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Abstract | Power grid operators around the world are facing a number of 
critical challenges such as energy and peak power shortages, outages 
and the uncertainty introduced by intermittent renewable energy sources. 
To address these challenges, the research community has identified a 
few high-level objectives: alleviation of peak loads, minimization of grid 
losses, improving the energy efficiency of buildings and loads, and 
reducing the uncertainty about energy produced by renewable sources. 
Implementing these strategies would require a “smarter energy” system 
that is instrumented, with sensors and controls embedded into the 
fabric of its operations; it is interconnected, enabling the two-way flow of 
information—including pricing—and energy across the network; and it is 
intelligent, using analytics and automation to achieve the aforementioned 
objectives.

In this paper, we present a sampling of cyber physical systems we 
have designed to enable such a smarter energy supply chain. These sys-
tems depend on varying levels of instrumentation (sensing/actuation) and 
network connectivity. There remains a large opportunity to deepen these 
contributions and taking innovations to full market impact, which require 
overcoming commercial and regulatory challenges as well. A feature of our 
work was to consider and be informed of real world and client constraints 
in our work, and we have built prototypes and experiments for similar cir-
cumstances. We hope that these experiences will spark more experimen-
tal innovation activity that is critically important for being well grounded in 
research and indeed, for the success of smart grids worldwide.
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1 Introduction
Power grid operators around the world are facing 
a number of critical challenges:

Energy and power shortages: While the 
developed countries usually suffer from power 
shortages during the peak load periods, many 
developing countries suffer from both power and 
energy deficits. For instance, the Indian electric-
ity sector, despite having the world’s fifth largest 
installed capacity, suffers from severe energy and 
peak power shortages. In February 2013, these 

shortages were 8.4% (7.5 GWh) and 7.9% (12.3 
GW) respectively.1 In fact, India has long strug-
gled with electricity deficit and as a consequence, 
millions of consumers have been suffering from 
inadequate power supply.2,3

Power outages: Since the electricity infrastruc-
ture underpins the economic and social activities, 
it is important to ensure that there are no outages 
in the grid. For example, the electrical system in 
the United States is more than 99 percent reli-
able, but it still experiences power interruptions 
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that cost homes and businesses $150 billion a 
year [GAV10]. These power interruptions could 
get aggravated as the nation’s entire energy infra-
structure is vulnerable to severe and costly weather 
events driven by climate change.4

Intermittent Energy Sources: In many parts 
of the world, electricity generation is a significant 
source of green house gas emissions as fossil fuels 
are burnt to generate electricity. For instance, in 
the U.S., electricity generation is the largest single 
source of CO

2
 emissions accounting for about 38% 

of total CO
2
 emissions and 32% of total greenhouse 

gas emissions in 2011.5 In India, generation plants, 
on an average emit 0.89 tons of CO

2
 per MWh.6 

As a result, many governments are mandating that 
the proportion of renewable energy sources in the 
electricity generation portfolio must increase. For 
instance, as per the California Renewable Portfolio 
standard, all the electricity retailers must adopt the 
goals of 20 percent of retail sales from renewables 
by the end of 2013, 25 percent by the end of 2016, 
and the 33 percent requirement being met by the 
end of 2020.7 Since some of those common renew-
able sources such as solar and wind are intermittent, 
novel techniques are required for dispatching them.

To address these challenges the research com-
munity has identified a few high-level objectives: 
alleviation of peak loads, minimization of grid 
losses, improvement of energy efficiency of build-
ings and loads, and reduction of uncertainty 
about energy produced by renewable sources. 
Implementing these strategies would require a 
“smarter energy” system that is instrumented, 
with sensors and controls embedded into the 

fabric of its operations; it is interconnected, ena-
bling the two-way flow of information—includ-
ing pricing—and energy across the network; and 
it is intelligent, using analytics and automation to 
achieve the aforementioned objectives.8

In this paper, we present a sampling of cyber 
physical systems we have designed to enable such a 
smarter energy system. As shown in Table 1, these 
systems depend on varying levels of instrumenta-
tion (sensing/actuation) and network connectivity. 
On the one end of instrumentation, the SoftGreen 
system uses data only from opportunistic sen-
sors to enable occupancy based energy manage-
ment in commercial buildings, and at the other 
end, YouGrid employs multiple types of sensors/
actuators (motion sensor, diesel fuel monitor, bat-
tery sensors, etc) to improve the fuel efficiency of 
microgrids; on the one end of connectivity, nPlug 
is an autonomous peak load alleviation system, 
and at the other end, CPS-Net requires high speed 
network connectivity to communicate with Phasor 
Measurement Units (PMUs) that are geographically 
distributed across the grid. The following sections 
provide a brief overview of each of these systems.

