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Abstract 
 
This paper proposes a fuzzy discriminant analysis to solve the two-group classification problem where the meas-
ured variables are linguistic in nature. Especially under imprecise framework, the linguistic variables capture 
more information although vagueness is inherent. In analogy to classical statistics, a fuzzy linear discriminant 
function is introduced here, which directly deals with continuous fuzzy numbers as the representative of linguistic 
values to obtain fuzzy scores for classification. To make a comparative study, the backpropagation neural net-
work approach has also been studied in this paper. Finally admission to management programme is considered as 
an example of the application on two-level classification problem of the proposed method. 
 
Keywords: Linguistic variable, fuzzy number, linear fuzzy discriminant analysis, neural network. 

 
1. Introduction 

Discriminant analysis [1] for hard classification has been widely applied for effective deci-
sion-making in many real-world problems for the last few decades. It becomes more effec-
tive for the following advantages: firstly, separation of classes as much as possible based on 
the measured variables and secondly, classification of a new entity into a labeled class. As a 
multivariate data analytic technique, the discriminant analysis is usually strongly recom-
mended for classification problems with precise data. But it becomes problematic if at least 
some of the variables are linguistic (i.e. qualitative) while designing the classification prob-
lems under imprecise environment. It must be logically accepted that the variables assess-
ing the values as outcomes of human factors, especially experience, perception, thinking, 
reasoning and attitude, etc. become fuzzy. In practice, linguistic variables possess the lin-
guistic or fuzzy values represented in terms of natural languages due to their flexibility and 
simplicity although vagueness and ambiguity are inherent. Therefore, there is a need of de-
veloping fuzzy discriminant technique for the classification problems on the basis of lin-
guistic variables under the paradigm of ‘fuzzy statistics’. The linguistic values are perfectly 
quantized by fuzzy sets and subsequently fuzzy numbers [2, 3]. In doing so this paper in-
troduces a fuzzy approach to solve a two-group classification problem in discriminant 
analysis. Firstly, the fuzzy discriminant scores for each of the candidates computed and 
then defuzzified to compare with the defuzzified threshold value for classification. In fact, 
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we use here centroid method [3] for defuzzification. Among many statistical and nontradi-
tional techniques of classification, neural network has been widely used for classification 
[4–6]. In many situations, neural network approximates continuous fuzzy data into discrete 
inputs. In this connection, we have studied a backpropagation neural network approach to 
make a comparative study where the linguistic data are initially defuzzified. Here, we have 
considered a two-level classification problem to study whether the students are eligible for 
admission or not in the management programme. 

 Some research developments on fuzzy discriminant analysis have been done recently. Lin 
et al. [7] have shown a fuzzy method for two-group discriminant analysis where the mem-
bership functions of the groups to be discriminated is obtained by minimizing the sum of 
squares of classification errors. A method for performing fuzzy multiple discriminant 
analysis [8] on groups of crisp data is proposed, which is able to detect membership func-
tion of each group by minimizing the classification error using genetic algorithm. A fuzzy 
mathematical programming approach to develop fuzzy linear discriminant function has 
been devised by Chiang et al. [9] for separable as well as nonseparable data sets, which is 
not at all based on fuzzy variables. Chen et al. [10] have proposed a discrimination tech-
nique for chemical data sets with a few overlapping data points that are considered equally 
important for all classes in ordinary discriminant analysis. Watada et al. [11] have proposed 
a fuzzy discrimination method only for fuzzy data in fuzzy groups. A Hopfiled neural net-
work approach [6] for classification is introduced where the incomplete pattern is first 
translated into fuzzy terms, but these terms have been discretized. In fact, all the techniques 
for fuzzy classification are not subjected to the linguistic data at all. Rather the methods 
consider degrees of membership in discrete form that is nothing but oversimplification. 

 Section 2 describes the definitions and notations of fuzzy variable, LR-type fuzzy number 
in Sub-sections 2.1 and 2.2, respectively. In Sub-section 2.3, the variance-covariance for 
fuzzy variables is introduced. A fuzzy statistical approach to discriminant analysis with lin-
guistic variables is described in Sub-section 3.1. Sub-section 3.2 highlights the backpropa-
gation neural network framework for classification with linguistic input. Finally, a two-
level classification problem whether the students are eligible for admission or not in the 
management programme is considered in Section 4. Conclusions are drawn in Section 5. 

