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Abstract | In this paper we present an approach to build a prototype 
model of a first-responder localization system intended for disaster relief 
operations. This system is useful to monitor and track the positions of the 
first-responders in an indoor environment, where GPS is not available. 
Each member of the first responder team is equipped with two zero-veloc-
ity-update-aided inertial navigation systems, one on each foot, a camera 
mounted on a helmet, and a processing platform strapped around the 
waist of the first responder, which fuses the data from the different sensors. 
The fusion algorithm runs real-time on the processing platform. The video 
is also processed using the DSP core of the computing machine. The 
processed data consisting of position, velocity, heading information along 
with video streams is transmitted to the command and control system via 
a local infrastructure WiFi network. A centralized cooperative localization 
algorithm, utilizing the information from Ultra Wideband based inter-agent 
ranging devices combined with the position estimates and uncertainties 
of each first responder, has also been implemented.
Keywords: Personal Navigation System, Inertial Measurement Unit, Kalman Filter, Indoor Navigation, 
Cooperative Localization.

1 Introduction
There has been an increasing demand for a robust 
and accurate positioning system that works in 
indoor and outdoor environments. GPS provides 
a whole range of navigation accuracies at very low 
cost and low power consumption. The devices that 
use GPS are portable and are well suited for inte-
gration with other sensors, communication links, 
and databases. The need for alternative position-
ing system arises because GPS does not work in 
all environments, especially indoor environments. 
This is a major problem in certain situations, such 
as military and disaster relief operations, where 
one has to track the first responders who arrive 
at the scene to carry out their mission. Over the 
past several years, the need for tracking systems 
in indoor environments has seen a sharp rise. In 
India, over 100,000 deaths occur annually due to 
fires in homes and workplaces and an estimated 

6,000 fires occur in homes in Sweden. In Sweden, 
the preliminary figures for 2012 indicate that about 
110 people died in fire accidents, and a vast major-
ity, about 90 people, died in residential fires. The 
number of fatalities has not changed significantly 
over the past 20 years despite smoke alarms, fire 
extinguishers and large efforts regarding informa-
tion campaigns.

The methodology used in fire-fighting opera-
tions varies between countries. Using Sweden as 
an example, a fire-fighting team responding to an 
alarm typically consists of two smoke-divers, one 
smoke-diving supervisor, one fire-fighter respon-
sible for supplying water and a sector chief (who 
assumes the role of an Incident Commander, if 
only one team is assigned to the task). At larger 
apartment fires, or those occurring in public 
buildings (e.g. restaurants, shops or schools), two 
or more of these five-man teams are called in from 
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different fire stations. Smoke diving operations are 
performed with fire-fighters working in pairs with 
short distances between them and whilst always 
carrying the water hose. These operations are per-
formed in situations whenever lives are in danger. 
The water hose is the most important safety fea-
ture; it is used as a self-protection measure against 
nearby fires and it also serves as the evacuation 
route guide for the fire-fighters if they need to 
extract rapidly. A smoke-diving supervisor will 
position himself just outside the danger area, with 
the main tasks of keeping track, via radio, of the 
positions and activities of the smoke-diving team, 
judging the current threat level (including the risk 
of fire gas explosions) and deciding upon the tasks 
to be executed by the smoke-diving team. The 
smoke-diving supervisor is equipped with breath-
ing apparatus and carries his own water hose, 
enabling him to aid or rescue the smoke-divers 
if needed. One supervisor can be responsible for 
multiple smoke-diving teams operating within the 
same area, and additional smoke-diving teams can 
be assigned to protect the escape routes of the first 
team and be ready to assist them when needed.

Fire-fighters that enter buildings, which are 
on fire, experience very difficult conditions. The 
heat generated by the fire in combination with the 
weight of the personal protection equipment and 
water hose may cause exhaustion. Combined with 
high stress levels in smoke-filled or dark environ-
ments (which can be expected during power out-
ages caused by the fire) there is an apparent risk 
for disorientation. Hence, there is a significant risk 
that the smoke-divers, due to disorientation expe-
rienced during strenuous operations, are unable to 
correctly describe their movements to their super-
visor, or that the smoke-diving pair gets separated 
from each other and the water hose. An accurate 
positioning system could enable an alarm func-
tionality which could prevent these life-threaten-
ing situations where fire-fighters get lost.

