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Abstract 
 
In this paper, the conditions that guarantee the uniqueness of limit cycles in a generalized Liénard system have 
been studied. These conditions are different from the previous results. Several examples are given to show the 
applicability of theorems. 
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1. Introduction 

Limit cycles of plane autonomous differential systems appeared in a very famous paper of 
Poincaré (1881). Later, in the 1930s, van der Pol and Andronov showed that the closed orbit in 
the phase plane of a self-sustained oscillation occurring in a vacuum tube circuit was a limit 
cycle as considered by Poincaré. After that, the existence, nonexistence, uniqueness and 
other properties of limit cycles have been studied extensively by mathematicians and scien-
tists (see, for example, Arrowsmith and Place [1], Ye et al. [2] and Perko [3]). 

 The van der Pol equation 

 
2

2
2

( 1) 0, ( 0)
d x dx

x x
dtdt

ε ε+ − + = >  (1) 

can be extended to the Liénard equation 

 
2

2
( ) ( ) 0.

d x dx
f x g x

dtdt
+ + =  (2) 

Let 
0 0

( ) ( ) , ( ) ( ) .
x x

G x g u du F x f u du= =∫ ∫  This Liénard transformation shows that eqn (2) is 

equivalent to the following system of equations: 

  ( ), ( )
dx dy

y F x g x
dt dt

= − = − , (3) 

or 
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 ( ), ( ),
dx dy

y F x g x
dt dt

= − − =  (4) 

(see, for example, Arrowsmith and Place [1], or Ye, et al. [2]). 

 The limit cycles for Liénard equation (2) or Liénard systems (3) and (4) were studied by 
many authors; for example, Ye, et al. [2] and Zhang [4]. It is easy to see that systems (3) 
and (4) can be generalized to the following Liénard-type differential systems: 

 ( ) ( ), ( )
dx dy

h y F x g x
dt dt

= − = −  (5) 

and 

 ( ) ( ), ( ),
dx dy

h y F x g x
dt dt

= − − =  (6) 

respectively. 

 Systems (5) and (6) are not equivalent to each other if ( )h y is not odd. The conditions 
for the uniqueness of limit cycles for system (6) was first obtained by Zhang [4], and then 
improved by Cherkas and Zhilevich [5]. As to system (5), the uniqueness conditions for 
limit cycles was proposed by Huang and Sun [6]. Recently, Zhou et al. [7] also reported 
some uniqueness theorems for system (5), which smoothed some conditions of Zhang’s 
theorem. Actually, some of their results are equivalent to those of Huang and Sun [6]. 

 Zhang’s theorem has been widely employed in autonomous quadratic differential systems 
and ecological systems (see, for example, Ye, et al. [2], Chen and Sun [8], Huang and 
Merrill [9], Kuang and Freedman [10], Liu and Xiong [11], Liu and Zhao [12]), Xia and 
Tian [13], Xu and Dong [14], Xu and Fong [15], Dou and Huang [16], and Li [17]. How-
ever, conditions of Zhang’s theorem are not always satisfied, so looking for an alternate ap-
proach is necessary.  

 The basic idea of Huang and Sun [6] is based on the fact that the integral of a total dif-
ferential of a single variable differentiable function along with a closed orbit is zero. If one 
can find a function whose integrals along with two closed orbits around (0, 0) are different, 
a contradiction is obtained. In this paper, we apply the same technique as in Huang and Sun 
[6] to system (6), and prove some new conditions that guarantee the uniqueness of limit cy-
cles for the generalized Liénard system (6). The results are different from those of Zhang 

[4] and Cherkas and Zhilevich [5]. For example, 
'( )

0
( )

d F x

dx g x

 
≥ 

 
 is no longer needed. The 

conditions obtained in this paper are simpler than those in Huang and Sun [6]. 

 Since systems (5) and (6) are being used widely in chemical reaction, ecological, and 
physical oscillation systems, this work is useful in these fields as well. Our main theorem 
and its proof is in Section 2, and some examples are given in Section 3 to show the applica-
bility of our results. 

