 2 1 1 1 2 3
1 0 0

( ) ( ) ( , ( )) ( , ( )) , ( ))
x x

i i

i

x c u x B t V dt B t U dt B x Vψ ψ ψ ψ
=

′ ′ ′ ′= + − +∑ ∫ ∫  (4) 

where 

1 1 3 2 4| ( ), ( ) | | ( ), ( ) |U u x u t u x u t′ ′ ′= +  

1 1 3 2 4| ( ), ( ) | | ( ), ( ) |V u x v t u x v t′ ′ ′= +  

3 1 3 2 4| ( ), ( ) | | ( ), ( ) | .V u x v x u x v x= +  

A similar expression for ψ2(x) and )(2 xψ ′  involving 

U2 = |v1(x), u3(t)| + v2(x), u4(t)| 

V2 = |v1(x), v3(t)| + v2(x), v4(t)| 
and 

2 1 3 2 4| ( ), ( ) | | ( ), ( ) |U v x u t v x u t′ ′ ′= +  

2 1 3 2 4| ( ), ( ) | | ( ), ( ) |V v x v t v x v t′ ′ ′= +  

are also obtained. 
 
4. The Liouville transformation 

Applying the transform 

1/ 2 1/ 2
11 22

0

( ) ( ) ( ) ,
x

x a t a t dtξ = ∫  

Ω(x) = {η(x), ρ(x)} = a 11
1/4(x)a 22

1/4(x)Y(x), 

to the system of eqn (1) and then following Titchmarsh [6], it easily follows that 

  1

0

( ) (0) ( ) sin( ( ) ( )) ( ) ( ) ,
x

x N S x x t N t t dtξ ξΩ = + − Ω∫  (5) 

where S(x) = {cosξ(x), sinξ(x)} and N(0), N1(t) are those given in Section 2. 
 
5. Lemmas  

Lemma 1. Let y(x) = {y1(x), y2(x)} be any solution of (1). Then 

 
4

1 21 21 1 22 22 2 1
1 0

( ) ( ) [{( ( )) ) ( ) ( ( )) ) ( )}
x

i i

i

y x d p x a t a y t a t a y t H
=

= + − + −∑ ∫  

 – (a11(t) – a11)y1(t) + (a12(t) – a12)y2(t)}H2]dt, (6) 

where (i) A = (aij), i, j = 1, 2 be a constant matrix (a12, a21 are not zero simultaneously). 
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(ii) Pi = {pi, qi}), Qj = {ps, qs}, I = 1, 2; j = 1, s = 3; j = 2, s = 4 are the fundamental set of 
solutions of the system 

 y″(x) – Ay(x) = 0 (7) 

such that at x = a ≥ 0, the conditions 

 [P1, P2] = [Q1, Q2] = 0 and [Pi, Qj] = δij (Kronecker delta), i, j = 1, 2 are satisfied; 

(iii) H1 = |p1(x), q3(t)| + |p2(x), q4(t)| 

  H2 = |p1(x), p3(t)| + |p2(x), p4(t)| 

(iv) dis (i = 1, 2, 3, 4) are constants. 

 A similar expression for y2(x) involving G1, G2 is also obtained, where G1, G2 are the H1, 
H2, respectively, with pi, qi interchanged. 
 
Proof: Let y(x) = {y1(x), y2(x)} be any solution of (1). Writing (1) in the form 

y″(x) – Ay(x) = (A(x) – A)y(x), 

A = (aij), i, j = 1, 2 being a constant matrix (a12, a21 are not zero simultaneously) and then 
applying the variation of the constant method the proof follows easily. 
 
Lemma 2: Let (i) aij(x) be positive real-valued, aij(x) ≥ δ > 0, x ≥ 0 and aij(x) ∈ L[0, ∞) for 
i, j = 1, 2; (ii) aij″(x) ∈ L[0, ∞) and aij(x) ∈ L2[0, ∞) for i = j, then 

 1 2 1 2

0

[| ( ) | | ( ) | | ( ) | | ( ) | ] ,
x

t t t t dtξ ξ η η+ + + < ∞∫  (8) 

where aij(x)s (i, j = 1, 2) are those given in (1) and ξ1(x), ξ2(x), η1(x), η2(x) are given in Sec-
tion 2. 

Proof: 

 (say).|))()((||)().((||))(||)(| 321
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++≡++≤∫ ∫ ∫ ∫ −−ξ  

Applying Cauchy–Schwarz inequality 
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  1/ 2 5 / 2 3/ 2 1/ 22
1111 22 11 11 22

0 0

| ( ) ( ) ( ) | | ( ) ( ) ( ) |
x x

a t a t a t dt a t a t a t dt− − − −′ ′′+ +∫ ∫  

  1/ 2 3/ 2
2211 22

0

| ( ) ( ) ( ) |
x

a t a t a t dt− − ′′+∫  

  ≡ Q1 + Q2 + Q3 + Q4 + Q5 (say). 

