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Abstract 
 
Assessing the condition of underground pipelines such as water lines, sewer pipes, and telecommunication con-
duits in an automated and reliable manner is vital to the safety and maintenance of buried public infrastructure. In 
order to fully automate the condition assessment of buried pipes, it is necessary to develop a robust defect analy-
sis and interpretation system. This paper presents the development of an automated defect detection system for 
sanitary sewer pipelines using digital imaging techniques like contrast enhancement, mathematical morphology 
and curvature evaluation. 
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1. Introduction 

Public infrastructure is the lifeblood of every community. The US has an estimated $20 tril-
lion investment in civil infrastructure systems, but many of these systems are eroding due to 
aging, excessive demand, misuse, exposure, mismanagement and neglect. Communal sewer 
networks are often one of the biggest infrastructures of an industrialized country, account-
ing for around 3200 miles of sewers per million citizens [1]. According to the US Environ-
mental Protection Agency and claims by other sources, there are approximately 1 million 
miles of sewers in the United States [2]. It has been estimated that upwards of 40% of the 
United States’ underground infrastructure will have failed or will be on the brink of failure 
within 20 years, unless efforts are initiated to renew it [3, 4]. But system renewal requires 
adequate funding. According to an April 2000 report by the Water Infrastructure Network 
(WIN) Agency, “America’s water and wastewater systems (underground infrastructures) 
face an estimated funding gap of $23 billion a year between current investments in infra-
structure and the investments that will be needed annually over the next 20 years to replace 
aging and failing pipes and meet mandates of the Clean Water Act and Safe Drinking Water 
Act” [3]. This necessitates the need to monitor, detect and prevent any unforeseen failures 
in the working of these underground pipelines that are complex in nature. 

 Research in the area of highways has matured and has become the basis for studies in 
sewer systems. The understanding of sewer deterioration mechanisms helps asset managers 
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in developing deterioration models to estimate whether sewers have deteriorated suffi-
ciently for likely collapses [5]. Various imaging technologies have emerged over the years 
and have been applied to automate inspection of pipeline systems successfully [6, 7]. Re-
search in multisensing methods for crack detection in pavement surfaces have led to inno-
vative ways of automating and detecting structural cracks in pipe surfaces [8]. Most 
municipal pipeline systems in North America are inspected visually by mobile closed cir-
cuit television (CCTV) systems to access the structural integrity of underground pipes [7]. 
The video images are normally examined visually and classified into grades according to 
the extent of damage against documented criteria. Although the human eye is extremely ef-
fective at recognition and classification, it is unreasonable to assume its suitability for as-
sessing pipe defects in thousand of miles of pipeline images due to fatigue and subjectivity. 
This motivates the development of an automated pipe inspection system that can access 
pipe conditions to ensure accuracy, efficiency and economy in the condition assessment 
phase. Image preprocessing and segmentation is the initial stage for any recognition proc-
ess, whereby the acquired image is partitioned into meaningful regions or segments. There-
fore, it is very important to understand the basic image and model its features in order to 
accurately extract features of interest. As the image obtained by scanning an underground 
pipe is very complex in terms of its features, it is important to preprocess the image before 
attempting to apply segmentation and feature extraction algorithms. 

 This paper proposes an automated image analysis and detection methodology as an in-
termediate step towards complete automation of data acquisition, analysis, and eventually 
condition assessment based on feature classification. We propose a new approach to pre-
processing image data using an improved contrast-enhancement method and final crack de-
tection using mathematical morphology and curvature evaluation-based algorithm derived 
from digital imaging principles. 