2  nPlug: An Autonomous Peak  
Load Controller

Power utilities worldwide face a major challenge 
of peak demand. During the peak demand hours, 
the demand for electricity is usually more than the 
base and intermediate supply capacities. The extra 
demand can be met by starting “peaker” power 
plants or by buying energy from bulk power mar-
kets. But, both of these options are expensive for 

Table 1: Illustrative cyber physical systems for enabling smarter energy solutions.

System
Point of  
operation Objective Instrumentation

Network 
connectivity

nPlug Sockets Peak load  
reduction

Local sensing No network  
required

SoftGreen Buildings Building energy  
efficiency

No hardware  
instrumentation  
(only opportunistic  
sensing)

High-speed  
connectivity

Wattzup Buildings Load  
disaggregation

Smart meters Low-speed  
connectivity

Connectivity  
models

Distribution  
networks

Network  
mapping

Smart meters and  
socket-level  
meters

Low-speed  
connectivity

CPS-Net Transmission  
networks

Wide area situational  
awareness and  
control

Phasor Measurement  
Units and  
Phasor Data  
Concentrators

High-speed  
connectivity

YouGrid Campus level  
microgrids

Fuel efficient  
microgrids

Motion sensor, Diesel  
fuel monitors, battery  
controllers, etc.

High-speed  
connectivity
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electricity suppliers who sell electricity to their 
consumers at flat rates.

The peak demand could be alleviated, if a large 
number of deferrable loads, particularly the high 
powered ones, could be moved from on-peak to 
off-peak times. However, conventional demand-
side-management (DSM) strategies that depend 
on communication infrastructure may not be 
suitable for developing countries like India, as the 
local conditions usually favor only inexpensive 
solutions with minimal dependence on the pre-
existing infrastructure.

To address this need, we have developed a 
completely decentralized demand side controller 
called the nPlug.9 As shown in Figure 1, nPlug is 
positioned between wall sockets and the corre-
sponding deferrable loads such as water heaters, 
electric vehicles, washing machines, etc. The 
nPlug can accept the following configuration 
inputs: 1. Earliest start time: the earliest time at 
which an appliance can be switched on; 2. Latest 
end time: the latest time at which the appliance 
must finish running; 3. Duration: the duration for 
which the appliance must be powered; and 4. Hold 
time: the minimum time an appliance must be 
run at a stretch when turned ON. For example, a 
residential consumer who leaves for work at about 
8 AM may specify that her insulated water heater 
must be run for 30 minutes between 6 AM and 
8 AM.

Using these inputs as guidelines, a nPlug 
schedules the attached appliance so that the peak 
load and supply-demand imbalance periods are 
avoided. nPlugs determine such periods by sens-
ing the line voltagea and frequencyb measured at 
the socket. The sensed time-series data is then 
pre-processed using the Piecewise Aggregate 
Approximation (PAA) and the peak load pattern 

a As per power systems theory and as reconfirmed by the data 
we have collected, grid voltage is inversely correlated with the 
load levels.
b As per power systems theory and as reconfirmed by the data 
we have collected, grid frequency is inversely correlated with 
the load levels imbalance.

is identified using the novel extension of Symbolic 
Aggregate Approximation (SAX) technique on 
the preprocessed voltage data. The situations of 
supply-demand imbalance can be identified using 
2-SD statistical test on the line frequency data. The 
decentralized scheduling of nPlugs is performed 
by using the concept of Grid-Sense Multiple 
Access (GSMA), which is inspired by Carrier Sense 
Multiple Access (CSMA) approach of computer 
networks.