Depending on the role, fire-fighters have dif-
ferent information requirements and the main 
identified user needs (system functionalities) are 
presented in Table 1. For the smoke-divers, any 
localization system will primarily increase their 
safety; however, for the sector chief, the technol-
ogy provides a means to rapidly comprehend what 
the situation is like and how to deploy resources, 
especially in large incidents with multiple fire sta-
tions deployed at the scene. Automatic mapping 
capability is an important complement to the 
localization technology, since fire-fighters are not 
expected to have access to building floor-plans.1 
While law enforcement officers, fire-fighters, and 
military personnel have varying requirements for 
localization and tracking systems, all three groups 
share certain key requirements, as summarized in 
Table 2.

In addition, other applications like location of 
elderly in care-centers, localization of customers 
in a shopping mall for targeted advertising and of 
employees in an organization are some scenarios 
where indoor positioning is required and has seen 
increasing demand.

1.1 Existing technologies
There are several technologies which are being 
used for indoor positioning. Some of them are 
based on WiFi or Ultra-WideBand (UWB).2 These 
technologies assume an infrastructure like a WiFi 
network or a UWB network being available in the 
area of interest. The accuracies provided by these 
technologies range from a few cms to a few metres.2 
However, in the case of harsh environments like 
a disaster-affected building, such assumptions of 
infrastructure cannot be made. Therefore, there 
is a need for developing autonomous positioning 
systems.

The main challenge in developing an infra-
structure-free positioning solution is to create 
a technology that is sufficiently accurate in GPS 

Table 1: Information requirements and user needs for fire-fighters.

Role and task Identified user need and action

Smoke-diving: Search area for persons and suppress  
fire.

Alarm when separation between smoke-divers and/or  
when distance to water hose too large. Provide navigation  
guidance to colleague.

Supervisor: Keep track of smoke-divers and fire gases  
and other risks, assist if needed.

Situation Awareness. To know the positions of all team  
members and provide directions to find fire-fighters in  
distress.

Sector chief: Strategic decisions on how to perform  
mission (within specified sector). Enable rapid and  
efficient replacements of personnel (primarily indoors).  
Coordination, between sectors and with incident  
commander.

Situation Awareness. Positions of fire-fighters, indoors  
and outdoors, and other available information on dangerous  
goods, escape routes, fire information, maps etc. to provide  
a means for those in-charge, to understand the situation.
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denied environments. Since Inertial Navigation 
System (INS) technology is capable of working in 
almost all environments where GPS has difficulties, 
Microelectromechanical systems (MEMS) inertial 
technology is seen as both a possible complement 
of GPS technology and a potential alternative 
to GPS. For example, INSs can provide position 
information whenever GPS signals are unavail-
able (in tunnels, indoors, underground facilities), 
ensuring a possible seamless provision of position 
information. However, a foot-mounted INS, with 
low-quality inertial sensors, will not work if it is 
not fused with other information when the subject 
is on a moving platform such as a train or vehicle. 
Fortunately, both systems can provide informa-
tion, which can be fused in an optimal manner to 
obtain good accuracies in the position estimates.

This chapter presents a brief overview of the 
collaborative work carried out at the Indian Insti-
tute of Science, Bangalore and KTH Royal Insti-
tute of Technology, Stockholm, as part of the 
Indo-Swedish activity, which is jointly funded by 
the Department of Science and Technology, Gov-
ernment of India and VINNOVA, Sweden.

2  Foot-Mounted Inertial Navigation 
System

In Fig. 1, a block diagram of a strap-down INS is 
shown. The INS comprises the following two dis-
tinct parts, the Inertial Measurement Unit (IMU) 
and the computational unit. The former provides 
information on the accelerations and angular 
velocities of the navigation platform relative to 
the inertial coordinate frame of reference. The 
angular rotation rates observed by the gyroscopes 
are used to track the relation between naviga-
tion platform co-ordinate system and the naviga-
tion coordinate frame. This information is then 
used to transform the specific force observed in 

navigation platform coordinates into the naviga-
tion frame, where the gravity force is subtracted 
from the observed specific force. The accelerations 
in the navigation coordinates are integrated twice, 
with respect to time, to obtain the position of the 
navigation platform.

