JOURNAL OF

THE

INDIAN INSTITUTE OF SCIENCE

VOLUME 42

ELASTIC BEHAVIOUR OF MATTER UNDER
 VERY HIGH PRESSURES
 General Deformation

By S. Bhagavantam and E. V. Chelam
(Director's Research Laboratory, Indian, Instutate of Scrence, Bangalore-12)

Recerved on Jutne 21, 1960

Abstract

Expressions have been derived for the effectuve elastic constants in respect of a substance possessing mittal cubic symmetry and subjected to a general type of finite deformation. Some specral'cases of particular menterestare deduced therefrom by introducing suitable relationshps between the vanous parameters. Results for the simple case of Unform Compression dealt with in an earler paper, easily follow.

INTRODUCTION:

A method of evaluating the effective elastuc constants from the expression for the strain energy, utilumg the theory of non-linear elasticity, has been given in detail in a prevous paper by us (1960). In that paper, the special case of unform hydrostatic stress apphed to a substance with cubre symmetry was considered. In the present paper, the initial finite deformation will be assumed to be of a general type, and a general infinitesimal deformation will be superposed on the same. The effective elastic constants for such a case are derived in terms of the second and third order elastic constants of the substance in the stress free state, so as to include up to the sccond powers of the intial finte strain components. By giving particular values to these components, the effective elastic constants appropriate to (1) a triaxal strain, (2) a uniaxial stram and (3) a shear are derived. It has also been indicated that several other types of strains or combinations of strains could be easily dealt with as particular cases of this general treatment.

Strann Matrix for a General Deformatov

For the notation and other detals of the nethod employed, reference should be made to the paper coted earler. Here, the applathon or the nethed to the general case is directly worked out

As a result of the general finte deformation let a point sith wo-brimates, a, b, c referred to a convenient space fixed axes be carned over to ihe powithr: x_{0}, y_{0}, z_{0} referred, for conventence to the same axes, so that

$$
\begin{equation*}
x_{0}=y_{0} a ; \quad x_{0}=x_{0}, y_{0} ; z_{0} ; \quad a=a, b, c \tag{11}
\end{equation*}
$$

and J_{0} is the Jacobian of the iransformaton with six independent component, as given by [2].

$$
J_{0}=\left|\begin{array}{rrr}
1+\theta_{1} & \theta_{5} & \theta_{3} \tag{2}\\
\theta_{6} & 1+\theta_{2} & \theta_{7} \\
\theta_{5} & \theta_{4} & 1 \neq \theta_{1}
\end{array}\right|
$$

This entals that

$$
\begin{align*}
& x_{0}=\left(1+\theta_{1}\right) a+\theta_{6} b+\theta_{4} c \\
& y_{0}=\theta_{6} a+\left(1+\theta_{2}\right) b+\theta_{+} c^{*} \\
& z_{0}=\theta_{5} a+\theta_{4} b+\left(1+\theta_{4}\right) c \tag{1}
\end{align*}
$$

We have assumed that J_{0} is symmetrac. In that form, it is fot the mont general displacement, as the case of a stmple sheur is mot covered. The separration of the rotational or antisymmetric pait of J_{4} will be vald ho leme at infintesmal deformations are considered. In the finite theory, the stran matrix elements are given by $\eta=?\left(J^{*} J-E_{3}\right)$ where J * che hambpont of J and E_{3} is the unt matrix of dmension 3. The rotational part canom be removed from J itself, but will get so removed after $J^{*} J$ is formed and E_{3} is subtracted therefrom. To begin with therefore, one has to statt what an wix symmetrical J with nune independent components if one wants to cofer the nost general cases. However, the resuiting calculations become rather nowiehty and it does not seem worthwhile to undertake such caleulations for our present purpose. The case of a simple shear alone will be treated separately atithother paper as a particular case.