The embedded analytics approach of nPlug 
provides various benefits over the existing peak 
reduction methods—1. Network free—nPlug does 
not require any communication infrastructure 
for sensing and control, and hence can be com-
pletely autonomous. 2. Brownfield innovation—it 
does not require any changes to the grid or to the 
appliances and hence suitable for existing power 
grids and for the millions of appliances already 
in use. 3. Incremental adoption—since each nPlug 
has the potential to alleviate peak load, nPlugs can 
be introduced in small batches into the grid. This 
reduces the initial investment as well as the risks 
of introducing new technology into a pre-existing 
infrastructure. 4. No policy changes required—
nPlugs don’t depend on differential pricing 
schemes or smart meters and hence deploying 
them doesn’t require any regulatory approvals. 5. 
Inexpensive solution—every hardware and soft-
ware component in nPlugs are based on careful 
analysis of cost-performance trade-offs. The pro-
totype we have built costs about USD 30 in small 
volumes (<100 units) and we estimate nPlugs in 
large volumes (>100,000 units) would cost about 
USD 15.

The experimental results indicate that nPlug 
could be an effective and inexpensive technol-
ogy for addressing the peaking shortage. The 
embedded analytics approach of nPlug has the 
potential of further enhancement for the power 
management of large computing loads like elec-
tric vehicles, data centers and for the grid sta-
bilization with distributed renewable energy 
sources.

Figure 1: nPlug structure.
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3  SoftGreen: Building Energy Efficiency 
through Opportunistic Sensing

Reducing the energy consumption of commercial 
buildings has emerged as an important research 
focus for energy efficiency since those buildings 
account for 40%10 of the global energy consump-
tion. Primary energy consumers in a typical office 
building include HVAC-L (Heating, Ventilation, 
Air Conditioning and Lighting) and plug loads 
(such as laptops, desktops, water coolers etc.). 
However, a large fraction of electricity usage, 
nearly 70%,11 can be attributed to HVAC-L infra-
structure. Despite that, such loads are controlled 
using static policies (e.g. operate from 8 AM to 
6 PM) and not through dynamic policies that are 
derived based on occupancy (people’s presence). 
Although there have been research efforts in the 
past to develop occupancy-based load manage-
ment, the focus has been on developing low cost 
occupancy sensing modules or changing occu-
pants’ behavior.12

On the other hand, we aim towards develop-
ing an occupancy detection system that can be 
built over existing building infrastructure and does 
not require any additional hardware instrumenta-
tion. Modern commercial office environments are 
equipped with various infrastructures such as com-
munication networks, online collaboration tools 
and access card systems to make the work environ-
ment comfortable and safe. These infrastructures, 
in addition to performing their intended functions, 
can serve as opportunistic data sources or soft-
sensors and provide context data about occupants’ 

locations. As illustrated in Figure 2, data from 
common infrastructure elements such as, Wi-Fi 
access points, online calendars, instant messaging 
client, computing devices (e.g., laptops) etc. can be 
collected and fused to accurately detect occupancy 
in meeting rooms and cubicles of offices without 
installing any hardware sensors.

This approach was evaluated through a pilot 
deployment for five users over a month in a com-
mercial office. The context data was collected from 
Wi-Fi access points, system activity, instant messag-
ing, and online calendar. Volunteers marked their 
locations during the pilot period to establish ground 
truth. Decision tree based classification and regres-
sion approaches were evaluated to fuse the data for 
occupancy. As presented in Figure 3, the classifica-
tion approach yields more accurate results than the 
regression based one. Another benefit of using clas-
sification is that it can process both numeric and 
nominal input variables, therefore, there is no need 
of mapping the context cues to numeric values. 
Further details are documented in.13,14

We are conducting a large-scale pilot deploy-
ment with more number of users and hardware-
based ground truth collection. In addition to 
devising unsupervised approaches for data fusion, 
handling occupants’ privacy concerns and finding 
other potential application areas are the focus of 
our future work.

4 Smart Meter Analytics
As smart meter deployments are on the rise,15 the 
data collected from those meters enables a number 

Figure 2: SoftGreen approach.
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of analytics applications such as load forecasting 
and theft detection. We have studied two potential 
use cases of the smart meter data:

1. A discriminative method for identifying indi-
vidual appliance consumption from the aggre-
gate consumption data reported by the smart 
meters.

2. Inferring the interconnections between various 
customers and assets in the grid downstream 
of a substation using the consumption data 
reported by the smart meters at the customer 
premises and the load data reported by smart 
meters deployed on distribution grid elements 
such as transformers and feeders.

