THE VAN DER WAAL'S INTERACTION OF PARTICLES

By R. Sankar
(Department of Applied Mfathematics, Indiun Instithte of Science, Bangalore - 12)

Received on Februay 6,1960

Abstract

Recently Mrs. Yold [Proc. Ind. Acad. Sc., XLVI, Sec. A, No. 2, pp. 152-166, Aug. 1957 has evaluated an expression for the interaction energy of two ellipsoidal particles situated in any manner relative to each other. She has assumed the law of interaction as the inverse sixth power of the distance and has obtained the expression for the energy in terms of a series in ascending powers of $(1 / R)$. She has given explicitly the co-efficients necessary to calculate the energy upto the first three terms of the series. In the present note the same problem has been reconsidered for the case in which each particle has three principal planes of symmetry. A series expression has been obtained as in Mrs. Vold's paper on the assumption that the law of interaction is the ($2 k$) th power of $(1 / R)$, where k may be fractional. The resultais exprecssed in terms of various order moments of the particles. These moments have been tabulated for the case of ellipsoids and elliptic cylinders. No applications have been attempted as the applications given in the paper under reference can easily be repeated for this also.

In a recent paper Vold ${ }^{1}$ among other things has developed an expression for the interaction energy between two ellipsoidal particles with semiaxes a, b, c and α, β, γ situated in any manner relative to other, the distance between their centres being R. She has taken the inverse sixth power of distance as the law of interaction and has evaluated the interaction energy in terms of a series in ascending powers of $1 / R$. She has recorded in an explicit form the coefficients which are necessary for calculating the energy upto the first three terms of this series. On account of the uncertainty about the law of interaction between the particles we have thought it fit to reconsider the problem discussed by Vold assuming the law of interaction as the ($2 k$) th power of the reciprocal of the distance, where k may have fractional values. We have expressed the main result (to the same degree of approximation as in the reference 1) in terms of the various order moments for the two particles and have recorded their explicit values for the cases when the particles are ellipsoids and elliptic cylinders in a table at the end. The values of the moments when the particles are spheroidal or spherical can easily be obtained from the first column (of the Table) as particular cases, while when the particles are circular cylinders the second column gives their values. We have not attempted any applications of the derived expression, In fact the whole of the discussion given in the reference 1 could easily be repeated for any specific law of force, any orientation and
any shape of the particles. We have assumed the particles to be symmetris about three muually perpendicular planes passing throwigh their centren.

Let the two particles be S and S^{\prime} and their cemtes be at O and O°. The dircetion-cosines of the line $O O^{\prime}$ with respect to the axes of symmetry $O x_{2}, O x_{1,}, O_{x}$ of S be $\lambda_{1+} \lambda_{2}, \lambda_{3}$ and the same with reypect to the ane , it symmetry $O^{\prime} x_{1}^{\prime}, O^{\prime} x_{2}^{\prime}, O^{\prime} x_{3}^{\prime}$ and of S^{\prime} be λ_{1}^{\prime}, λ_{2}^{\prime}, λ_{3}^{\prime}. Aso lel ($i_{1,}, i_{1}, i_{i,}$), $\left(l_{6}, l_{33}, l_{32}\right),\left(l_{13}, l_{23}, l_{33}\right)$ be the direction-cosines of the axes at symmetry $O^{\prime} x_{1}^{\prime}, O^{\prime} x_{2}^{\prime}, O^{\prime} x_{3}^{\prime}$ of S^{\prime} with respect to those of S. It followh that ($l_{11}, l_{3,}, f_{i}$). $\left(l_{31}, l_{21}, l_{27}\right),\left(l_{31}, l_{32}, l_{33}\right)$ are the direction-cosines of the ake of symmetry $O x_{1}, O x_{2}, O x_{3}$ of S with respect to those of S^{\prime},
and

$$
\begin{equation*}
\lambda_{j}^{\prime}=\lambda_{1} l_{1 j}+\lambda_{2} l_{j}+\lambda_{3} l_{3 j}, \quad j=1,2,3 . \tag{1}
\end{equation*}
$$

In the sequel we shall adopt the following convention with revard to the suffixes.

$$
\begin{gathered}
x_{i}=x_{r}, \quad i \equiv r(\bmod 3) \quad \text { and } \quad 0<r<3 \\
x_{j}^{\prime}=x_{s}^{\prime}, \quad j \neq s(\bmod 3) \quad \text { and } \quad 0<s<3 . \text { atc. }
\end{gathered}
$$

