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Abstract 
 
In this paper, L0-stable parallel algorithm is presented for the numerical solutions of the inhomogeneous heat 
equations. The algorithm is developed by approximating the second-order spatial partial derivative by finite-
difference approximation and a matrix exponential function by a rational approximation having distinct real 
poles. Linear and nonlinear problems are solved using the algorithm and comparisons are made with results from 
the literature confirming the accuracy of the algorithm. 
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1. Introduction 

Certain types of physical problems can be modeled by the inhomogeneous heat equation: 

ut = uxx + s(x, t), 0 < x < X; t > 0, 

u(0, t) = f1(t), 0 < t ≤ T, 

u(X, t) = f2(t), 0 < t ≤ T, 

u(x, 0) = g(x); 0 < x < X. 

Advances in computer technology have provided an impetus to solve such equations nu-
merically. The method of lines (MOL) semidiscretization approach is used to transform the 
model partial differential equations into a system of first-order linear ordinary differential 
equations (ODEs). The MOL is a method of solving PDEs by discretizing the equation with 
respect to all but one variable (usually time). The spatial partial derivative is approximated 
by finite-difference approximation which produces system of ordinary differential equations 
(ODEs) expressible in matrix-vector form. The exact solution of the resulting system of 
first-order ODEs satisfies a recurrence relation. The temporal accuracy is controlled by 
choosing a second-order approximation to the matrix exponential function and afterwards a 
parallel algorithm is developed and tested on well-known problems whose exact solutions 
are already known in literature. 

 The demands of both the scientific and the commercial communities for ever-increasing 
computing power led to dramatic improvements in computer architecture. Initial efforts 
concentrated on achieving high performance on a single processor, but the more recent past 
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has been witness to attempts to harness multiple processors. Multiprocessor systems consist 
of a number of interconnected processors each of which is capable of performing complex 
tasks independent of the others. In a sequential algorithm all processes are performed by a 
single processor turn by turn but in a parallel algorithm independent parts of the program 
are performed by different processors simultaneously which save a lot of time. 

 Various sequential numerical schemes have been proposed in the literature for the solu-
tion of this problem [1–3]. Serbin [4] proposed a scheme for parallelizing certain algorithms 
for the inhomogeneous heat equation developed by Brenner et al. [5]. Serbin presented a 
numerical example utilizing the scheme to explore how the partial fraction approximation 
(PFA) compares to the usual sequential implementation for approximate solution of the 
semidiscrete problem. In the present paper, we develop numerical scheme based upon ra-
tional approximations to the matrix exponential function for solving inhomogeneous heat 
equation. The scheme is L0-stable, second-order accurate in space and time, and uses only 
real arithmetic in its implementation. 

 The outline of the paper is in the following way: the numerical scheme for heat equation 
is described in Section 2; the parallel and sequential algorithms are presented in Section 3; 
In Section 4, the numerical results produced by this algorithm are given; nonlinear heat 
problem is discussed in Section 5; the conclusion is given in Section 6. 

2. Derivation of the scheme 

Consider the one-dimensional heat equation 

 ut = uxx + s(x, t), 0 < x < X, t > 0, (1) 

subject to time-dependent boundary conditions 

  u(0, t) = f1(t), 0 < t ≤ T, (2) 

  u(X, t) = f2(t); 0 < t ≤ T, (3) 

with initial condition 

 u(x, 0) = g(x); 0 < x < X, (4) 

where f1(t), f2(t), g(x) and s(x, t) are known, while the function u(x, t) is to be determined. 

 The interval 0 ≤ x ≤ X is divided into N + 1 subintervals each of width h, so that 
(N + 1)h = X and the time variable t is discretized in the steps of length l. Thus, at each time 
level t = tn = nl (n = 0, 1, 2, . . .), the open region R = {0 < x < X} × [t > 0] and its boundary 
∂R consisting of lines x = 0 and x = X and the axis t = 0 have been superimposed by rectan-
gular mesh with N points within R and open point along each side of ∂R. 