2. Preliminaries 

2.1. Fuzzy variable 

A fuzzy variable is a variable whose values are fuzzy. The concept of fuzzy variable [3] is 
very useful in situations where decision problems are too complex or too ill-defined to be 
described properly using conventional quantitative expressions. For example, the ability, 
performance ratings, etc. could be well expressed using fuzzy values such as very poor, 
poor, fair, good, very good, excellent, etc. 

2.2. LR-type fuzzy number 

Fuzzy set introduced by Zadeh [2] is a gradual transition from nonmembership to fullmem-
bership. A fuzzy set ( ,  ,  )LRX m α β=%  is said to be a LR-type fuzzy number [3] where ‘L’ 
and ‘R’ stand for left and right references if 



FUZZY AND NEURAL NETWORK APPROACHES TO DISCRIMINANT ANALYSIS 267

(i) Xµ %  is bounded and upper semicontinuous; 
(ii) the membership function Xµ %  is of the form 

for  

( )                

for  

X

m x
L m x m

x

x m
R m x m

α
α

µ

β
β

 −  − ≤ <  
 = 

  − < ≤ +   

%  

Now LR-type fuzzy number reduces to a triangular fuzzy number if L(y) = R(y) = max {0, 
|1 – y|}. Without loss of generality we consider LR-type fuzzy numbers as fuzzy realizations 
of the fuzzy variables throughout the paper. 
 
2.3. Fuzzy variance–covariance  

In classical sense, variance measures the dispersion around the central point of a set of ob-
servations, which is computed on the basis of crisp observations. But when we have fuzzy 
data, then computation of crisp variance–covariance is really oversimplification. Human in-
tuition says that if the observations are vague (i.e. unstable) then variance–covariance will 
definitely be imprecise in nature. In view of this, a concept of computing fuzzy variance 
and fuzzy covariance for fuzzy variables based on fuzzy arithmetic [3] is introduced in this 
paper. Let us consider two fuzzy variables, say, ( ,  ,  )x x x LRX m α β=%  and 

( ,  ,  )y y y LRY m α β=%  defined on the universe say, U. A sample{( , )}i ix y% % of size ‘n’ is drawn 
on X%  and Y% , respectively. Now we define fuzzy variance by XS %%  and fuzzy covariance by 

,X YS % %%  as follows: 
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Fuzzy covariance: ,
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While making a suitable decision for certain purpose a decision-maker should emphasize on 
precise and concrete decision irrespective of fuzzy or crisp environment. Here we have used 
the well-known centroid method to defuzzify the computed fuzzy variance–covariance for 
computing its inverse as follows: 
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3. Methodological development 

3.1. A fuzzy statistical approach to fuzzy linear discriminant analysis (FLDA) 

As a soft computing tool, fuzzy set theory [2] has been well established to deal with vague-
ness, which is especially reflected in all the natural languages and artificial intelligence-
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related problems. In such situations, while human cognitive aspects like experience, knowl-
edge, and reasoning drive the classification problems, the data become imprecise or fuzzy 
in nature. Practically, there are many real-world problems where some of the decision vari-
ables are purely fuzzy in nature. In those cases, considering the crisp values, instead of 
fuzzy values, may be crude oversimplification. Fuzzy logic has the power of considering 
the whole content of fuzzy values, which are represented by fuzzy numbers. Here a para-
digm of classification problem consisting of all fuzzy variables is considered. Firstly, a 
number of groups is considered and hence collect the sample fuzzy data of different sizes 
for each of the groups. Now, the classical discriminant analysis is extended to fuzzy dis-
criminant analysis for fuzzy data. Fuzzy discriminant analysis is a fuzzy statistical approach 
to model with fuzzy variables. Let us design the problem interface as follows: (a) a number 
of fuzzy variables is considered; and (b) a new entity is to be classified into one of the la-
beled groups. For the sake of simplicity we assume here only two classes, say C1 and C2. 
All the variables, say 1 2, , ,     mX X X% % %K are considered here as fuzzy where a crisp value 
can be treated as fuzzy number with zero vagueness. The fuzzy data of fuzzy variables can 
be semantically represented as follows: 