The strain matrix η correspondang to J_{0} will have elements gtron by

$$
\begin{array}{ll}
\eta_{1}=\theta_{1}+\frac{1}{2}\left(\theta_{1}^{2}+\theta_{5}^{2}+\theta_{6}^{2}\right) & \eta_{4}=\theta_{4}+\frac{1}{2}\left(\theta_{2} \theta_{4}+\theta_{1} \theta_{4}+\theta_{8} \theta_{4}\right) \\
\eta_{2}=\theta_{2}+\frac{1}{2}\left(\theta_{2}^{2}+\theta_{6}^{2}+\theta_{4}^{2}\right) & \eta_{5}=\theta_{5}+\frac{1}{2}\left(\theta_{6} \theta_{5}+\theta_{1} \theta_{4}+\theta_{4} \theta_{6}\right) \\
\eta_{7}=\theta_{3}+\frac{1}{2}\left(\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}\right) & \eta_{6}=\theta_{6}+\frac{1}{2}\left(\theta_{1} \theta_{6}+\theta_{2} \theta_{6}+\theta_{4} \theta_{5}\right)
\end{array}
$$

As a result of the further infinitesimal deformation let the point $\left(x_{0}, y_{0}, a_{n}\right)$ move to x, y, z where
Soser

$$
\begin{aligned}
& x=\left(1+\delta_{1}\right) x_{0}+\delta_{6} y_{0}+\delta_{500} \\
& y=\delta_{6} x_{3}+\left(1+\delta_{2}\right) y_{0}+\delta_{4} z_{0} \\
& z=\delta_{5} x_{0}+\delta_{4} y_{0}+\left(1+\delta_{3}\right) z_{01}
\end{aligned} \quad \delta_{5}=\left|\begin{array}{rrr}
1+\delta_{1} & \delta_{6} & \delta_{5} \\
\delta_{6} & 1+\delta_{2} & \delta_{4} \\
\delta_{5} & \delta_{1} & 1+\delta_{3}
\end{array}\right|
$$

so that

$$
x=J_{5} x_{0},\binom{x=x, y, z}{x_{0}=x_{0}, y_{0,}, z_{0}}
$$

The δ 's express the usual changes in lengih and changes mangles, etc, all referred to the already fintely stramed state as the base state which we may refer to as the η state. As a result of these two deformations J_{0} and J_{5}, the point a, b, c will finally go over to (x, y, z) where

$$
\begin{equation*}
x=J_{a}, \quad J=J_{0} \cdot / A_{0} \tag{6}
\end{equation*}
$$

The stran matrix elentents of this combined deformation will be given by $\eta=\frac{1}{2}\left(J^{4} J-E_{3}\right) \quad$ Noting that

$$
\begin{equation*}
\left(J_{\delta} J_{0}\right)^{*}=J_{0}^{*} J_{\delta}^{*} ; \text { we get } \eta=\frac{1}{2}\left[J_{0}^{*} J_{\delta}^{*} J_{\bar{j}} I_{0}-E_{5}\right] \tag{7}
\end{equation*}
$$

$\frac{1}{2}\left(J_{\delta}^{*} J_{3}-E_{3}\right)$ gives the clements of the strain matrix cortesponding to a general infinitesimal deformation. Either from the form of [4] or by direct working, we obtan its components as

$$
\begin{array}{ll}
\delta \eta_{1}=\delta_{1}+\frac{1}{2}\left(\delta_{1}^{2}+\delta_{5}^{2}+\delta_{6}^{2}\right) & \delta \eta_{4}=\delta_{4}+\frac{1}{3}\left(\delta_{2} \delta_{4}+\delta_{3} \delta_{4}+\delta_{5} \delta_{6}\right) \\
\delta \eta_{2}=\delta_{2}+\frac{1}{2}\left(\delta_{2}^{2}+\delta_{5}^{2}+\delta_{4}^{2}\right) & \delta \eta_{5}=\delta_{5}+\frac{7}{2}\left(\delta_{1} \delta_{5}+\delta_{3} \delta_{3}+\delta_{4} \delta_{6}\right) \tag{8}\\
\delta \eta_{3}=\delta_{3}+\frac{1}{4}\left(\delta_{3}^{2}+\delta_{4}^{2}+\delta_{5}^{2}\right) & \delta \eta_{6}=\delta_{6}+\frac{1}{3}\left(\delta_{1} \delta_{6}+\delta_{2} \delta_{6}+\delta_{4} \delta_{5}\right)
\end{array}
$$