 The solution u(x, t) of (1) is sought at each point (kh, nl) in R × [t > 0], where k = 1, 
2, . . ., N and n = 0, 1, 2, ⋅ ⋅ ⋅. . The solution of an approximating numerical method will be 
denoted by U(x, t). The space derivative in (1) will be replaced by the following second-
order central-difference approximation given by 
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Applying (1) to all the interior mesh points within R at time level t = nl with the space de-
rivative replaced by (5) leads to a system of N first-order ODEs of the form 

 
( )

( ) ( ), 0
d t

A t t t
dt

= + >
U

U v  (6) 

with the initial condition 

 U(0) = g (7) 

in which the matrix A is of order N and given by 
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v(t) = [h–2f1(t) + s1(x, t), s2(x, t),⋅ ⋅ ⋅ , sN–1(x, t), h–2f2(t) + sN(x, t)]T 

U(t) = [U1(t), U2(t),⋅ ⋅ ⋅ , UN(t)]T 

g = [g1(x), g2(x), ⋅ ⋅ ⋅ , gN(x)]T. 

The eigenvalues of matrix A are 

 24sin 0, 1,2,...,
2( 1)n

n
n N

N

π
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= − < = + 
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Solving (6) subject to (7) gives 

 
0

( ) exp( ) (0) exp(( ) ) ( ) ;
t

t lA U t l s A s ds= + + −∫U v  (9) 

which satisfies [7], the recurrence relation 

 ( ) exp( ) ( ) exp(( ) ) ( ) ; 0, , 2 , ...
t l

t

t l lA t t l s A v s ds t l l
+

+ = + + − =∫U U  (10) 

in which l is a constant time step in the discretization of the time variable t ≥ 0 at the points 
tn = nl(n = 0, 1, 2, ⋅ ⋅ ⋅ , N). To approximate the matrix exponential function in (10), we con-
sider the rational approximate to exp(lA) of the form 
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The error constant term is 

 1
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Let λn be the eigenvalues of the matrix A given by (*). Then the amplification symbol of the 
numerical methods arising from (11) is 
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where z = – lRe(λ) > 0. Thus L0-stability is granted provided 1
2
.a >  

 The integral term in (10) is approximated by a quadrature formula of the form 

 
2
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t l
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where all sj(i = 1, 2) are different and weights W1 = W1(lA) and W2 = W2(lA) are matrices. It 
can easily shown be that when v(s) = [1, 1, 1, ⋅ ⋅ ⋅ , 1]T, 

 W1 + W2 = M1 (13) 

where M1 = A–1 (exp(lA) – I) when v(s) = [s, s, s, ⋅ ⋅ ⋅ s]T, 

 s1W1 + s2W2 = M2 (14) 

where M2 = A–1{t exp(lA) – A–1 + A–1(exp(lA) – I)}, I is the identity matrix of order N. Tak-
ing s1 = t, s2 = t + l and then solving (13) and (14) simultaneously and replacing by exp(lA) 
gives 

 ( 1) exp( ) ( ) [ ( ) ( ) ( ) ( )]; 0, , 2 , ...
2

l
t lA t S lA t T lA t l t l l+ = + + + =U U v v  (15) 

in which 

 2 11
2

( ) [ ( )( ) ] ;S lA I alA a lA −= − + −  (16) 

 2 11 1
2 2

( ) [ ( )( ) ] [ 2( ) ].T lA I alA a lA I a lA−= − + − − −  (17) 

3. The parallel algorithm 

In order to implement (15) in parallel, the functions exp(lA), S(lA) and T(lA) are decom-
posed into their partial-fraction forms [6–8] given by 

 exp(lA) = p1(I – r1lA)–1 + p2(I – r2lA)–1, 

 S(lA) = p3(I – r1lA)–1 + p4(I – r2lA)–1, 

  T(lA) = p5(I – r1lA)–1 + p6(I – r2lA)–1, 
with 
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The solution vector U(t + l) in (15) may be obtained in parallel using two processors run-
ning concurrently as follows: 
 
Processor 1 
(1) Input l, r1, U(0), A 
(2) Compute p1, p3, p5, (I – r1lA) 
(3) Decompose (I – r1lA) = L1U1 
(4) Evaluate v(t), v(t + l) 
(5) use z1(t) = 

2
l (p3v(t) + p5v(t + l)) 

(6) Solve L1U1y1(t) = p1U(t) + z1(t) 
 
Processor 2 
(1) Input l, r2, U(0), A 
(2) Compute p2, p4, p6, (I – r2lA) 
(3) Decompose I – r2lA = L2U2 
(4) Evaluate v(t), v(t + l) 
(5) use z2(t) = 

2
l (p4v(t) + p6v(t + l)) 

(6) Solve L2U2y2(t) = p2U(t) + z2(t) 

 U(t + l) = y1(t) + y2(t). 