Now, 

 23
1 11

0

1/ | ( ) | 0(1)
x

Q a t dtδ ′≤ =∫  

  

1/ 2

3 32 2
2 11 11 22 22

0 0

| ( ) ( ) | | ( ) ( ) |
x x

Q a t a t dt a t a t dt− −
 

′ ′≤  
  
∫ ∫  

 

1/ 2

2 23
11 22

0 0

1/ | ( ) | | ( ) | 0(1).
x x

a t dt a t dtδ
 

′ ′≤ = 
  
∫ ∫  

 In the same order of ideas, it easily follows that Q3 = 0(1), Q4 = 0(1), Q5 = 0(1). 

 Hence, 

 .)1(0|)(|

0

1∫ =
x

dttξ  

Similarly, 

 ∫ =
x

dtt

0

2 ).1(0|)(| ξ  

Also, 

 ∫∫ ∫ ==≤
xx x

dttdttadtt

0

2

0 0

121 ).1(0|)(|and)1(0|)(|/1)(| ηδη  

Thus the lemma is proved. 
 
6. Theorems 

Theorem 1: Let A = (aij), i, j = 1, 2 be a constant matrix (a12, a21 are not both zero) whose 
characteristic roots are negative and distinct. Then all the solutions of (1) are bounded if 

 
0

| ( ) | , , 1, 2.ij ija t a dt i j
∞

− < ∞ =∫  
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Proof: It follows from Mirski [7] that under the stated conditions, all the solutions of the 
system (7) are bounded. 

 Let y(x) = {(y1(x), y2(x)} be any solution of (1). Now following Lemma 1, it easily fol-
lows that 

 1 2 21 21 11 11 1

0

| ( ) |, | ( ) | [{| ( ) | | ( ) |} | ( )|
x

y x y x M K a t a a t a y t≤ + − + −∫  

  + [{|a22(t) – a22)| + |a22
 + |a12(t) – a12|}|y2(t)|]dt (11) 

where 

 
4 4

1 2 1 2
1 1

max . | || |, | || | and max {| |, | |, | |, | |}.m m
i i i i

i i

M d p d q K H H G G
= =

  = = 
  
∑ ∑  

Finally, applying Gronwall’s lemma [8], making x → ∞ and using the conditions of the 
theorem, from (11) the proof follows easily. 
 
Theorem 2: Let A = (aij), i, j = 1, 2 be a constant matrix (a12, a21 are not both zero) whose 
characteristic roots are negative and distinct. Then all the solutions of (1) tend to zero if 
|aij(t) – aij| ≤ Meqt for all i, j = 1, 2 and for all t > t0, M, q, t0 being some positive constants. 
 

Proof: It follows from Mirsky [7] that under the stated conditions of the theorem, all the 
solutions of the system (7) tend to zero as x → ∞. 

 
Let |Pi|, |Qj| ≤ N.e–qx, i, j = 1, 2; N, q > 0 are constants, where Pi, Qj are those mentioned in 

Lemma 1. Let 1
1

. | |i
i

M N d
=

= ∑  and let y(x) = {y1(x), y2(x)} be any solution of (1). 

 Following Lemma 1, one obtains 

 2
1 1 21 21 11 11 1

0

| ( ) | [{| ( ) | | ( ) |} . | ( ) |
x

qx qx qty x M e N a t a a t a e e y t− − −≤ + − + −∫  

  + [{|a22(t) – a22| + |a12(t) – a12|}e–qx.e–qt|y2(t)|]dt 

with a similar expression for |y2(x)|. 

 Using the conditions of the theorem, it follows that |y1(x)eqx, |y2(x)|eqx ≤ ∞, as x → ∞. 

 Hence, the theorem follows. 
 
Theorem 3: Let (i) aij(x) be positive real-valued, aij(x) ≥ δ > 0 for x ≥ 0 and aij(x) ∈ L[0, ∞) 
for i, j = 1, 2; (ii) aij″(x) ∈ L[0, ∞) and aij(x) ∈ L2 [0, ∞) for i = j(aij(x)s are those given in 
(1)). Then the solutions of (1) are bounded in [0, ∞). 
 
Proof : |sinξ(x)|, |cosξ(x)| ≤ 1 as a11(x), a22(x) are real-valued. 
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 By using (5), it now follows that 

 1/ 2
1 1

0

| ( ) | | ( (0)) || (0) | | (0) | [| ( ) | ( ) | ( ) || ( ) |] , and
x

x z t t t t dtη η η ξ η η ρ− ′≤ + + +∫  

 1/ 2
2 2

0

| ( ) | | ( (0)) | | (0) | | (0) | [| ( ) || ( ) | | ( ) || ( ) |]
x

x z t t t t dtρ ρ ρ ξ ρ η η− ′≤ + + + +∫  

where Ω(x) = {η(x), ρ(x)} is as explained in Section 4. 