2. Automated pipe inspection 

Internal inspection of pipelines is done by detection systems ranging from simple visual in-
spection to complex imaging systems. Some promising nondestructive diagnostic methods 
using infrared thermography, ground penetrating radar and pulse-echo have been used for 
condition assessment of sewer pipelines around the world. However, there is a common 
consensus that these inspection methods do not characterize the complete picture of the 
condition of sewers due to their dependability on unimodal data collection [2]. Although 
there are various destructive and nondestructive inspection methods, we will limit our dis-
cussion to the two most advanced and applicable techniques, viz. the closed-circuit televi-
sion (CCTV) inspection system and the sewer scanner and evaluation technology (SSET). 
These methods consist of a wheeled remotely operated video camera and a lighting system. 
The camera platform is connected via a physical multicore cable to a remote station situated 
over ground. The cable is used for transmitting power supply and data, determining the dis-
tance traveled, and also allowing to manually pull the platform to safety in case of malfunc-
tion (Fig. 1). CCTV system is a cost-effective method to assure proper installation, object 
location, infiltration or defect in the pipeline. Detailed descriptions on different commercial 
platforms and CCTV cameras can be found in Morici [9]. Factors like experience of the op-
erator, skill level, concentration and reliability of the picture quality influence the accuracy 
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of defect or failure diagnosis significantly. Hence, this method is suitable only for detecting 
gross defects that can easily be picked up in a forward vision (FV) view of the CCTV cam-
era [2]. 

 SSET is an innovative Japanese technology designed to nondestructively survey and in-
spect the interior condition of sewer pipelines. SSET uses optical scanning and gyroscopic 
technologies to produce a detailed digital image and provides an alternative to commonly 
practiced CCTV inspection methods. Figure 2 shows an SSET system with inspection probe 
and a typical unwrapped image. Various defects in sewer pipes are generally shown accu-
rately, with the image resolution being adequate to clearly indicate defect type and size in 
most cases. At its current stage of development, SSET provides the basis for future sewer 
management tools that will become much more powerful as automated defect recognition 
software is developed [10]. SSET and CCTV provide images that are primarily in color al-
though the SSET images are of the pipe surface scanned circumferentially as against the 
CCTV images that provide a forward vision of the pipe from inside. Another advantage of 
SSET is that it travels continuously from one man-hole section to another as it collects gy-
roscope data, whereas the operator needs to stop the operation when the CCTV system en-
counters a pipe defect in order to record it. 

 The methodology developed by the North America Association of Pipeline Inspectors 
(NAAPI) is used to quantify the sewer main condition based on video (or surface scan im-
age) feeds. The NAAPI methodology consists of assigning a score to the cracks based on 
certain set criteria as discussed in the NAAPI Manual of Sewer Condition Classification 
[11]. The higher the NAAPI score, the greater is the seriousness of the cracks and higher 
the probability of a failure. Although pipe scan data is acquired using automated technolo-
gies like the CCTV and SSET, crack detection and classification are still done by manual 
operators in the field or offline which brings in the issue of subjectivity, fatigue and life-
cycle cost over extended periods. Therefore, reliable automated detection and classification 
systems that incorporate the NAAPI scoring system without the need for a human operator  
 
 

 

FIG. 1. Schematic of buried pipe inspection system. 

 

FIG. 2. (a) SSET inspection probe, (b) typical un-
wrapped digital image of a scanned pipe, and (c) and 
(d) forward vision (FV) images from CCTV camera. 
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are highly desirable under such conditions to compensate for the subjective interpretation of 
pipe scan images. This is a complex task because of the continuously changing pipe back-
ground scenarios, illumination and crack patterns. 

3. Literature review 

Most of the literature concerning the detection of defects (like cracks) in civil structures 
deals with the analysis of pavement and concrete/steel distress that are not directly applica-
ble to underground pipe inspection [12]. In analyzing underground pipe scanned image 
data, it is imperative to consider complications due to inherent noise in the scanning proc-
ess, irregularly shaped cracks, as well as the wide range of pipe background patterns. In the 
past two decades, many approaches have been developed to deal with the detection of linear 
features on retinal, satellite and most recently, underground pipe images [13–16]. Most of 
them combine a local criterion evaluating the radiometry on some small neighborhood  
surrounding a target pixel to discriminate lines from background and a global criterion in-
troducing some large-scale a priori knowledge about the structures (e.g. cracks) to be de-
tected. 