 GOTO step (4) for next time step. 

 Implementing the algorithm, Processor 1 generates decomposition of I – r1lA and Proces-
sor 2 generates decomposition of I – r2lA simultaneously. Parallel computing is the simulta-
neous execution of the same task (split up and specially adapted) on multiple processors in 
order to obtain faster results. 

3.1. The sequential algorithm 

The numerical solutions of the inhomogeneous heat problems can also be obtained using 
the following sequential algorithm (SA): 
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1. Input 
  A, matrix 
  Real X, end point function S(x, t) 
  Real l, time step 
  Integer M, number of time steps 
  Integer N, number of computational nodes 
  Function S(x, t), source term 
  Function g(x), initial condition 
  Functions f1(t), f2(t) boundary conditions at x = 0 and x = X. 
 
2. Define a grid 
 Set h = 

1
X

N +  

  r = 2
1
h

 

 
3. Initial numerical solution 
 Set t = 0 
 x0 = 0 

 U0 = 1( (0) (0))
2

f g+  

 for n = 1, 2, ⋅ ⋅ ⋅ , N 
 Set xn = xn – 1 + h 
 Un = g(xn) 

  Set UN = 2( (0) ( ))
2

f g X+  

  xN = X 
 
4. Begin time stepping 
 For j = 1, 2, ⋅ ⋅ ⋅ , M 

 DO STEPS 5–7 
 
5. Define tridiagonal system 
  Set t = t + l 
  For n = 1, 2, ⋅ ⋅ ⋅ , N 
  Set an = r 
 bn = – 2r 
 cn = r 
 dn = Un + l.S(x, t) 
 Set d1 = d1 + r⋅f1(t) 
 dN = dN + r⋅f2(t) 
 
6. Solution of a tridiagonal system 
 For n = 2, 3,  ⋅ ⋅ ⋅ , N 

 set ratio = 
1

n

n

a
b −
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  bn = bn – ratio: cn–1 
 dn = dn – ratio: dn–1 

 set dN = N

N

d
b

 

 For n = N – 1, N – 2, ⋅ ⋅ ⋅ , 1 

 set dn = 1n n n

n

d c d
b

+−  

 
7. Advance solution one time step 
 CALL TRIDI(N, a, b, c, d) 
 For n = 1, 2, ⋅ ⋅ ⋅ , N 
 Un = dn 
 Set U0 = f1(t) 
 UN+1 = f2(t) 
 
8. Output 
  For n = 0, 1, ⋅ ⋅ ⋅ , N + 1 
 xn, Un 

4. Numerical tests 

In order to test the behavior of L0-stable scheme, three problems from the literature are con-
sidered. The parallel algorithm is tested on a sequential computer (Intel 933 MHz, BD815 
Glly, 128MB(Kingstung), HDD 20 GB (SeaCate), OS Win2000 Professional, Developer 
Studio) for the solutions of the inhomogeneous heat equations. The parallel algorithm is 
also tested on an Alliant FX/8 for problem 3. 
 
Problem 1. Consider the heat equation 

ut = uxx – 2ex–t, 0 < x < 1, t > 0, 

u(0, t) = e–t, t > 0 

u(1, t) = e1–t, t > 0 

u(x, 0) = ex, 0 < x < 1. 

 The analytical solution is u(x, t) = ex–t. Using the algorithm, this problem is solved for 
h = 0.125, 0.1, 0.05, 0.025 with each l = 0.125, 0.1, 0.05, 0.025. The maximum absolute 
relative errors j(u – U)=uj at time t = 1.0 are shown in Table I. 

 It is worth mentioning that the use of only real arithmetic especially in multispace dimen-
sions can yield large saving in CPU time used. 
 