In terms of these components, the strain matrix [7] corresponding to the entire deformation, (ie., finite plus infintesimal) will be given by $\eta=$
$\left|\begin{array}{rrr}1+\theta_{1} & \theta_{6} & \theta_{1} \\ \theta_{6} & 1+\theta_{2} & \theta_{4} \\ \theta_{5} & \theta_{4} & 1 \div \theta_{3}\end{array}\right| \begin{array}{lll}\delta \eta_{1}+\frac{1}{2} & \delta \eta_{6} & \delta \eta_{5} \\ \delta \eta_{5} & \delta \eta_{2}+\frac{1}{2} & \delta \eta_{4} \\ \delta \eta_{5} & \delta \eta_{4} & \delta \eta_{3}+\frac{1}{2}\end{array}\left|\begin{array}{rrrr}1+\theta_{1} & \theta_{6} & \theta_{5} \\ \theta_{6} & 1+\theta_{2} & \theta_{4} \\ \theta_{5} & \theta_{4} & 1+\theta_{3}\end{array}\right|-\frac{E_{3}}{2}[9]$
Consequant on the δ deformation therefore, each of the stran elements $\eta_{1} \ldots \eta_{G}$ in [4] has increased by an amount $\Delta \eta_{1}, \ldots \Delta \eta_{6}$ whose values are glven from [9] by
$\Delta \eta_{1}=\delta \eta_{1}\left(1+\theta_{1}\right)^{2}+\delta \eta_{2} \theta_{6}^{2}+\delta \eta_{3} \theta_{5}^{2}+2 \delta \eta_{4} \theta_{5} \theta_{6}+2 \delta \eta_{5}\left(1+\theta_{1}\right) \theta_{5}+2 \delta \eta_{6}\left(1+\theta_{1}\right) \theta_{6}$
$\Delta \eta_{2}=\delta \eta_{2}\left(1+\theta_{2}\right)^{2}+\delta \eta_{3} \theta_{4}^{2}+\delta \eta_{2} \theta_{6}^{2}+2 \delta \eta_{5} \theta_{6} \theta_{4} \div 2 \delta \eta_{6}\left(1+\theta_{2}\right) \theta_{6}+2 \delta \eta_{4}\left(1+\theta_{2}\right) \theta_{4}$
$\Delta \eta_{3}=\delta \eta_{3}\left(1+\theta_{3}\right)^{2}+\delta \eta_{1} \theta_{5}^{2}+\delta \eta_{2} \theta_{4}^{2}+2 \delta \eta_{5} \theta_{4} \theta_{5}+2 \delta \eta_{4}\left(1+\theta_{3}\right) \theta_{4}+2 \delta \eta_{5}\left(1+\theta_{3}\right) \theta_{3}$

$$
\begin{aligned}
& +\delta_{\eta_{1}} \theta_{5} \theta_{6}+\delta_{\eta_{2}}\left(1+\theta_{2}\right) \theta_{4}: \delta_{\eta_{2}}\left(1: \theta_{i}\right) \theta_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +\delta \eta_{2}\left(\theta_{0} \theta_{4}+\delta \eta_{1}\left(1+\theta_{1}\right) \theta_{4}+B \eta_{i}\left(1: \theta_{1}\right) \theta_{2} .\right.
\end{aligned}
$$

$$
\begin{align*}
& +\delta \eta_{3} \theta_{4} \theta_{5}+\delta \eta_{1}\left(1+\theta_{1}\right) \theta_{6}+\delta \eta_{\eta}\left(1+\theta_{2}\right) \theta_{\mathrm{t}} \tag{19}
\end{align*}
$$

It may be noted here that Δ pan be obtumed fran Δ gh, and $\Delta \eta$, from $\Delta \eta_{+}$by the mere cyclic pormutation $S-\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)(456)$ of the hatmu sufferes attached to θ ated $\delta \eta$. Subsequently, the shme permationms an he used to give Δ_{73} from $\Delta \eta_{2}$ and Δp_{6} from Δn_{9}. This will he foumblatur device for simplifying the calculations.