 The techniques used for pavement distress detection in scanned images are based on con-
ventional edge or line detectors with respect to local criterion [17–19]. These methods 
evaluate differences of averages, thus indicating noisy results and inconsistent false-alarm 
rates. This necessitates the introduction of global constraints owing to insufficiency of local 
criterion in line and edge detection. As cracks in underground scanned pipe images resem-
ble undulating curves with a generally constant width, Hough transform-based approaches 
have also been tested for the detection of parametric curves, such as straight lines or circles 
[20]. Tracking methods and energy minimization methods, such as snakes, have been used 
to track roads in satellite images and heart walls in live feeds from medical ultrasound an-
giographies [21, 22]. These tracking methods find a minimum cost path in a graph by using 
some heuristics like an entropy criterion. Statistical methods such as those that employ 
Bayesian framework complemented by cross-correlation detectors have been used by 
Fieguth and Sinha [15] to detect cracks to a reasonable accuracy level. However, their re-
sults were noisy with high false alarm rates when the image had dark background with mul-
tiple cracks in a tree-like geometry. Morphology-based filtering coupled with cross-
curvature evaluation has not been used to detect cracks and remains an unexplored frontier 
till date. We will show that the application of some carefully selected morphological filters 
leads to a simplified image whose cross-curvature evaluation can be done easily for seg-
menting crack pixels from the image. 

4. Automated crack detection 

Two aspects are important from the automation of crack detection viewpoint; a contrast en-
hancement scheme and an effective crack segmentation methodology. In this section, we 
present a brief discussion on contrast enhancement, mathematical morphology and curva-
ture evaluation before attempting to describe the implementation of our algorithm for auto-
mated crack detection. 
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FIG. 3. Sample images from SSET showing different crack 
patterns, pipe lateral and varying illumination levels. 

4.1. Contrast enhancement 

The use of digital image data for a spatial database requires several preprocessing proce-
dures. These procedures include, but are not limited to: geometric correction, image en-
hancement, and feature selection. The goal of digital image preprocessing is to increase 
both the accuracy and the interpretability of the digital data during the image processing 
phase [23]. The aim of preprocessing in underground pipeline images is an improvement of 
the image data that suppresses unwanted distortions in background or enhances some image 
features (like cracks) important for further processing. This will allow for accurate spatial 
assessments and measurements of crack features from the SSET or CCTV imagery. 

 The presence of various features in an acquired image (Fig. 3) poses considerable chal-
lenge in detecting the desired structural failure patterns such as cracks, fissures, etc. Vari-
ous features make it complex for a recognition system to classify the desired patterns. 
Hence, this necessitates the application of low-level methods of image preprocessing to en-
hance the acquired image. The principal objective of image enhancement techniques is to 
process an image so that the result is more suitable than the original image for specific ap-
plication. ‘Specific’ in our case applies to enhancing contrast between the background of 
pipe and crack features. Crack features are deeper than the pipe surface. This causes the 
deep regions to produce color pixels with a characteristic intensity compared to the rest of 
the image. We will briefly discuss our approach to contrast enhancement in Section 5.1. 

4.2. Mathematical morphology 

The techniques of mathematical morphology are based on set-theoretic concepts, on nonlin-
ear superposition of signal, and on a class of nonlinear systems that we call morphological 
systems. This section is a brief review of fundamental definitions of morphological opera-
tors considered in this study. Advanced information on mathematical morphology can be 
found elsewhere [24–27]. 