Problem 2. Consider the heat equation 

ut = uxx – 2, 0 < x < 1, t > 0, 

u(0, t) = t, t > 0 
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Table I 
Maximum absolute relative errors at t = 1.0 

h 0.125 0.1 0.05 0.025 
 

l = 0.125 0.7412D-3 0.7212D-3 0.5671D-3 0.1232D-3 
l = 0.1 0.5426D-3 0.4523D-3 0.23356D-3 0.1121D-3 
l = 0.05 0.3214D-3 0.2113D-3 0.1021D-3 0.4511D-4 
l = 0.025 0.1120D-3 0.7845D-4 0.2715D-4 0.2337D-4 

u(1, t) = 1 + t, t > 0 

u(x, 0) = x2, 0 < x < 1. 

The analytical solution is u(x, t) = x2 + t. Using the algorithm, this problem is solved for 
h = 0.125, 0.1, 0.05, 0.025 with each l = 0.125, 0.1, 0.05, 0.025. The maximum absolute 
relative errors |(u – U)/u| at time t = 1:0 are shown in Table II. 
 
Problem 3. Consider the heat equation 

ut = uxx + tα(αx(1 – x) + 2t), 0 < x < 1, t > 0, 

u(0, t) = 0, t > 0 

u(1, t) = 0, t > 0 

u(x, 0) = 0, 0 < x < 1. 

This problem has analytical solution u(x, t) = tα–1x(1 – x). The maximum absolute errors at 
time t = 1.0, α = 3 and α = 4 are shown in Table III and IV, respectively. The results ob-
tained using the new scheme developed in this paper are slightly more accurate than those 
from the scheme of Serbin [4]. It is clear that as far as efficiency is concerned, the scheme 
introduced in this paper is better for the model problem. 

 We feel that very small difference in the results of parallel and sequential algorithms 
would appear all the time (i.e. higher-order algorithm). In a series of numerical experi-
ments, the interval 0 ≤ x ≤ 1 is divided into N + 1 subintervals each of width h, so that 
(N + 1)h = 1, with N = 40, 80, 160 and 320. These values of N gave the corresponding order 
of matrix A and of all vectors in the parallel algorithms. The problems are investigated to 
time t = 1 using time steps each of length l, so that Tl = 1, with (i) T = 50 and (ii) T = 200. 
CPU time (in second) of the sequential and parallel algorithms of our scheme is calculated 
using an Alliant FX/8 (Table V). All cases are implemented on the Alliant FX/8 in parallel 
and sequentially. CPU time (in second) is given for each numerical experiment. 
 

Table II 
Maximum absolute relative errors at t = 1.0 

h 0.125 0.1 0.05 0.025 
 

l = 0.125 0.563D-3 0.4561D-3 0.2344D-3 0.1932D-3 
l = 0.1 0.4710D-3 0.2365D-3 0.2112D-3 0.1103D-3 
l = 0.05 0.3261D-3 0.2313D-3 0.1121D-3 0.7612D-4 
l = 0.025 0.2311D-3 0.6755D-4 0.1433D-4 0.1341D-4 



A PARALLEL ALGORITHM FOR THE INHOMOGENEOUS HEAT EQUATIONS 261

Table III 
Maximum errors at t = 1.0; αα = 3 

1
h

 1
l

 PFA [4] Parallel SA[4] Sequential 
   algorithm  algorithm 
 

10 10 0.44770D-04 0.14120D-04 0.44770D-04 0.14120D-04 
10 20 0.55086D-05 0.15421D-05 0.55086D-05 0.15421D-05 
10 40 0.53259D-06 0.13221D-06 0.53259D-06 0.13220D-06 
10 80 0.42228D-07 0.10423D-07 0.4229D-07 0.10424D-07 
10 160 0.29254D-08 0.58115D-09 0.29244D-08 0.58109D-09 
20 20 0.55182D-05 0.14633D-05 0.55182D-05 0.14630D-05 
40 40 0.53516D-06 0.13222D-06 0.53516D-06 0.13221D-06 
80 80 0.42488D-07 0.10671D-07 0.42500D-07 0.10670D-07 
160 160 0.29400D-08 0.27861D-08 0.29308D-08 0.27845D-08 
320 320 0.20733D-09 0.18543D-09 0.18953D-09 0.18200D-09 