 Before we end this introduction we would like to emphasize the concept of limit cycles. 
The topic of limit cycles is always attractive in mathematics since it first appeared in the 
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1880s. At the beginning of the 20th century, David Hilbert, at the Second International 
Congress of Mathematicians, Paris 1900, made the famous speech called: ‘Mathematical 
Problems’. One of his 23 problems, the 16th, is on limit cycles finding the maximum 
number of limit cycles of the differential equations: 

  
( ,  )

( ,  ),

n

n

dx
X x y

dt
dy

Y x y
dt

=

=
 

where, xn(x, y) and yn(x, y) are polynomials whose degrees are not greater than n. 

 Usually, the study of limit cycles includes two aspects: one is the existence, stability and 
instability, number and relative positions of limit cycles, and the other is the creating and 
disappearing of limit cycles along with the varying of the parameters in the system (e.g. bi-
furcation). For the exact number of limit cycles and their relative positions, the known re-
sults are not many because determining the number and positions of limit cycles is not easy. 
That is the reason why the 16th Hilbert problem still remains open even for the case when 
n = 2 after 100 years, although some important progress has been made recently [18–21]. 
Therefore, any new results regarding the number of limit cycles including the uniqueness of 
limit cycles is encouraged in the literature.  

2. Main theorems 

In our discussion, we assume that all the functions in (6) are continuous and satisfy 
Lipschitz conditions for the uniqueness of solutions for x < +∞  and y < +∞ . We also as-
sume that  

(A1) h(0) = 0, h(y) is increasing, |h( ± ∞)| = + ∞; xg(x) > 0, when x ≠ 0; and there exist 
a < 0 < b, N sufficiently large, such that xF(x) < 0 on x ∈ (a, b), x ≠ 0 and xF(x) > 0, 
F(x) is increasing on x ∈ (–N, a) and x ∈ (b, N). 

(A2) lim supx → ± ∞ (G(x) + sgnx) = +∞. 

(A3) a) F(x) is bounded below for x > 0 if lim supx → + ∞ F(x) < + ∞; 

  b) F(x) is bounded above for x < 0 if lim supx → – ∞ F(x) < – ∞. 

 Note that conditions (A2) and(A3) are needed for the existence of the limit cycles of (6) 
surrounding the only equilibrium point O(0, 0), which is unstable (see Huang and Sun [6], 
Ye, et al. [2]). We now divide the xy-plane into the following zones: 

 

1:{( , ) 0, ( ) ( ) 0}

2 :{( , ) 0, ( ) ( ) 0}

3:{( , ) 0, ( ) ( ) 0}

4 :{( , ) 0, ( ) ( ) 0}.

Zone x y x h y F x

Zone x y x h y F x

Zone x y x h y F x

Zone x y x h y F x

> − − <

< − − <

< − − >

> − − >

 

 The directions of the trajectories of system (6) in these zones are shown in Fig. 1. 
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 Denote λ = G(x) + H(y), where 
0

( ) ( )
y

H y h u du= ∫ . We first prove the following lemma: 

Lemma 1. Suppose R and S are distinct points lying in the vertical strip ,a x b≤ ≤  such that 
S is on the forward trajectory through R, and that the portion of this trajectory from R to S 
lies wholly within the same vertical strip. Then λ(R) < λ(S). 

Proof. If ( ( ), ( )),x t y t r t s≤ ≤  is the trajectory from R to S, then 

( ) ( )

( ( )) ( ( ))

0

s

r

s

r

s

r

d
S R dt

dt

dx dy
dt

x dt y dt

g x t F x t dt

λ
λ λ

λ λ

− =

 ∂ ∂
= + ∂ ∂ 

= −

>

∫

∫

∫

 

since the integrand is positive except possibly at the endpoints and one interior point of the 
interval [r, s]. 