 For our reference, we will define a two-dimensional (2D) grayscale image having a range 
of [Imin, Imax] as a functional F: R2 → [Imin, Imax], and a 2D structural element as a functional 
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B: R2 → B where B is the set of the neighborhoods of the origin. We consider structuring 
elements invariant by translation that are identified with a subset of R2 and will be referred 
to as linear structuring element when this subset is a line segment. Basic morphological op-
erators with respect to the structuring element B, a scaling factor e, image F and a process-
ing point P0 ∈ R2 can be defined as: 

 erosion: εe
B(F)(P0) = MINP∈P0+e⋅B(P0)(F(P)); 

 dilation: δe
B(F)(P0) = MAXP∈P0+e⋅B(P0) (F(P)); 

 opening: γe
B(F) = δe

B(εe
B)(F); 

 closing: φe
B(F) = εe

B(δe
B)(F)); 

 top-hat: THe
B(F) = F – γe

B(F) 

 Morphological reconstruction is often presented using the notion of geodesic distance 
and hence the term, geodesic operators [28]. They are usually defined with reference to a 
geodesic distance and type of connectivity. In other words, they depend on a ‘marker’ im-
age Fm (connectivity map) and a geodesic distance d. 

 The geodesic reconstruction (or opening) is defined by 

 γrec
Fm(F) = sup(∆ d

Fm(F)), d ∈ I 

where (⋅) is the geodesic dilation. The geodesic closing is defined by 

 φrec
Fm(F) = Imax – γ rec      

Imax – Fm(Imax – F). 

We assume that the tree-like geometry of cracks is the only element of our image that is lo-
cally uniform and can be described by the following properties: 

• intensity distribution of a cross-section of crack looks like a specific gaussian curve; 

• they branch like a tree; 

• more or less have a constant width (Fig. 3). 

 These properties can further be classified into those related to morphological descriptions 
and those related to the calculation of curvature parameters based on linearity, connectivity, 
crack width, and gaussian profile. 

4.3. Curvature evaluation 

It is possible to study and separate the curvature characteristics of tree-like vascular struc-
tures in retinal angiographic images thus using it as a tool to segment vessels for opthalmic 
diagnosis (see [29] for detailed analysis and proof). Cracks in pipe scan images, like vessels 
in retinal angiographic images, have a tree-like structure and hence can be separated from 
the rest of the image using its differential properties. Curvature in the context of digital im-
ages is the curvature in the cross-direction defined for every pixel in the image under the 
assumption that any nonzero point in the picture has a dominant direction and hence can be 
considered as part of some crack pattern. Figure 4 schematically explains curvature proper-
ties of different elements in a pipe image. There are certain undesirable patterns encoun-
tered in the image when extracting cracks that have differential curvature characteristics. 
They can be classified into different cases that we will refer to in this paper: 
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FIG. 4. (a) Crack, (b) and (c) cases 3 and 2, respectively, from Section 4.3. P and Q are the principal directions. 

 
1. noise occurring in the data acquisition process, or due to undesirable elements whose tex-

ture can be described by a low-intensity white noise; 

2. linear features in the background that can be confused with cracks in some parts, but that 
do not meet all the requirements; 

3. dark thin irregular zones that qualify as nonlinear patterns. 

 In case 3 [Fig. 4(b)], the image signal appears as thin and irregular dark linear elements; 
therefore, the curvature takes on positive values on a width smaller than in the case of a 
crack (see Fig. 4(a)). It is not necessarily linearly correlated. In case 2 [Fig. 4(c)], the signal 
tends to be low and disorganized and the curvature will take on positive and negative values 
in various directions. 

5. Crack detection algorithm 

5.1. Contrast enhancement of color images 

We use an approach to enhancement called Magnification of dark image features by in-
creasing the contrast of the dark pixels from the estimated ‘background’ image. The output 
is the gray-scale enhanced image. The background image is the image of the pipe without 
any small features (e.g. cracks). Given the input color image, a median filter is applied to 
each of the R, G, and B component images. The median filter considers each pixel in the 
image in turn and looks at its nearby neighbors to decide whether or not it is representative 
of its surroundings (in this case, crack pixels). Instead of simply replacing the pixel value 
with the mean of neighboring pixel values, it replaces it with the median of those values. 
The median is calculated by first sorting all the pixel values from the surrounding 
neighborhood into numerical order and then replacing the pixel being considered with the 
center pixel value. We exploit this property of the median filter with an appropriate window 
size suitable for crack sizing and sort pixels that belong to cracks for enhancement. The 
window size for the median filter is 15 × 15. This was determined based on the width of the 
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crack lines. The window size is big enough to erode the small features but small enough to 
be computationally fast. This method picks the dark pixels by comparing the intensity of 
each pixel in the original color image with that of the background image. Figure 5 shows 
SSET images that have been contrast-enhanced by the Magnification of dark image features 
method as a preprocessing step for crack segmentation. 