4.1  Wattzup—A discriminative load 
disaggregation method

A deep and accurate understanding of user’s 
energy consumption patterns in correlation to 
their normal activities is paramount for the next 
generation of Auto Demand-Response Systems 
as well as for undertaking studies that focus on 
inducing long-term sustainable behaviors at a 
societal level.16 While obtaining this information 
through plug level monitoring is sometimes fea-
sible, particularly in commercial settings, such 
intrusive methods are not scalable to large deploy-
ments due to both hardware costs—which can be 

more than USD 1800 per home—and the incon-
veniences caused to home owners.

These factors, the value of detailed knowl-
edge of consumption and the limitation of avail-
able metering, have resulted in a need for systems 
for Non-Intrusive Appliance Load Monitoring 
(NIALM). As defined in the seminal work of17 “A 
nonintrusive appliance load monitor determines 
the energy consumption of individual appli-
ances turning on and off an electric load, based 
on detailed analysis of the current and voltage of 
the total load, as measured at the interface to the 
power source. ” The design of these load disaggre-
gation systems has recently become the focus of 
much research.

Load disaggregation problem is defined as 
given y y yt

i
t
i i( ) ( ) ( ),= ∈0 , a discrete sequence of 

observed aggregate power readings of n number 
of individual appliances y y y y yT= { }, , , ,1 2 3… , 
y yt t

i

n i=
=∑ ( ) ,

1
,i = 1, …, n, t = 1, …, T, deter-

mine the operational state/load of each appli-
ance in a specific time ( )ˆ i

ty . In real condition, 
the total household consumption data y may 
include power consumption from unmonitored 
household appliances since appliance level sen-
sors deployment does not cover all appliances 
inside the premises due to cost and installation 
issues. This constraint has significantly increased 
the challenge of providing high accuracy load dis-
aggregation models when compared with other 

Figure 3: Confusion matrices representing accuracy of inferring one volunteer’s situation using classifi-
cation (top three) and regression (bottom three) approaches using data from subsets of context-sources. 
Higher numbers in the primary diagonal indicate higher accuracy of inferences. On the other hand, higher 
numbers in the non-primary diagonal indicate lower accuracy of inferences. It is important to note that both 
precision and recall for classification-based approach is much higher than that for regression-based one.
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research in the area that assumes that aggregate 
data is the sum of appliance level data.

We have developed a discriminative load dis-
aggregation approach that predicts the most likely 
or possible appliance state configuration from 
total power consumption in a specific time period 
using simple non-parametric classification algo-
rithms.18 In our model, we first automatically dis-
cretize each appliance’s load y (i) into z states where 
z ≥ 2, since each appliance has at least 2 states, 
on and off. When real power consumption of an 
appliance at specific time is 0, we can consider this 
appliance is not in use or in off state. So, for any 
number of z, we assign all y

t
 (i) = 0, y

t
(i) ∈ y (i) as 

off. We then use Expectation-Maximization (EM) 
algorithm19 to cluster the non-zero appliance load 
into z - 1 clusters and label those clusters sequen-
tially based on the cluster mean.

Having discretized our training data set, we 
then run kNN algorithm to build the predictive 
model. For each aggregated load yt in the test data 
we find k nearest neighbors from the training 
data based on their Euclidean distance of aggre-
gate load, day and time of the day attributes. Each 
neighbor has a combination of appliances’ state 
as a result of the previous discretization process. 
We decide the most probable state combination 
from those neighbors based on the majority/vot-
ing approach.

The primary characteristics of our method that 
are important to emphasize are: (i) The discrimi-
native machine learning approach we use is based 
directly on historical consumption data which 
consists of each monitored appliance’s consump-
tion data and total household consumption that 
includes both monitored and unmonitored appli-
ances’ energy consumption; (ii) The method does 
not directly predict consumption levels, but first 
predicts activity or state, and then uses historical 
data to predict usage level. This seems to improve 
accuracy substantially compared to previous 
approaches that directly estimate consumption 
levels; (iii) The method is simple and computa-
tionally efficient while offering high enough accu-
racy for the next steps of a complete DR system.

Our approach has been evaluated on the pub-
licly available REDD data set20 and it achieves 88% 
accuracyc in state prediction and 82% accuracy in 
total energy assignment [RAH12].

Our immediate focus is on analyzing the level 
of accuracy required to have reliable DR system, 
developing the unsupervised load disaggregation 
method and discovering effective techniques for 

c We use the performance evaluation formula provided by 
Kolter and Johnson [KOL11].

leveraging situation awareness through external/
rich context information.