Fig. I
The axes of symmetry of the two particles and their relative Oricatasion

The various order moments used in the result are defined below:

$$
\begin{align*}
& M=-\operatorname{mass} \text { of } S \quad M^{\prime}=\text { mass of } S^{\prime} \tag{3.1}\\
& A_{j}=\int_{s} x_{i}^{\prime} \rho d d^{\prime} \quad A_{j}^{\prime}=\int_{n^{\prime}} x_{j}^{\prime 2} \rho^{\prime} d v^{\prime} \tag{3.2}\\
& B_{i}=\int_{s} x_{i}^{2} \rho d r \quad B_{j}^{\prime}=\int_{j}^{\prime}, x_{j}^{\prime+} \rho^{\prime} d j^{\prime} \tag{3.3}\\
& C_{i}-j_{v} x_{i+1}^{2} x_{i=2}^{2} \rho d v \quad C_{j}^{\prime}=f_{j}^{\prime}, x_{j}^{\prime 2}, x_{j}^{\prime}, 2 \rho^{\prime} d v^{\prime} \tag{3.4}\\
& D_{1}=\int_{s} x_{j}^{5} p d r \quad D_{j}^{\prime}=\int_{\Delta} x_{j}^{\prime 6} \rho^{\prime} d v^{\prime} \tag{3.5}\\
& E_{i}=\int_{s} x_{i=1}^{+} x_{1}^{2} 2 \rho d r \quad E_{l}^{\prime}-\int_{s} x_{j: 1}^{\prime 4} x_{j+2}^{\prime 2} \rho^{\prime} d v^{\prime} \tag{3.6}\\
& F_{i}=\int_{i} x_{i=1}^{2} x_{i!2}^{4} \rho d v \quad \quad F_{j}^{\prime}=\int, x_{j}^{\prime 2}, x_{j+2}^{\prime 4} \rho^{\prime} d v^{\prime} \tag{3.7}\\
& H=\int_{x} x_{1}^{2} x_{2}^{2} x_{3}^{2} \rho d y \quad H^{\prime}=\int, x_{1}^{\prime 2} x_{2}^{\prime 2} x_{3}^{\prime 2} \rho^{\prime} d v^{*} \tag{3.8}
\end{align*}
$$

Assuming the law of interaction to be

$$
\begin{equation*}
\frac{G m m n^{\prime}}{r^{2 K}} \tag{4}
\end{equation*}
$$

between two particles of masses m and m^{\prime} at a distance r apart the interaction energy V between the two bodies S and S^{\prime} is given by

$$
\begin{equation*}
V=G \int \cdots \int \frac{\rho d x_{1} d x_{2} d x_{3} \rho^{\prime} d x_{1}^{\prime} d x_{2}^{\prime} d x_{3}^{\prime}}{\left[\left(x_{1}-x_{1}^{\prime}\right)^{2}+\left(x_{2}-x_{2}^{\prime}\right)^{2}+\left(x_{3}-x_{3}^{\prime}\right)^{2}\right]^{2}} \tag{5}
\end{equation*}
$$

where the integration extends over the entire masses of the two interacting bodies. Following the usual methods of expansion and retaining terms upto $(2 k+6)$ th power of $1 / R$, we find

$$
\begin{align*}
& \frac{v^{\prime}}{G}=\frac{M M^{\prime}}{R^{2 K^{\prime}}+} R^{2 R-2}\left[M^{\prime} \check{\left(\alpha \alpha_{i}\right.} A_{i}+M^{\prime \prime} \alpha_{j}^{\prime} A_{j}^{\prime}\right] \\
& +\underset{R^{2 k}}{1}\left\{M^{\prime} \Sigma\left(\beta_{i} B_{i}+\gamma_{i} C_{i}\right)+\Sigma \Sigma^{\prime}\left(\delta_{i}+\epsilon_{i} \lambda_{j}^{\prime 2}+\zeta_{i} R_{i j}^{2}+\eta_{i} l_{i j} \lambda_{j}^{\prime}\right) A_{i} A_{j}^{\prime}+\right. \\
& \left.+M \Sigma^{\prime}\left(\beta_{j}^{\prime} B_{i}^{\prime}+\gamma_{j}^{\prime} C_{j}^{\prime}\right)+\Sigma^{\prime}\left(\delta_{j}^{\prime}+\epsilon_{j}^{\prime} \lambda_{i}^{2}+\zeta_{j}^{\prime} I_{i i}^{2}+\eta_{j}^{\prime} J_{i} \lambda_{i}\right) A_{i} A_{j}^{\prime}\right]+ \\
& +\frac{1}{R^{2 k+6}}\left[M^{\prime} \sum\left(\theta_{i} D_{i}+\kappa_{i} E_{i}+\mu_{i} F_{i}+v_{1} H\right)\right. \\
& +\Sigma \Sigma^{\prime}\left(\xi_{i}+o_{i} \lambda_{j}^{\prime 2}+\omega_{i} l_{i j}^{2}+\rho_{i} l_{i j} \lambda_{j}^{\prime}\right) B_{i} A_{i}^{\prime}+ \\
& +\sum \Sigma^{\prime}\left(\sigma_{i}+\tau_{i} \lambda_{j}^{\prime 2}+\phi_{i} l_{j j}^{2}+x_{i} l_{i+1, j} I_{i+2, j}+\right. \\
& \left.+\psi_{i} I_{i+1, j} \lambda_{j}^{\prime}+\omega_{i} I_{i+2, j} \lambda_{j}^{\prime}\right) C_{i} A_{j}^{\prime}+ \\
& +M \Sigma\left(\theta_{j}^{\prime} D_{j}^{\prime}+k_{j}^{\prime} E_{j}^{\prime}+\mu_{j}^{\prime} F_{j}^{\prime}+v_{j}^{\prime} H^{\prime}\right) \\
& +\Sigma \Sigma^{\prime}\left(\xi_{j}^{\prime}+o_{j}^{\prime} \dot{\lambda} \lambda^{2}+\widetilde{\omega}_{j}^{\prime} I_{i j}^{2}+\rho_{j}^{\prime} I_{i j} \lambda_{i}\right) B_{j}^{\prime} A_{i} \\
& +\Sigma \Sigma^{\prime}\left(\sigma_{j}^{\prime}+\tau_{j}^{\prime} \lambda_{i}^{2}+\phi_{j}^{\prime} I_{j}^{2}+x_{j}^{\prime} l_{i, i+1} I_{i, j+}\right. \\
& \left.\left.+\psi^{\prime} l_{i, j+1} \lambda_{i}+\omega_{j}^{\prime} l_{i, j+2} \lambda_{i}\right) C_{j}^{\prime} A_{i}\right] \tag{6}
\end{align*}
$$