The navigation calculations in INS involve 
integration with time, which provide a low-pass 
filter characteristic that suppresses high-frequency 
sensor errors but amplifies low-frequency sen-
sor errors and initialization errors. This results 
in a position error that grows without bound as 
a function of the operation time and where the 
error growth depends on the error characteris-
tics of the sensors and the initialization error. In 
general, it holds that for a low-cost INS, a bias in 
the accelerometer measurements causes position 
error growth that is proportional to the square of 
the operation time, and a bias in the gyroscopes 
causes position error growth that is proportional 
to the cube of the operation time (due to an extra 
integration to obtain the relative angle between 
the navigation frame and body frame). The det-
rimental effect of gyroscope errors on the navi-
gation solution is due to the direct reflections of 
the errors on the estimated attitude. The attitude 

Table 2: First responder key requirements.

 1. Horizontal plane location accuracy: <1 [m].
 2. Vertical plane location accuracy: <2 [m].
 3. Constant accessibility for those who need the positioning data.
 4. Physical robustness for operation under harsh conditions.
 5. Encrypted voice communications and data transfer.
 6.  Integrity monitoring, with automatic estimation of localization errors (uncertainty) combined with detection 

and warning in case of electronic attack.
 7. Data format compatible to and integrated with other information, in particular personal health status.
 8. Real-time map-building capability.
 9. Lean design for integration into individual’s uniform.
10. Weight: <1 [kg].
11. Battery power: >24 [hours].
12. Visualization: intuitive and easy to understand.
13. A modular system.
14. No pre-installation.
15.  In any armed operation, the visualization system should present heading to own units and in particular the 

heading of the weapon. Data for distance and direction to targets and threats should also be presented.
16. Cost: <1000 [EUR].

Figure 1: Conceptional sketch of a strap-down 
INS. The red arrows indicate possible points for 
insertion of calibration (aiding) data.
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is used to calculate the current gravity force in 
navigation coordinates and cancel its effect on the 
accelerometer measurements. The errors in the 
cancellation of the gravity acceleration are then 
accumulated in the velocity and position calcula-
tions. For a low-cost INS using gyroscopes with a 
bias on the order of 0.01 [°/s] this means that the 
position error is more than 10 [m] already after 10 
[s] of operation.

Clearly, a navigation system which has such an 
error growth, is basically useless for indoor navi-
gation. However, by utilizing the fact that an INS 
mounted on the foot of the user regularly becomes 
stationary, i.e., has zero instantaneous velocity, the 
errors in the INS can be estimated and partly com-
pensated for, and the devastating cubical error 
growth can be mitigated.

In Fig. 2 a block diagram of zero-velocity aided 
INS is shown. The zero-velocity aided INS com-
prises the following three distinct parts, the INS, 
the zero-velocity detector and the Kalman filter; 
the Kalman filter has a state-space model describ-
ing how the errors in INS develop with time.3 The 
INS works as the backbone of the system, continu-
ously estimating the navigation state of the system. 
Whenever the zero-velocity detector detects that 
the system is stationary (close to zero instantane-
ous velocity), this information is used as an input 
to the Kalman filter that estimates the errors in the 
estimated navigation state. The estimated errors 
are used to correct (calibrate) the internal states 
of the INS.

The detection of the zero-velocity events can 
be done using external force sensors or radar 
sensors,4,5 sensing when the shoe is in contact 
with the ground. However, external force sensors 
are prone to mechanical fatigue and may fail to 
detect that the foot is stationary in situations such 
as when the user sits down and does not apply his 
weight on the shoe. Radar sensors require costly 

electronics and they can not detect zero-velocity 
events if the radar (sole) is not directed towards 
the ground, e.g. when the user is crawling. There-
fore, the zero-velocity events are generally detected 
directly from the IMU data, assuming that when 
the foot-mounted INS is stationary, the angular 
rate of the system is zero and the specific force vec-
tor is constant with a magnitude equal to the grav-
ity force. In Ref. 6, the generalized likelihood ratio 
test (GLRT) detector for the zero-velocity detec-
tion problem is derived, and it is shown that in 

Figure 4: Main hardware components and assem-
blies of the OpenShoe foot-mounted INS imple-
mentation. The dimensions of the full assembly are 
28.5 × 32 × 40.5 [mm].

Figure 3: Shoes with the OpenShoe foot-mounted 
INS implementation integrated in the heels.

Figure 2: Conceptional sketch of a zero-velocity 
aided INS. The zero-velocity detector controls the 
data flow from the IMU to the Kalman filter. The 
Kalman filter estimates the errors in the INS and 
corrects (calibrates) the internal states of the INS.
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literature, the most commonly used zero-velocity 
detectors are special cases of the GLRT detector. In 
Ref. 4 the performance of different zero-velocity 
detectors is evaluated.