4.2  A data driven inference 
of connectivity models

The connectivity model (CM) of a distribu-
tion grid gives the underlying interconnections 
between various customers and assets in the grid 
downstream of a substation. The connectivity 
includes which customer is powered by which dis-
tribution transformer, which distribution trans-
former is powered by which phase of the feeder, 
and so on. A common problem faced by energy 
utilities is that they have an out-of-date or inac-
curate CM of their distribution network i.e. the 
CM is inconsistent with the actual connectivity 
relationships that exist in the field. The accuracy 
of the CM generally deteriorates over time due to 
maintenance, repairs, and restoration activities 
following faults and outages.

The CM is important, as it is needed in the 
operations and maintenance of distribution net-
works. Most solutions that automate the man-
agement of distribution networks require the 
CM as input. For instance, it is required by the 
outage management system (OMS) to accu-
rately record and respond to outages. When a 
fault occurs or an asset (e.g. a transformer) fails 
in the distribution network, the CM is required 
to assess the magnitude of the fault and the 
customers that may have been impacted by it. 
Additionally, energy distributors may have obli-
gations to accurately report customer outages to 
regulatory bodies, which is difficult without an 
accurate connectivity model. The distribution 
management system (DMS) needs the connec-
tivity model for fault detection, isolation, and 
service restoration (FDIR) and also to conduct 
accurate power-flow calculations. An inaccurate 
CM may lead to incorrect diagnosis of faults, 
suboptimal response, and faulty voltage profiles 
of the distribution grid, which may affect the 
reliability of energy delivery to the customer.

A significant fraction of all losses in a power 
system occur in the distribution network and the 
growing imbalance between supply and demand 
is driving the deployment of solutions that can 
improve the overall efficiency of energy deliv-
ery. An accurate connectivity model can enable 
many of these solutions. For instance, solutions 
for energy auditing and loss localization use the 
connectivity model to localize energy losses from 
theft and inefficiencies in the distribution net-
work. The phase balancing solution requires the 
connectivity model in order to balance the load on 
the three phases of a feeder so that losses incurred 



Cyber Physical Systems for Smarter Energy Grids: Experiences at IBM Research—India

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in 547

while delivering energy to the customer are mini-
mized. Additionally when customers have behind 
the meter resources such as distributed generation 
and storage, the connectivity model is required to 
ensure a balanced and reliable infusion of energy 
back into the grid via the distribution network.

Manual identification of the CM is expen-
sive and unsustainable as the field configuration 
changes over time. Existing solutions based on 
power line communication are generally capi-
tal intensive and may not be suitable for regions 
where the signal needs to propagate over long 
distances.

In this work,21,22 we present a novel analytics 
approach (Figure 4(a)) to infer the connectivity 
model of a radial distribution network. Our tech-
niques are novel as they are purely based upon a 
time series of synchronized power measurements 
collected by various meters in the distribution grid. 
The time series measurements from all meters are 
used to set up a system of linear equations based 
upon the principle of conservation of energy i.e. 
during any time interval, the load (watt-hours) 
measured by a feeder meter must be equal to the 
sum of loads measured by all customer meters 
connected to that feeder plus any errors. The 
errors arise due to imperfect synchronization of 
measurements at different meters, different sam-
pling rates, unmetered loads such as streetlights, 
and unknown and time-varying transmission line 
losses. The equations are analyzed to regress a tree 
network between the meters, which is consistent 
with the observed time series measurements.

Our work can be regarded as an early example 
of the tomography technique applied in the smart 
grid context, where solution to a linear inverse 
problem of the form Ax + e = b, is used to recover 
the underlying topology of a distribution net-
work. We propose a number of different optimi-
zation formulations (mathematical programs and 

their relaxations) for noiseless and noisy variants 
of the tree inference problem and study the condi-
tions for uniqueness of solution as a function of 
the number of meter measurements. Figure 4(b) 
shows the benchmark performance of the pro-
posed linear programming relaxation techniques, 
which retrieve the true solution as the number of 
meter measurements (m) exceeds half the number 
of meter nodes (n) in the system.