 The main theorem is as follows: 

Theorem 1. If in addition to (A1), (A2) and (A3), one of the following conditions is satis-
fied: 
(i) G(b) = G(a); 

(ii) G(b) > G(a) and there exist x′ ∈ (a, 0), y′ < 0 such that 
 h(y′) ≥ – F(x′), H(y′) ≥ G(b); 

(iii) G(b) < G(a) and there exist x″ ∈ (a, 0), y″ > 0 such that 
 h(y″) ≤ – F(x″), H(y″) ≥ G(a); 
(iv) there exist x′ ∈ (a, 0), y′ < 0 such that 

  ( ') ( '), ( ') ( );h y F x H y G b≥ − ≥  and '' (0, ), '' 0x b y∈ >  such that 

  ( '') ( ''), ( '') ( );h y F x H y G a≤ − ≥  

then system (6) has a unique limit cycle. 

FIG. 1. The direction of the vector field of system (6). 
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Proof: Let min{ : ( , ) }, max{ : ( , ) }l rx x x y x x x y= ∈ Γ = ∈ Γ , for Γ a limit cycle of (6). By 
the phase portrait analysis, it follows that xl is the x-coordinate of the left intersection of Γ 
with the isocline ( ) ( ) 0h y F X− − = , while the xr, the coordinate of the right intersection. 

 We first show that  

Claim A. 

 ,l rx a b x< < <  (7) 

that is, all the limit cycles contain the line segment [a, b] on x-axis. 

 If not, assume that 

Case 1. .l ra x x b≤ < ≤  

Differentiating λ along Γ results in 

 dλ = G′(dx) + h(y)dy = – F(x)dy, (8) 

which is non-negative since ( ) 0, 0 (  decreases) on ( ,0)F x dy y x a− < < ∈ , and ( ) 0,F x− >  
0 (  increases)dy y> on (0, ).x b∈  Here the equality is valid only on x = 0, or a, or b. We 

thus have 

 0.dΓ >∫Ñ λ  

But this is impossible because Γ is a closed curve and 0dλ
Γ

=∫Ñ  by Green’s formula. 

Case 2. .l rx a x b< < ≤  

In that case Γ must cross the positive x-axis, at, say, ( ,0), (0 )p pP x x b< ≤ , and the line 
x = a, at two points: say, 

1 2 2 11 2( , ) and ( , ), where .p p p pP a y P a y y y<  It is clear that 

2 1
0P Py y< < , and then 

22 ( , ),pP a y is below the x-axis (see Fig. 2). Denote the curve of the 
trajectory from points P2 to P as ΓP2P. It is easy to see that ΓP2P is also below the x-axis. By 
Lemma 1, it follows that 

 λ(P) > λ(P2) 

or 

 G(a) + H(yp2) < G(xp) ≤ G(b). (9) 

Since the fact that
2

( ) 0,pH y >  (9) is impossible under the conditions (i) or (iii). 

 Case 2 is invalid also under the conditions (ii) or (iv). Let 1
−Γ  be the trajectory of (6) 

passing through the point B(b, 0) if xp < b, and 1
+Γ  passing through the point C1(x′, y′), 

where y′ is as in (ii) or (iv) (see Fig. 2). When t decreases, 1
−Γ crosses the negative y-axis 

at ''(0, ).BB y  (It is left to the reader to show that point 'B  actually exists.). 

 Now it follows that on the curve ¼,BB′  ( ) 0, 0F x dy− > < (y decreases from points B to 

B′), ¼ 0d
BB

λ <
′

. 
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 That is 

 λ(B′) < λ(B), 

then 

 ( ) ( ).BH y G b′ <  (10) 

Moreover, when t increases, 1
+Γ crosses the negative y-axis at 

1

'
1(0, ).CC y ′  Since y is 

decreasing on x < 0, 
1

.Cy y′ ′<  From (ii) or (iv), and (10), 

 
1

( ) ( ) ( ) ( )C BH y H y G b H y′ ′′> ≥ >  

which implies that (because both '
1 and 'C B  are below the x-axis) 

  .
lC By y′ ′<  

But this is clearly impossible by the Jordan curve theorem applied to Γ and the obvious po-
sitions of C1 and B relative to Γ (including the case B ∈ T). 