 Let us consider a fuzzy vector as 1 2[ ,  ,  , ]TmX X X X=% % % %K  such that 
( ) ( ) ( )( ) ( ,  ,  )

j j j

k k kk
j LRX X XX m α β=%  and ( ) ( ) ( )( ) ( ,  ,  )

ij ij ij

k k kk
ij LRx x xx m α β=% , where ( )k

ijx%  denote the fuzzy 
opinion of the ith (i = 1, 2, ..., n) person for the jth (j = 1, 2, …, m) criterion in the kth (here 
k = 1, 2) group. Two groups are to be discriminated based on ‘m’ triangular fuzzy variables. 
The key idea here is to transform the multifuzzy variables ( 1 2,  ,  , mX X X% % %K ) into univariate 
fuzzy variable Z%  such that Z% ’s derived from two groups are separated as much as possi-
ble. In doing so, the fuzzy means using eqn (1) are computed as follows: 

 ( )( ) ( ) ( ),  ,  
j j j
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t t t

k k k
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Table I 
Fuzzy values of fuzzy variables  

Sample Class 1 2                      mX X X% % %L  
 

1  (1) (1) (1)
11 12 1                     mx x x% % %L  

2  (1) (1) (1)
21 22 2                     mx x x% % %L  

M C1 ……………………………… 
M  (1) (1) (1)

1 2                     imi ix x x% % %L  
i  ……………………………… 
M   
n1  

1 1 1

(1) (1) (1)
1 2                     n n n mx x x% % %L  

1  (2) (2) (2)
11 12 1                     mx x x% % %L  

2  (2) (2) (2)
21 22 2                     mx x x% % %L  

M C2 ……………………………… 

M  (2) (2) (2)
1 2                     imi ix x x% % %L  

i  ……………………………… 
M 
n2  

2 2 2

(2) (2) (2)
1 2                     n n n mx x x% % %L  



CHANDAN CHAKRABORTY AND DEBJANI CHAKRABORTY 270

where ( ) ( ) ( ) ( ) ( ) ( )
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Therefore, the fuzzy mean vector and covariance matrix for the kth group based on obser- 
ved fuzzy observations can be theoretically calculated using equations (1)–(5) as follows: 
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Hence, the objective is to select the linear combination of fuzzy variables to achieve maxi-
mum separation of fuzzy sample means 1Z%  and 2Z%  for C1 and C2, respectively. Let us con-
sider the fuzzy discriminant function as a linear combination of 1 2,  ,  , mX X X% % %K  i.e. 

 1 1 2 2 m mZ b X b X b X b X′= ⊗ ⊕ ⊕ + ⊕ ⊗ = ⊗% % % %% % % % %L , (8) 

where ‘ ⊕ ’and ‘ ⊗ ’ denote the extended sum and multiplication operator, respectively. 

 Suppose n1 and n2 numbers of fuzzy responses are sampled from the two groups say, 

111 12 1( , , , )nZ Z Z% % %L  and 
221 22 2( , , , ).nZ Z Z% % %L  Now the fuzzy discriminant axes for two groups 

are calculated as 
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 The pooled covariance matrix for all the groups is computed by  
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The deviations between two fuzzy vectors are calculated as follows: 
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Therefore, the estimated fuzzy discriminant function from eqn (8) is formulated as follows: 

 (1) (2) 1
p( )  .TZ X X S X−= −% %% %  (9) 

And the fuzzy threshold on the basis of which a fuzzy classification rule is set up is com-
puted  

 1 2
1

( ),
2

m Z Z= +% %%  where (1) (2) 1 (1)
1 pooled( )  TZ X X S X−= −% % %%  and (1) (2) 1 (2)

2 pooled( )  TZ X X S X−= −% % %% . 

Therefore, the fuzzy discriminant scores for two groups are obtained based on the fuzzy 
discriminant axes and the entities are categorized based on the defuzzified value of m% , de-
noted by d( m% ). Here, we actually have applied the centroid method for defuzzification. The 
obtained fuzzy scores are also defuzzifed to make a better comparison with d( m% ). Hence, a 
fuzzy classification rule can be formulated as follows: 

 IF ( 1X%  is 1x% ) & ( 2X%  is 2x% ) & … & ( mX%  is mx% ) THEN decision class is 

 1

2

if d( ) d( )

if d( ) d( )

G Z m

G Z m

 ≥


<

% %
% % . 