5  CPS-Net: In-Network Aggregation 
for Synchrophasors

A phasor measurement unit (PMU) or synchro-
phasor is a device that measures the electrical 
waves on an electricity grid, using a common time 
source for synchronization. Time synchronization 
allows synchronized real-time measurements of 
multiple remote measurement points on the grid. 
These devices can sample the electricity grid at the 
rate of up to 120 Hz and publish these measure-
ments as streams that need to be delivered reliably 
and in real-time to a number of synchrophasor 
applications.

A wide variety of synchrophasor applications 
have been proposed and the Quality of Service 
(QoS) requirements of these applications have 
been classified by the North American Synchro-
phasor Initiative (NASPI) into a set of classes.23 
While building a network that satisfies the basic 
QoS requirements is a well studied problem, the 
dimensions that differentiate PMU-specific net-
works are:

• Application requirements need to be mapped 
onto a real-time wide-area publish-subscribe 
architecture requiring QoS support beyond 
simple point-to-point QoS.

• During overloads or critical events when 
sampling rates increase or more PMUs are 
active, it is important to gracefully degrade 

Figure 4: (a) Smarter Meter Measurement Time-Series used to estimate a tree connectivity model between 
the metered assets in the distribution grid. (b) Benchmark performance of linear programming relaxation 
techniques.



Deva P. Seetharam, et al.

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in548

performance and data stream delivery in an 
application-specific manner.

Graceful degradation of performance and 
QoS for many-to-many real-time, wide-area 
streams is hence an important requirement for 
enabling PMU applications. To address this need, 
we proposed Cyber-Physical Network (CPS-Net), 
a flexible 3-layered architecture that leverages the 
benefits of layering and point-to-point QoS, while 
allowing application-specified in-network aggre-
gation of data streams during overload.24 The 
bottom layer provides basic path-specific QoS. 
The middle layer provides real-time wide-area 
publish-subscribe capabilities, integrated with 
traffic engineering of data streams across multiple 
lower level paths and trees. The top layer provides 
a distributed stream-processing infrastructure for 
application-specified aggregation that helps in 
graceful degradation during network overload.

During underload, the top layer is quiescent, 
and all the PMU data from publishers is sent to 
subscribers. But during network overload, there 
may not be sufficient capacity to deliver all the 
PMU data. One response to overload would be 
to randomly discard data: however this could 
degrade performance in unpredictable ways. From 
video streaming literature, we know that if infor-
mation can be dropped in an application-sensitive 
manner, then the quality of experience for multi-
media applications can be gracefully degraded as a 
function of the level of overload. Analogously, we 
aim to provide application-sensitive in-network 
aggregation functions that could be used during 
overload periods to achieve graceful degradation 
of synchrophasor applications. Specifically, the 
lower layer of our three-layer architecture during 
overload triggers the co-optimization of higher 
layers, and application-specific filtering and/or 
aggregation of data is performed.

The subscribers, while subscribing to specific 
content, can specify the data aggregation and 
filtering mechanisms that they are willing to 
accept, types of data to which such mechanisms 
can be applied, and the timeframes during which 
those mechanisms are acceptable. The applica-
tion writer would be best situated to express such 
aggregation and filtering functions, but would 
need a convenient API to express them. We pro-
pose to provide the application writer with a 
simple declarative API, based upon a stream com-
puting programming model such as streamIt25 or 
Spade and Infosphere Streams.26 The declarative 
view is expressed in the stream programming 
language while the details of the network, place-
ment and composition of operators are abstracted 

away, as part of the distributed stream computing 
system.

Initial simulation results show that the CPS-
Net architecture can gracefully degrade data 
streams for real-time synchrophasor applications 
during network overload. As the examples given 
in our paper24 indicate, there are a variety of appli-
cation-specific aggregation methods as well as 
policies for specifying aggregation. Such policies 
could be a function of transient network overload, 
or based upon other factors such as price of power, 
or spatiotemporal and administrative considera-
tions. CPS-Net needs to be extended to robustly 
incorporate some of these considerations in spe-
cific application domains. For instance, one open 
problem to consider is if different applications 
(consumers of sensing data) specify aggregation 
of data in different ways, how would a network-
level operator combine these requirements, and 
handle conflicts, while meeting network-capacity 
constraints?