The suffixes i and j run over $1,2,3$ and the dimensionless coellicients $\alpha_{i}, \beta_{i} \ldots \omega_{t}$ and $\alpha_{j}^{\prime}, \beta_{j}^{\prime} \ldots, \omega_{j}^{\prime}$ are given by

$$
\begin{align*}
& \pi_{1}=c_{1}+4 c_{2} \lambda_{i}^{2} \tag{7.1}\\
& \beta_{1}=c_{4}+12 c_{3} \lambda_{i}^{2}+16 c_{4} \lambda_{i}^{4} \tag{7.2}\\
& y_{i}=2 c_{2}+12 c_{3}-12 c_{3} \lambda_{i}^{2}+96 c_{4} \lambda_{i \leq 1}^{2} \lambda_{i=2}^{2} \tag{7.3}\\
& \delta_{i}=c_{2}+12 c_{3} \lambda_{i}^{2} \\
& \epsilon_{i}=48 c_{4} \lambda_{i}^{3} \\
& \zeta_{i}=2 c_{2} \tag{7.11}\\
& \text { It }=24 c_{3} \lambda_{i} \tag{7.7}\\
& \theta_{i}=c_{3}+24 c_{4} \lambda_{i}^{2}+80 c_{5} \lambda_{i}^{4}+64 c_{6} \lambda_{i}^{6} \tag{7.8}\\
& \kappa_{i}=3 c_{3}+24 c_{4}\left(2 \lambda_{i+1}^{2}+\lambda_{i+2}\right)+80 c_{5}\left(\lambda_{i+1}^{t}+6 \lambda_{i=1}^{2} \lambda_{i}^{2}\right) \mid 96 \rho_{0} \lambda_{1}^{1} \lambda_{2}= \tag{7.9}\\
& \mu_{i}=3 c_{3}+24 c_{4}\left(\lambda_{i+1}^{2}+2 \lambda_{i, 2}^{2}\right)+80 c_{5}\left(\lambda_{l+2}^{4}+6 \lambda_{i: 1}^{2} \lambda_{i}^{2}\right)+960_{i_{0}} \lambda_{i}^{2} \lambda_{i}^{4} \lambda_{2} \tag{7.10}\\
& \nu_{i}=2 c_{3}+16 c_{4}+480 c_{5} \lambda_{i+1}^{2} \lambda_{i 12}^{3}+1920 c_{6} \lambda_{1} \lambda_{2}^{2} \lambda_{5}^{2} \tag{7.11}\\
& \xi_{l}=3 c_{3}+48 c_{4} \lambda_{i}^{2}+80 c_{5} \lambda_{i}^{4} \tag{7.12}\\
& o_{i}=24 c_{4}+480 c_{5} \lambda_{1}^{g}+960 c_{6} \lambda_{1}^{4} \\
& \widehat{\omega}_{i}=12 c_{3}+96 c_{4} \lambda_{i}^{2} \tag{7.14}\\
& \rho_{i}=192 c_{4} \lambda_{i}+640 c_{5} \lambda_{i}^{3} \tag{7.15}\\
& \sigma_{i}=18 c_{3}+144 c_{4}-144 c_{4} \lambda_{i}^{5}+480 c_{5} \lambda_{1,1}^{2} \lambda_{1}^{2}, \tag{7.111}\\
& \tau_{l}=144 c_{4}+480 c_{5}-480 c_{5} \lambda_{i}^{2}+5760 c_{6} \lambda_{i}^{4} \lambda_{i}^{2} 2 \tag{7.17}\\
& \phi_{i}=-12 c_{3}-96 c_{4} \tag{7.18}\\
& x_{i}=576 c_{4} \lambda_{y_{2}} \lambda_{11_{2}} \tag{7.19}\\
& \psi_{i}=1920 c_{5} \lambda_{i+1} \lambda_{i+2}^{2} \tag{7.20}\\
& \omega_{i}=1920 c_{5} \lambda_{i+1}^{2} \lambda_{i: 2} \tag{7.21}
\end{align*}
$$