3.2. Backpropagation neural network framework 

The most commonly used ANN is the feedforward network trained using the backpropaga-
tion algorithm [12], which is adopted in the present study. The neural network model is de-
signed with the linguistic variables (first layer) where the linguistic values are defined in 
the second layer, called fuzzification layer. Then the third layer inputs defuzzified values 
that constitute a representative of fuzzy rule. 
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 Now the backpropagation algorithm can be described in three equations for classification. 
First, weight connections are changed in each learning step (k) with 

 [ ] [ ] [ 1] [ ]
( ) ( 1) .
s s s s

pj jij k ij kw x m wηδ −
−∆ = + ∆  (10) 

Second, for output nodes it holds that 

 [ ] / [ ]( ) ( )o s
pj j j j jd o f Iδ = −  (11) 

and third, for the remaining nodes it hold that  

 [ ] / [ ] [ 1] [ 1]( )s s s s
pj j j pj jk

k

f I wδ δ + += ∑  (12) 

where [ ]s
jx  is the actual output of node j in layer s; [ ]s

ijw , the weight of the connection be-
tween node i at layer (s – 1) and node j at layer (s); [ ]s

pjδ , the measure for the actual error of 
node j; ][s

jI , the weighted sum of the inputs of node j in layer s; η, the time-dependent 
learning rate; f( ), the transfer function; m, the momentum factor (between 0 and 1); and dj, 
oj are the desired and actual activity of node j (for output nodes only). Parameter values (i.e. 
the learning rate η, momentum factor m, and the number of hidden nodes hj) are selected 
experimentally. The input and output nodes are selected according to the linguistic vari-
ables and class of the objects to be classified. 

4. Example: Admission to management programme 

A practical example on admission to management programme in a business school has been 
considered here to employ the proposed methodology. There are several factors on the basis 
of which students are to be evaluated by the evaluators. Especially in management pro-
gramme, it becomes important to focus on some cognitive factors [13]. Perception, attitude 
reasoning and thinking, etc. are the cognitive factors. Here we are considering only three 
major factors: JMAT score, Work experience and Overall performance (communication 

FIG. 1. Backpropagation neural network topology. 
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skill and other abilities) of a candidate. In connection with experience, knowledge, percep-
tion, attitude, reasoning and thinking, the factors in fact lead to three fuzzy variables. The 
variables consider the experts’ fuzzy responses for evaluation of a candidate whether s/he 
will be either admitted or not admitted into the programme. Therefore, we have two groups: 
‘Admitted’ (G1) and ‘Not-admitted’ (G2) and three fuzzy variables: 1X% : JMAT score; 2X% : 
Work experience and 3X% : Overall performance. Also the fuzzy scales for the variables are 
defined on the domain [0, 100] according to expert. 

 Here, a data set of size 60 (see Appendix A1) has been surveyed during the admission of 
the management programme where the first 45 data are set as training data and the last 15 
are to be tested using fuzzy linear discriminant analysis and neural network. 
 

4.1. Results: fuzzy linear discriminant analysis (FLDA) 

Here the fuzzy means and variance–covariance are computed using eqns (1)–(5) for two 
classes. 

 (a) Class (C1): Admitted (A) 

  

1

2

3

(79.2,  25.1, 12.9)

(73.6, 33.3, 22.2)

(61.1, 33.3, 27.8)

LR

LR

LR

X

X

X

=

=

=

%
%
%

 and 

244.42 81.01 40.53

81.01 305.88 28.61

40.53 28.61 415.21
AS

− 
 = − − 
 − 

 

(b) Class (C2): Not-Admitted (NA) 

 
1

2

3

(41.7,  23.9,  25)

(57.1, 30.2,  25.4)

(41.3,  32.2,  33.3)

LR

LR

LR

X

X

X

=

=

=

%
%
%

 and 

364.42 245.41 19.4

245.41 691.64 43.2

19.4 43.2 353.39
NAS

− 
 = − − 
 − 

. 

 Therefore, the pooled estimated covariance matrix is computed by ( )1
2p A NAS S S= + . 