 Now, |η(t)|, |ρ(t)| ≤ ||Ω(t)|| 

 Let K = Maxm.[(z(0))–1/2||η′(0)| + |η(0)|, |(z(0))–1/2||ρ′(0)| + |ρ(0)|] 

 ∴ |η(x)| + |ρ(x)| 1 2 2 1

0

2 [| ( ) | | ( ) | | ( ) | ( ) |] | ( ) | .
x

K t t t t t dtξ ξ η η≤ + + + + Ω∫  

Now applying Gronwall’s lemma [8] first and then using Lemma 2, the theorem follows 
easily. 
 
Theorem 4: Let S be the set of all solutions of (1) and S1, the set formed of the derivatives 
of these solutions. If all the elements of S and S1 are bounded, then all the elements of S and 
S1 are stable with respect to the perturbation B(x) provided 

 .||)(||(ii)and,||)(||)i(

00

∞<′∞< ∫∫
∞∞

dttBdttB  

Proof: Let ψ(x) = {ψ1(x), ψ2(x)} be any solution of (2). 
 
From eqn (3) if now easily follows that 

 1 2 1 2

0

| ( ) |, ( ) | || (( ), ( ) ||
x

x x M K B B t dtψ ψ ψ≤ + +∫  

where M = Maxm.c(|φi|, |θj|), i, j = 1, 2; 
4

1

| |j
j

c c
=

= ∑  and K = Maxm.{|Ui|, |Vi|, i = 1, 2. 

 Now, using Gronwall’s lemma [8], x tends to ∞ and finally using the conditions (i) it fol-
lows that the solutions of (1) are stable. 

 We now consider, 

  1 Max . {| ( ) |, | ( ) |} , 1, 2m
i jM c x x i jφ θ′ ′= =  

2 Max {| |, | |}, 1, 2m
i iM U V i′ ′= =  

  1 3 2| |, Max {| ( ) |}, 1,2, and | | (0) | 0, , 1, 2.m
i ij ijN V N x i d b i jψ= = = = ≠ =  
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Hence, by using (4) it follows that 

1 2

2

1 2 2 1 2 21 22 21 22
, 10 0 0

| | ( ) |, | ( ) |

| ( ) | | ( ) | | ( ) | | | | | .
x x x

ij
i j

x x

M M N b t dt N N b t dt b t dt d d

ψ ψ

=

′ ′

   
′ ′ ≤ + + + + +      

∑∫ ∫ ∫
 

Now x tends to ∞ and using conditions (i) and (ii) the proof follows completely. 

 It may be noted that Theorem 4 remains true when the conditions (i) and (ii) are replaced 
by the single condition ||B(x)|| < ∞. 
 
Theorem 5: Let S be the set of all solutions of (1) and S1, the set formed of the derivatives 
of these solutions. Let all the elements of S and S1 tend to zero as x tends to ∞, then all 
these elements of S and S1 are stable with respect to the perturbation B(x), provided 
|bij(t) < Mept, for any positive p, M; i, j = 1, 2. 
 
Proof: Let ψ(x) = (ψ1(x), {ψ2(x)} be any solution of (2). 

Let c{|φi||θj|} < N.e–qx, i, j = 1, 2, q > 0. 

Using eqn (3), it follows that 

1 2

1 21 11 2 22 11

0

| ( ) | , | ( ) |

4 4 {| ( ) | (| ( ) | | ( ) |) | ( ) | (| ( ) | ( ) |)} .

qx qx

x
qt

x e x e

N N t b t b t t b t b t e dt

ψ ψ

ψ ψ −≤ + + + +∫
 

Applying Gronwall’s Lemma [8], it now follows that 

( )
1 2

0

| ( ) | ,| ( ) | 4 .exp 4NM ,
x

qx qx p qt tx e x e N e dtψ ψ −
 
 ≤
 
 

∫  

where |bij(t)| ≤ M.ept, i, j = 1, 2. 

 Now, choosing q > 1/2 p and making x tend to infinity the proof of the first part of the 
theorem is concluded. 

 For the proof of the second part, we consider 

Max .{| ( ), | ( ) |, | ( ), | ( ) |, | ( ) |, ( ( ) |, | ( ) |} . , , 1, 2,m qx
i i j j i j ix x x x c x c x x K e i jφ φ θ θ φ θ ψ −′ ′ = =  

q being a positive number. 

 Now using (4) in the same order of ideas as before one obtains 

3
1 2

0

| ( ) |, | ( ) | 4 . 4 . 4 . .2 . .
x

qx pt qt qx pxx x Ke Me e dt K e M eψ ψ − − −′ ′ ≤ +∫  

Making x tends to infinity, the proof of the concluding part follows. 
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