The foot-mounted INS can clearly be used for 
pedestrian localization. However, for this purpose, 
an actual implementation is required. This gives 
rise to a number of practical issues. The Open-
Shoe project activity has designed and developed a 
foot-mounted inertial navigation system module, 
which can be embedded into the sole of a shoe.7 
Refer to Fig. 3 and Fig. 4 for details. The OpenShoe 
module is fully open source and the design docu-
ments can be found at www.openshoe.org.

3  Dual Foot-Mounted Inertial  
Navigation System

Although the errors in the INS can be estimated 
using zero-velocity updates, the position and 
heading error of the INS remains unobservable, 
and grows (slowly) without bound. Therefore, to 
reduce the error growth rate further, and to make 
the indoor localization system more robust, the 
users are equipped with two foot-mounted INS 
(one on each foot) and the navigation solution of 
the two systems are fused.

Since the human body is non-rigid, the rela-
tive positions of the foot-mounted INSs are not 
fixed, and one cannot directly relate the navi-
gation solution of one foot-mounted INS to 
another. However, as illustrated in Fig. 5, there 
is an upper limit on how far apart the two foot-
mounted INS can be, and the fusion of the two 
navigation solutions can be viewed as a filtering 
problem with non-linear inequality constraints. 
Several non-linear inequality constraint filter-
ing methods have been derived and used to fuse 
the navigation solution from two foot-mounted 
INSs. See Table 3 for a list of non-linear inequality 
constraint filtering methods that have been tested 
and references to the papers describing the details 
behind them.

To illustrate the benefits of using two foot-
mounted INSs, a user equipped with one Open-
Shoe navigation system on each foot walked 
110 meters on level ground along a straight 
line at a normal gait speed (approx. 5 [km/h]). 
Twenty such trajectories with 4 different Open-
Shoe units (different IMUs) were recorded. To 
get the same initial and final positions and a 
heading reference, plates with imprints of the 
shoes were positioned at 0 [m], 10 [m], and 110 
[m]. The initial  heading was set such that the 
estimated position at the 10 [m] plate, with-
out using the constraint, was on the x-axis. The 
inertial measurement unit data collected from 

the two navigation systems was then processed 
with the nonlinear inequality constraint filter-
ing approach described in Ref. 10. The process-
ing was done with the maximum foot-to-foot 
distance set to infinity, giving two uncoupled 
systems, and set to 1 meter, giving the con-
strained system. The estimated trajectories for 
three different fusion algorithms are shown 
in Fig. 6. Corresponding scatter plots with the 
1-s confidence ellipses of the final horizontal 

Figure 5: Illustration of the placements of the 
subsystem in a pedestrian navigation system and 
the maximum spatial separation g between the 
foot-mounted inertial navigation systems.

Table 3: Different algorithms (methods) that can 
be used to fuse the information from two foot-
mounted inertial navigation systems.

Algorithm Method Ref.

Sphere limit  
method

Constrains the stride  
length between  
two shoes when  
one shoe is stationary.

[8]

Centroid  
method

Constrains the stride  
length between  
two shoes at all  
time instants.

[9]

Constrained  
least squares 
method

Projection of the joint  
state estimate, using  
a constraint least  
squares algorithm,  
onto the subspace  
where the constraint  
is full filled.

[10]

Bayesian  
method

A Bayesian inference  
based approach,  
using a sigma point  
transformation.

[11]
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position estimates are shown in Fig. 7. Applying 
the constraint can be seen to have significantly 
reduced the mean error and covariance of the 
final position estimates.

Figure 8 shows a sample trajectory, obtained 
by one person walking in the Main Building, 
Department of ECE, IISc. Note that the person 
started on the ground floor and walked in a loop 
on the same floor and then proceeded to climb the 
stairs to reach the next floor. The change in x,y,z 
position is captured faithfully within the required 
accuracy (square-root of sum of squared errors in 
x,y,z positions).

4 System Level Architecture
Foot-mounted inertial navigation can provide 
accurate localization for limited operational 
range and time. Dual foot-mounted systems can 
increase the accuracy significantly. However, the 
inertial navigation only provides relative localiza-
tion and orientation with unbounded errors. For 
most applications, this is not sufficient. Therefore, 
the inertial navigation has to be combined with 
additional information sources in order to pro-
vide a position with bounded errors and relative 
to a relevant coordinate frame. This can essen-
tially be done in three different ways. First, the 
INS may be combined with additional sensors 
providing information about the environment. 
Secondly, ranging to other agents may be used to 
perform cooperative localization. Thirdly, addi-
tional motion constraining information (maps) 
and assumptions may be added. Potentially, the 
methods may also be combined. In the following 
subsections we review the different methods and 
discuss their implications.