5.2. Morphological treatment for the recognition of crack features 

We employ morphology-based filters with linear structuring elements taking advantage of 
the linear property of crack features. 

 A morphological closing with a linear structuring element will remove a crack or part of 
it when the element cannot be included in the geometry of the crack. This is true when the 
structuring element is orthogonally oriented with respect to the crack and is hence longer 
than the crack width. However, the crack will not be affected when the structural element 
and the crack have parallel directions. A sum of top-hats along possible directions will 
highlight the cracks irrespective of their inclination in the image if closings along a class of 
linear structuring elements are performed. But this sum of top-hats will recover a lot of 
noise because the closings require the structural elements to be large enough to remove un-
wanted features in the image that do not fall in the category of cracks. Hence, we perform re-
construction operations using connectivity property of the cracks before taking the sum of top-
hats to ensure that components which do not fit the definition of cracks are removed (Fig. 6). 

 A geodesic reconstruction of the closed images into the original image F0 will remove 
noise while preserving most of the cracks that were not removed by the closing operation. 
Mathematically this operation can be represented as: 
 

 

FIG. 5. Contrast enhanced images: (a), (b) and (c): original RGB color image; (d), (e) and (f): enhanced image us-
ing Magnification of dark image features method. 
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 Fcl = φ12
R (Mini = 1⋅⋅⋅18{φBi(F0)}). 

Each linear (width = 1 pixel) structuring element Bi is 12 pixel long and is oriented at every 
10° from 0 to 180. The element size is based upon the range of crack widths that are of in-
terest to the pipeline community. A more detailed discussion on this will follow in Section 
6. The resulting reconstructed image Fcl will not have any isolated round zone whose di-
ameter is less than the size of structuring element (12 pixels). This step, called linear clos-
ing by reconstruction of size 12, removes noise and other features that are not connected to 
the crack geometry. The sum of top-hats on the filtered image Fcl will enhance all cracks ir-
respective of their orientations including minor cracks in a low contrast image. However, 
the Fcl image contains a lot of details corresponding to cases 2 and 3 in Section 4.3. 

5.3. Final segmentation based on curvature characteristics 

It is worthwhile to recall from Section 4.3 that curvature is defined as the curvature in the 
cross-direction which is defined for every pixel under the assumption that any nonzero 
point in the picture has a dominant direction and hence can be considered as part of some 
crack pattern. Its evaluation using the Laplacian operator on a top-hats operated image has 
been analytically discussed and presented by Zana and Klein [29]. As discussed in Section 
4.3, nonlinearly correlated patterns have signals that appear as thin and irregular dark ele-
ments indicating that the curvature gets positive values on a width smaller than in the case 
of the cracks (Fig. 4). In the case of details like 2 (Section 4.2), the curvature will have al-
ternating positive and negative values in various directions owing to a low and disorganized 
signal. This can sometimes lead to represent a curvature trend that fits the crack description. 
The study does not attempt to address this issue leading to false detection in a few cases 
which are rare and have little bearing on the overall performance. 

 It has been proven that the sign of Laplacian applied to the result image of top-hats can 
be used as a good approximation of the sign of curvature [29]. We compute the Laplacian 
 

 

FIG. 6. Steps in the morphology-based recognition 
process: (a) original (contrast-enhanced) image, (b) 
supremum of closing, (c) geodesic reconstruction, and 
(d) sum of top-hats. 