6  YouGrid: An Operating System  
for CPS-enabled Microgrids

Microgrids are considered the modern, small-scale 
versions of the centralized electricity system.27 
Microgrids have the advantage of reduced trans-
mission and distribution losses and can be 
islanded from the main grid. They are ideal for 
remote locations and for rural electrification but 
can be used more generally for increased reliabil-
ity through independence from macrogrid dis-
turbances, fossil fuel, cost and carbon footprint 
reduction and energy diversification. Microgrids 
ease local integration of renewable sources and 
could encourage conservative practices through 
community participation. Microgrids are opera-
tionally challenging, however, due to the hetero-
geneous characteristics of sources and loads. IBM, 
in collaboration with the Universiti Brunei Darus-
salam (UBD), has taken a holistic approach to 
energy efficiency and conservation measures for 
microgrid operation. At the heart is YouGrid, a 
microgrid operating system that employs a cyber 
physical systems approach to interface with dispa-
rate energy sources, loads and actuators. YouGrid 
uses data-driven predictive analytics, advanced 
optimization and persuasive consumer interfaces 
to improve the availability of power, increase the 
efficiency of microgrid operation and enhance 
system reliability.

To evaluate this operating system, we have 
established a first of its kind microgrid at Kuala 
Belalong Field Studies Centre (KBFSC). KBFSC 
is situated in the Temburong district of Brunei in 
South East Asia. KBFSC is located deep within a 
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primary rain forest as a research facility to study 
ecological diversity in the region. The remote-
ness of the centre makes it impractical to extend 
the national grid to the centre and since KBFSC 
is nestled in a valley, solar and wind harvesting 
for renewable power generation are extremely 
challenging. KBFSC, therefore, relies on a diesel 
generator (DG) for its power needs. Currently, 
the centre is powered for about 10 hrs each day, 
which corresponds to using about 20,000 litres of 
diesel every year. Transporting this diesel, about 
1.4 metric tons a month, is done by canoe through 
narrow, serpentine waterways. Furthermore, due 
to the hilly terrain, diesel has to be transported in 
cans that have to be hand carried over relatively 
large distances. Needless to say, this is not a job 
anyone envies.

Our CPS-enabled microgrid uses flow sens-
ing at the fuel intake of the DGs, energy meter-
ing at their outputs and energy metering at the 
building and socket level as well. The richness of 
this dataset enables data-driven modeling of the 
fuel conversion efficiency of the DG, as shown in 
Figure 5(a). The fuel conversion efficiency is the 
amount of energy the DG produces for every litre 
of diesel. The curve is non-linear and is heavily 
load dependent. Analyzing the data also reveals 
each appliance’s contribution to the energy con-
sumption and corresponding fuel consumption. 
Some appliances (e.g. lights) need relatively little 
power but require the DG to remain turned on at 
low fuel conversion efficiency. The histogram of 
energy produced by the generator over a 3 month 
period is illustrated in Figure 5(b) and shows how 
lightly the generator is loaded most of the time.

Our analysis of the DG efficiency and appli-
ance profiles suggest peak load aggregation. That is, 
aggregate power consumption of appliances over 
shorter durations (say 4–6 hrs, instead of 10 hrs) 
at a higher power level to improve overall fuel con-
version efficiency. The reduced DG timings would 
be offset using an energy buffer (battery bank) 

that would provide power to appliances identified 
as being low energy consumers but high fuel con-
sumers. The battery bank also serves to increase 
the load on the DG when it is being recharged. By 
using a high efficiency, high capacity charger, we 
estimate diesel fuel savings of 20% to 50% for the 
same amount of energy produced.

Apart from modeling the DG and loads, our 
microgrid energy management system also builds 
models of the batteries that are then fed to an 
optimization system that minimizes fuel cost. The 
optimization determines the optimal schedule to 
run the DG based on the current and predicted 
load profiles and YouGrid closes the CPS actua-
tion loop by automatically charging batteries and 
providing power according to this schedule.

7 Discussions
This paper has presented a sampling of our expe-
riences and technical progress in applying cyber 
physical systems to the realm of energy grids, in 
different parts of the value chain. There remains 
a large opportunity to deepen these contributions 
and taking innovations to full market impact, 
which require overcoming commercial and regu-
latory challenges as well. A feature of our work 
was to consider and be informed of real world 
and client constraints in our work, and we have 
built prototypes and experiments for similar cir-
cumstances. We hope that these experiences will 
spark more experimental innovation activity that 
is critically important for being well grounded in 
research and indeed, for the success of smart grids 
worldwide.

Received 14 August 2013.
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