4.1 Additional sensors
The most straight-forward way of mitigating 
the errors and relating the inertial navigation to 
a global reference frame is by combining it with 
additional sensors. The potential additional sen-
sors can be divided into infrastructure depend-
ent, e.g. GPS receivers,12,13 RFID readers,14 and 
beacons;15 and infrastructure independent, e.g. 
magnetometers,16,13 radar,17 barometers18 and 
imaging sensors. An example setup with a camera 
can be seen in Fig. 5. The camera may represent 
any of the mentioned sensors.

The infrastructure dependent sensors provide 
bounded errors, unlike INS where errors grow over 
time. The drawback of infrastructure dependent 
sensors is that, due to limited coverage area, blind 
spots occur, where the signals are not available to 
compute positions. However, the advantage of the 
foot-mounted inertial navigation system is that 
it can address the issue of blind spots, effectively. 
But, infrastructure independent sensors require 
prior or acquired knowledge about the environ-
ment and will not relate the inertial navigation 

Figure 6: Estimated trajectories from walking 
along a 110 [m] straight line. The black boxes indi-
cate the location of the starting position (0 [m]), 
the heading reference point (10 [m]), and the stop 
position (110 [m]).

Figure 7: Scatter plot of end position of the two 
systems with and without the range constraint. 
1 – s confidence ellipses are shown in black. The 
estimates from right foot and left foot are shown 
in red and blue respectively. It is clearly seen that 
the mean error and covariance of the final position 
estimates are significantly reduced by applying 
the range constraint.

Figure 8: Sample 3-D trajectory of a person walk-
ing on a floor and climbing the stairs.
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to a global coordinate frame but only constrain 
certain dimensions (for example, north-direction 
from magnetometer and height above sea-level 
from barometer). From a system perspective, 
since they do not require any infrastructure, they 
are inexpensive to use and only add a minimum 
number of dependencies. Overall, adding addi-
tional sensors has minimal system implications 
and since all information is local to the agent, the 
main challenge is that of statistical conditioning, 
of the agent’s position and heading, on the sensor 
measurements.

4.2 Cooperative localization
In many scenarios, depending on existing infra-
structure is undesirable and relying on other 
extroceptive sensors is insufficient. However, for 
interaction between multiple agents, only a com-
mon rather than a global coordinate frame is nec-
essary. In this case, the positions of the agents may 
be related to each other by cooperative localization. 
Cooperative localization is performed by measur-
ing and distributing quantities related to positions 
of multiple agents with the most common type of 
measurement being inter-agent ranging. An exam-
ple of a system setup is shown in Fig. 9. The coop-
erative localization has the advantage that only a 
few assumptions about the environment have to 
be made and a significantly improved positioning 
performance may be achieved.19,20 However, the 
complexity of the system increases significantly. 
First of all, communication links between the 
agents become necessary. Secondly, the problem 
of estimating individual agents’ positions cannot 
in general be separated and one has to resort to 
distributed estimation techniques or exploit cen-
tralized or partially decentralized processing with 
obvious disadvantages.

4.3 Map-aiding and motion models
Zero-velocity updates can essentially be described 
as a motion model of the human gait, which made 
inertial navigation usable for pedestrian locali-
zation. However, further assumptions/models 
about the human motion can be made which in 
some scenarios can greatly improve the position-
ing accuracy and relate the inertial navigation to 
a relevant frame. The most obvious assumption is 
that humans do not walk through walls. Combined 
with map information this can be used to bound 
the position errors and relate the inertial naviga-
tion to the coordinate frame of the map (given 
that the user is known to be located on the map 
to start with).21 In general this will require a multi-
hypothesis (particle) filter. An illustration of this 
map-aiding is seen in Fig. 10. A somewhat looser 
model which can be used if only exterior maps are 
available is that an agent has a bias to walk parallel 
to building walls.22

Apart from traditional map-aiding, several 
other motion models which do not rely on exter-
nal information may be added. Trivial examples 
include floor-pinning. However, more elaborate 
models may be added which essentially rely on 
the assumptions that an agent is more likely to 
walk where the agent or someone else has walked 
before.23 This can be used together with particle fil-
ters to position the agent and also to build up maps 
of the area where the agent moves.23 Unfortunately, 
this requires agents to revisit locations for the model 
to be active.