 

FIG. 7. Laplacian images highlighted around zero 
(positive values in white and negative values in 
black): (a) before and (b) after alternating filter. 
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of Fcl to obtain a good estimation of the curvature (see Fig. 7(a)). The final step in the de-
tection process is the application of alternating filters that remove enhanced noise patterns 
corresponding to 1) and 2) as discussed in Section 4.3 thereby producing the final binary 
crack map. The alternating filtering operation consists of performing a linear closing by re-
construction of size 12, followed by a linear opening by reconstruction of size 12, and fi-
nally a linear closing of size 24. These sizes were chosen based on statistics generated on a 
database of 225 pipe images acquired from various cities in North America (rationale be-
hind the selection of these values is discussed in Section 6). The algorithm was designed to 
segment cracks and remove all possible false detection under varying color, background 
and crack patterns based on criticality levels defined by the municipal pipeline community. 
A change in strategy may simply require a different alternating filter. 

5.4. Steps of the proposed algorithm 

We can summarize our algorithm as follows: 

Step I: Improve the contrast of RGB pipe image by enhancing the dark pixels from the 
‘background’ image. 

Step II: Perform crack enhancement described by the following equations in mathematical 
morphology terms: 

 Fcl: = φ12
R (Mini = 1⋅⋅⋅18{φBi(F0)}; 

 Fsum – th: = ∑18 i = 0(Fcl = φBi(F0)). 

The sum of top-hats reduces noise and improves the contrast of all linear regions in the im-
age. At this stage, a manual threshold on Fsum–th could result in cracks being segmented out 
from the image, but in most cases the image would be noisy thus requiring further treatment 
by curvature evaluation using a Laplacian filter 

 Flap: = Laplacian(Gaussianwidth=12px
 σ = 2     (Fsum–th)). 

Step III: The third step in the detection process consists of applying a set of filters with 
linear structuring elements to remove the enhanced noise patterns. The set of alternating fil-
ters can be described by 

F1: = φ12
R (Mini=1⋅⋅⋅18{φBi(Flap)}; 

 F2: = γ12
R (Maxi=1⋅⋅⋅18{γBi(F1)); 

 Ffinal: = (Mini=1⋅⋅⋅18{φ2 
Bi(F2)} ≤ 1). 

The final closing by a larger structuring element (scaling factor of 2) removes smaller and 
tortuous segments of cracks that are shorter than the structure element. Cracks are readily 
identified as pixels whose values are larger than a small positive value such as 1 (Fig. 7). 

6. Discussion on the robustness and accuracy of the proposed algorithm 

6.1. Pipe image database 

The algorithm has been adapted to other types of pipe images: background variations, crack 
patterns, and color variations based upon the geographical location and condition of pipe. 
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 Background variations are a result of changing illumination and maintenance conditions 
for a given pipeline whereas color variations depend upon the material used for the pipe-
line, viz. clay or concrete. Development of vegetation or algae can also add to the back-
ground color patterns. In such images, cracks are less contrasted than in images where the 
background is generally linear. 

 Careful observation reveals that the crack patterns in pipe scan images reveal a certain extent 
of damage in that section of pipe. Usually, the probability that there is no crack in a section of 
pipe is very high as compared to the presence of crack. Thus, crack recognition and segmenta-
tion is of utmost interest from an image registration point of view for future applications in 3D 
crack visualization and feature selection for accurate pipe condition assessment. 