Case 3. l ra x b x≤ < < . 

The proof of Case 3 is completely analogous to Case 2. 

 We are now in a position to prove the limit cycle is unique. If it is not, suppose there are 
two limit cycles: Γ and Γ′, with int( ')Γ ⊂ Γ (see Fig. 3). 

 Let us compute the integrals λd∫ Γ  and λd∫ Γ ' . As shown in Fig. 3, 

 » » ¼ »EF FG GH HEΓ = ∪ ∪ ∪  
and 

 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼' " " " ' ' ' ' " " " " ' ' ' ' "E F F F F G G G G H H H H E E EΓ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ . 

Since int( ')Γ ⊂ Γ , for the same y, let 1 2( , ) , ( , ) ',x y x y∈ Γ ∈ Γ  we have 

 |x1| < |x2|. (11) 

 
 

FIG. 2. It is impossible that xr ≤ b. 

 
FIG. 3. 

'
d dλ λ

Γ Γ
>∫ ∫Ñ Ñ  cannot be true. 
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By the fact that ( ) 0, 0F x dy> < , and –F(x) is decreasing on ),,( aNx −∈  and (2), 

  ¼ ¼ » »" " " "
( ) ( ) .

E F E F EF EF
d F x dy F x dy dλ λ= − > − =∫ ∫ ∫ ∫  (12) 

Similarly, 

  ¼ ¼" "
.

G H GH
d dλ λ>∫ ∫  (13) 

Also, since (a) g(x)F(x) < 0 on 0 and ( , )x x a b≠ ∈ , (b) on the trajectory curves: 
'

' '  and ,H E HEΓ Γ  we have 0, ( ) ( ) 0,dx h y F x< − − <  and (c) the fact that h(y) is increasing 
and for the same x, the y coordinate in '

' 'H EΓ  is bigger than the one in ΓHE. 

 ¼ ¼' ' ' '

( ) ( )

( ) ( )H E H E

F x g x
d dx

h y F x
λ

−
=

− −∫ ∫  

  »
( ) ( )

( ) ( )HE

F x g x
dx

h y F x

−
>

− −∫  (14) 

 » .
HE

dλ= ∫  

Similarly, we can prove  

 ¼ »' '
.

F G FG
d dλ λ>∫ ∫  (15) 

Considering the fact that integrals of dλ along with ¼ ¼ ¼' '', '' ', ' "E E F F G G , and ¼' "H H  are 
all positive, we have 

 
'

.d dλ λ
Γ Γ

>∫ ∫  (16) 

This is impossible because both λd∫Γ '
 and λd∫Γ

 are zero. This proves that there is at 

most one limit cycle in system (6) if one of the conditions of Theorem 1 is satisfied. By the 
fact that (0, 0) is an unstable equilibrium, the limit cycle is stable if it exists. The proof of 
Theorem 1 is complete. W  

 When h(y) = y system (6) is reduced to the Liénard system (3) or (4). The above results 
can be summarized as  
 
Theorem 2. If, in addition to the existence conditions (A2) and (A3),  
 
(H1) ( ) 0, ( 0)xg x x> ≠ ; and there exist a < 0 < b, N sufficiently large, such that xF(x) < 0 

for ( , ), 0x a b x∈ ≠ , and ( ) 0, ( )xF x F x<  is increasing for ( , )x N a∈ −  and 
( , );x b N∈  

(H2) one of the following holds 
  1) G(b) = G(a), 
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  2) G(b) > G(a) and there exists x′ ∈ (a, 0) such that 

   ( ') 2 ( ),F x G b≥  

  3) G(b) < G(a) and there exists x″ ∈ (0, b) such that  

   
( '') 2 ( ),F x G a≤ −  

  4) there exists ( , 0)x a′∈  and (0, )x b′′∈ such that ( ) 2 ( )F x G b′ ≥  and ( )F x′′ ≤  

2 ( );G a−  

then the Liénard system (3) or (4) has a unique limit cycle. 

3. Examples 

Let us use some examples to show the applicability of our results.  