$c_{1}, c_{2} \ldots c_{6}$ being the binomial coefficients, viz.

$$
\begin{equation*}
c_{r}=(-1)^{r} \frac{k(k+1) \ldots(k+r-1)}{r!} \tag{B}
\end{equation*}
$$

We get $\alpha_{i}^{\prime}, \beta_{j}^{\prime}, \ldots \omega_{j}^{\prime}$ from $\alpha_{i}, \beta_{i}, \ldots \omega_{i}$ by changing λ_{i} to λ_{i}^{+}.
In the following table we give the expressions for the various order moments required in the above approximate expression for γ, in the two cases, viz.:
(i) when the particle is an ellipsoid, and
(ii) when it is an elliptic cylinder.

Table I

	Ellipsoid with semi axey a, b, c along $O x_{1}, O x_{2}, O x_{3}$ respectively	Cylinder with elliptic section having semiaxes a, b parallel to $O x_{1}, O x_{2}$ respectively and helght $2 h$ parallel to $O X_{3}$

M	$(4 / 5) \pi a b c$	$2 \pi a b h$
A_{1}	$(4 / 15) \pi a^{3} b c$	$(1 / 2) \pi a^{3} b / h$
A_{2}	$(4 / 15) \pi a b^{3} c$	$(1 / 2) \pi a b^{3} h$
A_{3}	$(4 / 15) \pi a b c^{3}$	$(2 / 3) \pi a b h^{3}$
B_{1}	$(4 / 35) \pi a^{5} b c$	$(1 / 4) \pi a^{5} b h$
B_{2}	$(4 / 35) \pi a b^{5} c$	$(1 / 4) \pi a b^{5} h$
B_{3}	$(4 / 35) \pi a b c^{5}$	$(2 / 5) \pi a b h^{5}$
C_{1}	$(4 / 105) \pi a b^{3} c^{3}$	$(1 / 6) \pi a b^{3} h^{3}$
C_{3}	$(4 / 105) \pi a^{3} b c^{3}$	$(1 / 6) \pi a^{3} b h^{3}$
C_{3}	$(4 / 105) \pi a^{3} b^{3} c$	$(1 / 12) \pi a^{3} b^{3} h$
D_{1}	$(4 / 63) \pi a^{7} b c$	$(5 / 32) \pi a^{7} b h$
D_{2}	$(4 / 63) \pi a b^{7} c$	$(5 / 32) \pi a b^{7} h$
D_{3}	$(4 / 63) \pi a b c^{7}$	$(2 / 7) \pi a b h^{7}$
E_{1}	$(4 / 315) \pi a b^{5} c^{3}$	$(1 / 12) \pi a b^{5} h^{3}$
E_{2}	$(4 / 315) \pi a^{3} b c^{5}$	$(1 / 10) \pi a^{3} b h^{5}$
E_{3}	$(4 / 315) \pi a^{5} b^{3} c$	$(1 / 32) \pi a^{5} b^{3} h$
F_{1}	$(4 / 315) \pi a b^{3} c^{5}$	$(1 / 10) \pi a b^{3} h^{5}$
F_{2}	$(4 / 315) \pi a^{5} b c^{3}$	$(1 / 12) \pi a^{5} b h^{3}$
F_{3}	$(4 / 315) \pi a^{3} b^{5} c$	$(1 / 32) \pi a^{3} b^{5} h$
H	$(4 / 945) \pi a^{3} b^{3} c^{3}$	$(1 / 36) \pi a^{3} b^{3} h^{3}$

We may mention here that the above expression for V is valid only when L / R, where L is a characteristic length defining the size of a particle, is so small that

R. SANKAR

the terms of order $(L / R)^{8}$ and higher powers of (L / R) are negligibly small in comparison with 1 .

Acknowladgment

I am grateful to Prof. P. L. Bhatnagur for the suggestion of the mit lem and guidance throughout the preparation of the paper.

1. Vold, M. J.

Rliference

. Proc. Ind, Acact 1957, 40. Sece A, 152.160.