6.2. Evaluation of the proposed algorithm 

It is necessary to evaluate the performance of our algorithm on images with varying crack 
pattern, color and background as the case may be in the field. The evaluation is carried out 
by comparing cracks detected automatically with manually plotted cracks (ground truth). A 
set of connected pixels belonging to the cracks is manually extracted using an inhouse GUI 
interface to replicate the process carried out by a pipe inspector in the field. We use  
the ‘buffer-method’ for performance evaluation by matching the automatically extracted 
crack pixels to the reference map or ground truth image [30]. This method is a simple 
matching procedure in which a buffer of constant predefined width is constructed around 
the crack data in two steps. In the first step, a buffer of constant width is constructed around 
the reference crack data by using a morphological dilation operation of size 5 × 5 (Fig. 8). 
The parts of the extracted data within the buffer are considered as matched and are denoted 
as true positive, whereas the unmatched extracted data is denoted as false positive. In the 
second step, the matching is performed the other way round by constructing a buffer of the 
same size around the extracted crack data (Fig. 8) and the part of reference data lying in the 
buffer is considered as matched. The unmatched reference data is denoted as false negative. 
Probability of detection is defined as the ratio of detected crack pixels to true crack pixels 
and probability of false alarm is the ratio of false alarm pixels to noncrack pixels in the im-
age. Figure 8 illustrates the matching procedure to quantitatively determine the probability 
of detection Pd and probability of false-alarm Pfa (false +ve and –ve). 

6.3. Selection of algorithm parameters 

The size of structuring element and degree of rotation are two prime parameters that govern 
the performance of the proposed algorithm. It is imperative to discuss the detection prob-
abilities as a function of these two parameters. Generalization to images of all types can 
only be effected if algorithm performs very well under varying image conditions. Hence, an 
optimum parameter combination is required that can consistently provide high detection 
probabilities under all conditions based on a set criteria for Pd and Pfa as suggested by the 
concerned authorities. In order to quantitatively assess the effect of structuring element size 
and degree of rotation on the detection rate, we plot the probability of detection (Pd) against 
the probability of false alarm (Pfa) for different structuring element sizes and degree of rota-
tions. We performed experiments on three different classes of pipe images (crack patterns, 
background and color) by varying the size of structuring element (S = 10, 12 and 15 pixels) 
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and degree of rotations (D = every 5°, 10° and 15°) to determine an optimum combination 
of these two parameters. Given a low false +ve (7%) and false –ve (2%), the corresponding 
size of structural element and degree of rotation that gives the maximum Pd is selected. This 
is repeated for all the three classes of image and the candidate combination that satisfies the 
cutoff criteria throughout is finally selected as the generalized optimum parameter combi-
nation. Figure 9 shows the probabilities plotted against various parameter combinations for 
images with varying crack patterns, background and color. S12-D10 (structural elements of 
size 12 px rotated at every 10°) clearly satisfies the cutoff criteria and is selected as the op-
timum combination that consistently provides good detection in all types of pipe images. 

6.4. Experimental results 

This algorithm has been tested on a database of about 225 images of all types taken from 
various cities like Los Angeles, Albuquerque, Toronto and St Louis-Missouri in North 
America. All the images were acquired and unwrapped using the SSET camera and its pro- 
 

 
FIG. 8. Matching procedure for detection of true and false pixels. (a) original image, (b) detected cracks, (c) 
ground truth, (d) and (e) detected and true cracks dilated by a 5 × 5 structuring element, (f) good points of the fil-
ter, (g) false +ve, (h) truly detected cracks and (i) missed cracks (false –ve). 
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FIG. 9. Bar chart of probabilities for different parameter combinations. S12-D10 consistently meets criteria in all 
the three classes. 
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FIG. 10. Image with different crack patterns. 

 

FIG. 11. Image with different background patterns. 

 
prietory software available with the system. Robustness was evaluated on noisy images 
with respect to changing crack patterns (Fig. 10), background features (Fig. 11) and color 
(Fig 12). Images that did not have any cracks present produced a perfect image without any 
detected cracks every single time the algorithm ran with the generalized optimal parameter 
combination. 

 There has been false detection in the following cases: 

• extension of crack into a small rounded zone (patch) maintaining the same direction and 
geometry; 

• cracks are too close to each other; 

• dark linear structures mistaken for cracks that appear as isolated objects in the image; 

• uniform noise that would modify the connectivity of crack structure thereby disturbing 
the reconstruction filter and misleading curvature evaluation. 