Example 1. Consider the system 

  
( )

2

dx
y F x

dt
dy

x
dt

= − −

=
 (17) 

where 

 
2

4

( 1) if 0
( )

( 1) if 0.

x x x
F x

x x x

 − ≥= 
+ <

 

It is not difficult to see that the conditions (H1), (H2 – 1) (a = –1, b = 1) in Theorem 2 are 
satisfied, and hence there is a unique limit cycle in (20). 

 However, 

 3 2'( ) 5
2 ,

( ) 2

F x
x x

g x
= +  if x < 0. (18) 

Therefore, 
'( )

( )

F x

g x
is decreasing on 

5
0

8
x− < < , and hence Zhang’s theorem [4] and Cherkas 

and Zhilevich’s theorem [5] are not applicable in system (17). 

Example 2. 

 

2

2

4

3 1
( 1)

31

2
.

1

dx y
x x x

dy y

dy x

dt x

 = − − + − +  

=
+

 (19) 

System (19) has a unique limit cycle because the condition (ii) of Theorem 1 (with 
1 1
3 4

, ' , ' 1)a x b y= − = − = =  is satisfied. But  
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  ( ) ,
2

G
π

±∞ = < +∞  

and hence Zhang’s theorem [4], and Cherkas and Zhilevich’s theorem [5] cannot be em-
ployed here either. 

Example 3. 

 
3

1
( 1)( 1)

5

.

dx
y x x x

dt
dy

x
dt

= − − − +

=
 (20) 

System (20) has a unique limit cycle since the assumptions (A1), (A2), (A3) and (i) in Theo-

rem 1 are satisfied. However, the condition 
'( )

0
( )

d F x

dx g x

 
≥ 

 
 fails on ( ,0)x ∈ −∞  and 

(0, ),x ∈ +∞  and thus we cannot use Zhang’s theorem in proving the uniqueness of limit  

cycle of system (20). 

 Regarding the existence conditions of limit cycles of systems (3) and (4), there are more 
results in the monograph of Chen and Chen [8]. 

4. Conclusions and discussion 

Looking for the number of limit cycles for polynomial differential systems has been consid-
ered an outstanding problem in ordinary differential equation since the Hilbert 23 problems 
in 1900 (see Ye, et al. [2]). And, in mathematical modeling of ecological systems, after the 
papers of May [22], and Albrecht et al. [23], determining the conditions that guarantee the 
uniqueness of limit cycles in predator-prey and related systems becomes a primary problem. 
Over the last century, the uniqueness of limit cycles in quadratic and ecological systems has 
been investigated very thoroughly (see, for example, [2–16, 22, 23]). Most of the results re-
garding this topic are based on the uniqueness of limit cycles for Liénard-type systems, 
which was first obtained by Zhang in her PhD dissertation in Russian in 1958 and then in 
an English paper in 1986 (Zhang [4]). The basic idea of Zhang is the comparison of inte-
grals of the divergences. Since in the applications, conditions of Zhang’s theorem are not 
always satisfied, so looking for an alternate approach is necessary. 

 As mentioned in Section 1, Liénard equation (2) can be written as Liénard systems (3) 
and (4), and can be generalized to Liénard-type systems (5) and (6). Systems (3) and (4) are 
equivalent but systems (5) and (6) are not since h(y) may not be an odd function. Huang and 
Sun [6] proposed some uniqueness conditions for system (5). In this paper, we applied the 
same technique as the one for system (5) in Huang and Sun [6] to system (6). We obtained 
some new conditions that guarantee the uniqueness of limit cycles for the generalized Lié-
nard system (6). The results in this paper are for a different generalized Liénard system as 
studied in Huang and Sun [6], and are different from those of Zhang [4] and Cherkas and 
Zhilevich [5]. 

 Oscillation phenomena in chemical reaction, ecological, and physical systems, etc. is 
very complicated, and all the existing theorems for the uniqueness of limit cycles have their 
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limitations. Therefore, finding new criteria or new methods in this direction is always use-
ful in both theory and applications. 
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