 
Table IV 
Maximum errors at t = 1.0; αα = 4 

1
h

 1
l

 PFA [4] Parallel SA[4] Sequential 
    algorithm  algorithm 
 

20 20 0.19818D-04 0.61221D-05 0.19818D-04 0.61221D-05 
40 40 0.19203D-05 0.45317D-06 0.19203D-05 0.45316D-06 
80 80 0.15201D-06 0.24543D-07 0.15200D-06 0.24540D-07 
160 160 0.10452D-07 0.77165D-09 0.10460D-07 0.77155D-09 
320 320 0.166820D-09 0.96876D-10 0.66866D-09 0.96865D-10 

 

Table V 
CPU time in seconds 

  Parallel algorithm Sequential algorithm 
 

N T = 50 T = 200 T = 50 T = 200 
 

40 0.04 0.15 0.12 0.45 
80 0.08 0.32 0.23 0.93 
160 0.16 0.64 0.47 1.90 
320 0.32 1.28 0.98 3.94 

5. Application to a nonlinear problem 

Consider the nonlinear heat equation 

 ut = uux + uxx + s(x, t); 0 < x < X, t > 0, (18) 

subject to time-dependent boundary conditions 

 u(0, t) = f1(t); 0 < t ≤ T, (19) 

 u(X, t) = f2(t); 0 < t ≤ T, (20) 

with initial condition 

 u(x, 0) = g(x); 0 < x < X, (21) 
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where g(x) is given continuous function of x. There will exist discontinuities between the 
initial and boundary conditions if g(0) ≠ f1(0) or/and g(X) ≠ f2(0). Equation (18) may be 
written as 

 
2

2
( , ); 0 , 0.

u u u
u s x t x X t

t x x

∂ ∂ ∂
= + + < < >

∂ ∂ ∂
 (22) 

Applying the same discretization and the following finite-difference approximations 
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to eqn (18) leads to a system of N first-order ODEs of the form 

 
( )

( ) ( ), 0
d t

A t t t
dt

= + >
U

U v  (25) 

with the initial condition 

 U(0) = g (26) 

in which the matrix A is of order N and given by 
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 (27) 

where 
 a1 = 2 – U(t)h 

 a2 = 4 

 a3 = 2 + U(t)h 

v(t) = [(2h)–2(2 – U1(t)h)f1(t) + s1(x, t), s2(x, t),⋅ ⋅ ⋅ , sN–1(x, t), 

(2h)–2(2 + UN(t)h) f2(t) + sN(x, t)]T. 

The algorithm for the nonlinear problem is implemented on an architecture consisting of at 
least two processors. 
 
Problem 4. Consider the nonlinear heat equation 

ut = uux + uxx, 0 < x < 1, t > 0, 
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Table VI 
Maximum absolute relative errors at t = 1.0 

h 0.125 0.1 0.05 0.025 
 

l = 0.125 0.456D-4 0.357D-4 0.352D-4 0.346D-4 
l = 0.1 0.441D-4 0.333D-4 0.221D-4 0.113D-4 
l = 0.05 0.341D-4 0.342D-4 0.221D-4 0.112D-4 
l = 0.025 0.212D-4 0.112D-4 0.563D-5 0.456D-5 

 
u(0, t) = 0, t > 0 

u(1, t) = 0, t > 0 

u(x, 0) = 
2 sin( )

;
2 cos( )

x

x

π π
π+

 0 < x < 1. 

The analytical solution is 

2

2

2 sin( )
( , ) .

2 cos( )

t

t

e x
u x t

e x

−

−
=

+

π

π

π π

π
 

Using parallel algorithm, this problem is solved for h = 0.125, 0.1, 0.05, 0.025 with each 
l = 0.125, 0.1, 0.05, 0.025. The maximum absolute relative errors |(u – U)/u| at time t = 1.0 
are shown in Table VI. The scheme developed for linear problems carries over to nonlinear 
problem, although added difficulties arise in computing the solution. 

6. Conclusion 

An O(h2 + l2) L0-stable parallel algorithm has been developed for the heat equation with a 
known source term. The algorithm was found to be more accurate in comparison with exist-
ing algorithms from the literature, and can be implemented in parallel using a machine with 
two processors. 
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