Figure 10: Illustration of map-aiding of the foot-
mounted inertial navigation system. Multiple 
hypotheses of the agent’s motion are propagated 
by the inertial navigation and the hypothesis which 
passes through walls is pruned and new hypoth-
eses are sampled. Thereby, the map information is 
included in the localization.

Figure 9: Illustration of cooperative localization 
setup. Each agent is equipped with dual foot-
mounted inertial navigation units and an inter-agent 
ranging device. In combination, this information 
can be used to estimate the agents’ positions rela-
tive to each other and relative to a navigation coor-
dinate frame.
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4.4  Hardware platform and 
communication interface

The data from the Openshoe is processed by a 
hardware platform. It is assumed that there is no 
local communication infrastructure available at 
the disaster location. Hence a WiFi virtual private 
network is used. Fig. 11 indicates a typical con-
figuration where multiple sensor information is 
transmitted using a WiFi virtual private network 
involving the command station and the first 
responders.

Two versions of the prototype have been devel-
oped using two different hardware platforms. One 
of them, developed at IISc uses a BeagleBoard 
powered by a battery (Fig. 11). The DSP processor 
and the ARM based processor take data from dif-
ferent sensors and communicate over a WiFi (or 
3G) network to the command station. Another 
version, developed at KTH, uses an Android-based 
Smartphone instead of the BeagleBoard.

4.5 Video data transmission
In order to view the scene a First Responder sees, 
a helmet mounted camera is used. The video data 
is then compressed in real-time using the DSP 
processor on the processing platform and sent to 
the command station using the prevailing wire-
less communication interface, which is typically a 
WiFi network or a 3G network. The challenge in 
video data transmission is to ensure good video 
quality at minimum data rates. A simple solution 
to reduce data traffic is to utilize the redundancy 
in video and send packets without a re-transmis-
sion protocol. This ensures reasonable quality with 
minimum latency. The DSP processor board will 
take the video data from the camera and compress 
it in real-time using a dedicated DSP processor at 
the appropriate frame rate for onward transmis-
sion using RTP protocol.24 Future schemes will 
work on creating ad-hoc networks where each 
first responder’s communication interface can 
also work as a relay of data from other neighbour-
ing first responders.

4.6 Requirements on test site
A test site for full scale experiments requires not 
only a suitable construction of the multi-story 
location, but also a controllable radio frequency 

environment to emulate harsh environments that 
arise in for example an industry building under 
fire. Further, practical aspects have to be consid-
ered, like direct outdoor-indoor access for evalua-
tion of seamless transfer from outdoor to indoor 
scenarios. A pre-installed ground truth position-
ing and navigation system is required for perform-
ance evaluations. An easily accessible geographical 
location is also of utmost importance once pro-
fessional end-users like fire fighters are involved, 
to guarantee their availability on short notice for 
urgent missions.

5 Summary & Conclusions

5.1 Achievements
The joint Indo-Swedish activity has resulted in 
the Openshoe project where the design of the 
INS-based shoe is made available for anyone to 
replicate. The two groups at IISc and KTH have 
worked together to build a suite of signal process-
ing algorithms and also developed the prototype 
on multiple hardware platforms like the Linux-
based BeagleBoard and Android-based Smart-
phone platforms. The current system delivers an 
average position accuracy of about 2 m and work 
is in progress to reduce the error.

5.2 Outlook
There is a continuous rapid development of 
MEMS technology, with a regular flow of new 
IMUs on the market, implying smaller form fac-
tors and reduced cost which in turn leads to shoe-
free implementations like the sole illustrated in 
Fig. 12. This trend enables mass market appli-
cations like gait stability analysis by gait feature 
extraction and real-time tracking. Forecasts indi-
cate the percentage of population which is 65 
years or older is likely to grow rapidly to 10.4% 
of 7.9 Billion in year 2025 (with some 110 million 
elderly persons in India, alone). Hence, there is a 
need to develop physical activity monitoring and 
diagnostic tools for assessing the mobility and 
motor skills of elderly persons and, if this falls 
below a critical threshold, design and test a vari-
ety of assistive solutions for helping elderly per-
sons maintain or even improve levels of physical 
activity for full, active and independent lives. This 

Figure 11: WiFi communication interface for first responder system.
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involves developing and fitting inertial motion 
tracking and gait analysis technologies for long-
term monitoring at home, which is subject to fur-
ther studies.
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