Hence, the linear fuzzy discriminant function using eqn (9) is obtained as 

 1 2 3(0.17,  0.26,  0.20) (0.53,  0.8,  0.61) (0.04,  0.17,  0.15)LR LR LRZ X X X= ⊗ ⊕ ⊗ ⊕ ⊗% % % % (10) 

 
FIG. 2. Linguistic scale for 1.X%  FIG. 3. Linguistic scale for 2X%  and 3.X%  
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Table II
Classification using FLDA for 15 testing samples 
(Appendix)

Sample  Class
 

46 (28.69, 107.48, 63.49)LR Admitted 
 (23.08, 121.89, 35.827)  Admitted

48 LR  
49 (20.17, 23.42, 53.49)  Not Admitted 

 (18.83, 17.74, 48.476)  Not Admitted 
 (24.42, 100.98, 58.49)  Admitted

52 LR  
53 (21.75, 61.54, 47.20)LR Admitted 

 (23.08, 68.53, 53.53)  Admitted
**55 LR -Admitted 
**56 4.42, 127.57, 40.84)LR Admitted  

 (28.67, 134.07, 45.84)  Admitted 
58 LR -Admitted
59 LR -Admitted
60 (21.75, 17.25, 47.14)LR Not-Admitted 

 Therefore, the fuzzy threshold is automatically computed by the methodology as 
( )47, 39.6, 25.7

LR
m =% . After building the fuzzy discriminant function based on the training 
fuzzy data set, the training samples are tested in the following. In doing so, the fuzzy dis-
criminant scores and threshold value are defuzzified using MATLAB 7.0 to classify the ob-
jects either in ‘Admitted’ class or in ‘Not-Admitted’ class. Now the tested results are given 
in Table II: 

 It can be observed from the above table that only three samples (marked by ‘*’) have 
been misclassified.  

4.2. Results: neural network approach 

The network is initially trained with 45 samples where the error history is depicted in Fig. 
4. Here, we have considered four nodes in the hidden layer with η = 0.90 and m = 0.75. 

 
FIG. 4. History of error on training data. 
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Table III 
Classification by backpropagation neural network for the testing data  

 
 The neural network approach to fuzzy variables (Table III) leads to five samples (from 53 
to 57) to be misclassified (marked by √) by means of comparing the predicted values with 
the actual values. 

5. Conclusions 
The results in Tables II and III obtained by the proposed FLDA and neural network depict 
almost the same classification except sample nos 53 and 54. Though sample 53 is correctly 
classified by neural network, sample no. 54 is not. The reverse case can be investigated in 
the case of FLDA. But it is recommendable here that both the methods are able to detect the 
misclassified entities. In FLDA, the fuzzy threshold is automatically computed on the basis 
of training linguistic data. The computational complexities of neural network are relatively 
higher than FLDA while using the continuous fuzzy numbers. Rather the proposed tool is a 
simplistic approach to obtain similar classification results in comparison with backpropaga-
tion neural network. This method directly deals with the fuzzy numbers and enhances the 
fuzzy scores, those of which can also be compared with fuzzy threshold by approximate 
reasoning [13]. This method can also be applicable in designing a fuzzy decision-making 
interface for understanding group membership based on fuzzy perception. 
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Appendix A1 
Fuzzy data set of size 60 (Training data: 1–15 and Test data: 46–60) 

ID Class JMAT Work Overall 
   score experience performance 
 

 1 Admitted G G E 
 2 Admitted VG E M 
 3 Admitted G E G 
 4 Admitted E G M 
 5 Admitted V G G 
 6 Admitted E G G 
 7 Admitted VG G M 
 8 Not-Admitted G M G 
 9 Not-Admitted S E G 
10 Not-Admitted VG G M 
11 Not-Admitted VG M G 
12 Not-Admitted S E G 
13 Not-Admitted G E M 
14 Not-Admitted S E M 
15 Not-Admitted G G M 
16 Admitted G E M 
17 Not-Admitted G M M 
18 Admitted VG G G 
19 Admitted E M G 
20 Admitted E G M 
21 Not-Admitted S E G 
22 Not-Admitted S G M 
23 Admitted VG G M 
24 Admitted VG G G 
25 Admitted VG E M 
26 Not-Admitted G M P 
27 Not-Admitted G P G 
28 Admitted G E G 
29 Not-Admitted S G P 
30 Admitted VG M G 
 

 ‘E’ = Excellent; ‘VG’ = Very Good; ‘G’ = Good; ‘S’ = Satisfactory; ‘M’ = Medium; ‘P’ = Poor; ‘B’ = Bad. 