 Parts of the crack were not detected mostly in very low contrast (Fig. 12) and sometimes 
in images that had shadow due to illumination issues in the pipe. However, the detection in 
every case was in accordance with the discussion in Section 6. This algorithm works on de-
tecting patterns with Gaussian profile bounded at the inflection point. The Gaussian filter 
applied before the computation of the Laplacian modifies the surrounding texture leading to 
a shift in the location of the inflection point. As a consequence, our experiments show that 
small cracks appear wider than their real size (Fig. 10). However, this is not a matter of ma-
jor concern as detection is based on matching the extraction with respect to a buffer width 
as discussed in Section 6.2. 
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FIG. 12. Image with different color variations. 

 

FIG. 13. Edge detection algorithms on crack pattern 
image:(a) original image, (b) Otsu’s thresholding (c) 
Canny’s edge detector, and (d) proposed approach. 

6.5. Comparison of the proposed algorithm with other methods 

We apply several detection filters to an original image including our proposed algorithm to 
study the performance with respect to other conventional filters used in the underground 
pipeline infrastructure industry. We have used Canny’s edge detec d-
ing technique to extract crack features [31, 32]. Figures 13–15 show comparative results 
from the application of our proposed approach, Canny’s edge detection method, and Otsu’s 
thresholding technique to a sample image from all three classes (color, background and 
varying crack patterns). 

 The Canny edge detector produces parallel edges (Figs 13, 14 and 15(c)) suggesting that 
the largest cracks are easily picked up by the detector at the cost of smaller cracks that ap-
pear less contrasted. Otsu’s thresholding technique selects a threshold based on integration 
(a global property) of the gray-level histogram. Hence, in areas where the cracks and back-
ground path run into each other or low contrast dark images, false detection is inevitable as 
seen in Figs 13 and 15(b). Images in Figs 13 and 14(a) that show minor and major cracks 
are part of sewer pipeline system in Boston and Los Angeles, respectively. The crack detec-
tion step performs quite well detecting most of the crack structures, while missing only 
some micro-cracks in the images. These cracks might have been present at the time of 
manufacturing of the pipe and are not a threat to the structural integrity according to indus-
try experts. The image in Fig. 15(a) belongs to a sewer pipeline system in St Louis, Mis-
souri, and has dark pipe surface (clay pipe) with a major crack camouflaged in the 
background in addition to minor cracks. Although there is little contrast between the back-
ground and crack features, the crack detection step performed well only missing some mi-
nor cracks. Performance evaluation of minor cracks in complex images (Fig. 15(a)) is not 
easy because it is difficult even for a trained human operator to identify such minor cracks. 
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FIG. 14. Edge detection algorithms on background pat-
tern image: (a) original image, (b) Otsu’s thresholding, 
(c) Canny’s edge detector, and (d) proposed approach. 

 

FIG. 15. Edge detection algorithms on color variation 
image: (a) original image, (b) Otsu’s thresholding, (c) 
Canny’s edge detector, and (d) proposed approach. 

7. Conclusions 

Automated crack detection systems that limit the necessity of human inspection have the 
potential to lower the life-cycle cost of condition assessment of buried pipes. In this paper, 
we have adapted and implemented an efficient algorithm for detecting crack patterns in 
pipeline images. This automated method can be divided into three steps, viz. contrast en-
hancement, morphological treatment and curvature evaluation in the cross-direction and fi-
nally the alternating filters that produce the final segmented binary crack map. The 
proposed evaluation scheme adequately estimates the performance of this algorithm in an 
absolute way and is relative to conventional detection techniques used in the underground 
pipeline inspection industry. The robustness and weaknesses of the algorithm have been 
discussed in order to facilitate its use in a larger scheme for condition assessment of under-
ground pipelines. The scope of this article is focused on improving the segmentation meth-
odology in pipeline images. Further development of this algorithm in terms of defect 
feature classification needs to be actively pursued in preparation towards an automated 
condition assessment tool. 
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