ID Class JMAT Work Overall 
  score experience performance 
 

31 Admitted E E E 
32 Admitted VG G M 
33 Admitted E G E 
34 Admitted VG M G 
35 Admitted VG E E 
36 Not-Admitted S G M 
37 Not-Admitted G VG M 
38 Not-Admitted S M M 
39 Not-Admitted B G M 
40 Not-Admitted VG M M 
41 Not-Admitted G P G 
42 Not-Admitted S M M 
43 Admitted E G G 
44 Admitted E G E 
45 Admitted VG E G 
46 Admitted VG G E 
47 Admitted G E M 
48 Admitted VG G G 
49 Not-Admitted S P G 
50 Not-Admitted G P M 
51 Admitted VG G G 
52 Admitted G E M 
53 Admitted G M P 
54 Admitted G M M 
55 Admitted S P P 
56 Not-Admitted G E E 
57 Not-Admitted VG E G 
58 Not-Admitted S P M 
59 Not-Admitted B M P 
60 Not-Admitted G P P 
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Appendix A2 
Defuzzification using Matlab 7.0  

ID Class JMAT Work Overall 
   score experience performance 
 

 1 Admitted 50 64.97 94.97 
 2 Admitted 75 94.97 34.97 
 3 Admitted 50 94.97 64.97 
 4 Admitted 100 64.97 34.97 
 5 Admitted 75 64.97 64.97 
 6 Admitted 100 64.97 64.97 
 7 Admitted 75 64.97 34.97 
 8 Not-Admitted 50 34.97 64.97 
 9 Not-Admitted 25 94.97 64.97 
10 Not-Admitted 75 64.97 34.97 
11 Not-Admitted 75 34.97 64.97 
12 Not-Admitted 25 94.97 64.97 
13 Not-Admitted 50 94.97 34.97 
14 Not-Admitted 25 94.97 34.97 
15 Not-Admitted 50 64.97 34.97 
16 Admitted 50 94.97 34.97 
17 Not-Admitted 50 34.97 34.97 
18 Admitted 75 64.97 64.97 
19 Admitted 100 34.97 64.97 
20 Admitted 100 64.97 34.97 
21 Not-Admitted 25 94.97 64.97 
22 Not-Admitted 25 64.97 34.97 
23 Admitted 75 64.97 34.97 
24 Admitted 75 64.97 64.97 
25 Admitted 75 94.97 34.97 
26 Not-Admitted 50 34.97 11.03 
27 Not-Admitted 50 11.03 64.97 
28 Admitted 50 94.97 64.97 
29 Not-Admitted 25 64.97 11.03 
30 Admitted 75 34.97 64.97 
 

 
 
 
 
 
 

ID Class JMAT Work Overall 
  score experience performance 
 

31 Admitted 100 94.97 94.97 
32 Admitted 75 64.97 34.97 
33 Admitted 100 64.97 94.97 
34 Admitted 75 34.97 64.97 
35 Admitted 75 94.97 94.97 
36 Not-Admitted 25 64.97 34.97 
37 Not-Admitted 50 64.97 34.97 
38 Not-Admitted 25 34.97 34.97 
39 Not-Admitted 8 64.97 34.97 
40 Not-Admitted 75 34.97 34.97 
41 Not-Admitted 50 11.03 64.97 
42 Not-Admitted 25 34.97 34.97 
43 Admitted 100 64.97 64.97 
44 Admitted 100 64.97 94.97 
45 Admitted 75 94.97 64.97 
46 Admitted 75 64.97 94.97 
47 Admitted 50 94.97 34.97 
48 Admitted 75 64.97 64.97 
49 Not-Admitted 25 11.03 64.97 
50 Not-Admitted 50 11.03 34.97 
51 Admitted 75 64.97 64.97 
52 Admitted 50 94.97 34.97 
53 Admitted 50 34.97 11.03 
54 Admitted 50 34.97 34.97 
55 Admitted 25 11.03 11.03 
56 Not-Admitted 50 94.97 94.97 
57 Not-Admitted 75 94.97 64.97 
58 Not-Admitted 25 11.03 34.97 
59 Not-Admitted 8 34.97 11.03 
60 Not-Admitted 50 11.03 11.03 

 