Stram Entrgy ano the Elbective Glasik Comadis

The general expression for the stran energy for a whstame with cubti: symmetry, inclusive of second and third order terms is geter, when referres to a unit volume of the intial stress fice state, by

$$
\begin{aligned}
& \phi=\frac{1}{2} c_{11}\left(\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}\right)+c_{12}\left(\eta_{1} \eta_{2}+\eta_{2} \eta_{1}+\eta_{1} \eta_{1}\right)!2 c_{41}\left(\eta_{1}^{7}: \eta_{1}^{2}+n_{1}^{2},\right. \\
& +C_{111}\left(\eta_{1}^{2}+\eta_{2}^{3}+\eta_{3}^{3}\right)+C_{12}\left\{\eta_{1} \eta_{2}\left(\eta_{1}+\eta_{2}\right)+\eta_{21} \eta_{2}(\eta: \eta): \eta_{1}, \eta\left(\eta_{1}: \eta_{i}\right):\right.
\end{aligned}
$$

$$
\begin{align*}
& +C_{15 s}\left[\eta_{1}\left(\eta^{2}+\eta^{\frac{2}{6}}\right)+\eta_{2}\left(\eta^{2}+\eta_{n}^{2}\right)+\eta \div\left(\eta_{2}^{2} \div \eta^{2}\right)_{1}^{\prime}\right.
\end{align*}
$$

If as a result of the infinetesmal deformation, the orimmal finte stath; $\eta_{1} \ldots \eta_{6}$ have become $\eta_{1} \div \Delta \eta_{1} \ldots \eta_{6} r \Delta \eta_{6}$, the inerese in energy das (a) the same, is given by the expression $\phi(\eta+\Delta \eta)-\phi(\eta)$, whuth ean u developed as a power sertes in the $\Delta \eta$ using Taylor's theorem.

$$
\begin{equation*}
\phi(\eta+\Delta \eta)-\phi(\eta)=\sum_{i n} \Delta \eta+\frac{\eta^{2} \phi}{2} \Delta \eta_{r} \Delta \eta_{k} ; \ldots \tag{12}
\end{equation*}
$$

We retain up to quadratic terms only in the $\Delta \eta$, as they are treated as infintesimal. Here the derivatives

$$
\frac{\partial \phi}{\partial q_{r}}, \frac{\partial_{r}^{2} \phi}{\partial \eta_{r} i \eta_{r}}
$$

can be easily obtained from [1I] and they are to be evaluated at $\Delta \eta$. 0 . The values are given in [15]. With the use of equations [10], which express $\Delta \eta$ as a linear function of $\delta \eta$, we can express $\psi(\eta+\Delta \eta)-\phi(\eta)$ given above as a quadratue function in $\delta \eta$. This difference in energy however refers to a unjt
volume of the stress free state Diving it by the determinant of J_{0} expresses it per unit volume of the η state. Equating finally with ϕ^{\prime}, where ϕ^{\prime} is the total energy of the nfintesimal deformation, we get expressions for all the coeficients in ψ^{\prime} by a comparison of the coeflicients of smalar powers. Thus

$$
\begin{equation*}
\frac{1}{\operatorname{Det}}\left[\phi^{\prime}(\eta+\Delta \eta)-\phi(\eta)\right]=\phi^{\prime}(\delta \eta) \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi^{\prime}(\delta \eta)=\sum c_{1}^{\prime} \delta \eta_{1}+2 \Sigma c_{4}^{\prime} \delta \eta_{4}+\frac{1}{2} \sum b_{14} \delta \eta_{1}^{2}+\sum b_{12} \delta \eta_{1} \delta \eta_{2}+2 \Sigma b_{44} \delta \eta_{4}^{2} \\
&+2 \Sigma b_{45} \delta \eta_{4} \delta \eta_{5}+2 \Sigma b_{1+} \delta \eta_{1} \delta \eta_{4} \\
& \frac{1}{\text { Det } f_{0}}=1-\theta_{1}-\theta_{2}-\theta_{3}+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{2} \theta_{1}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2} \tag{14}
\end{align*}
$$

It will be noted here that $c_{t}^{\prime}, c_{4}^{\prime}$, etc , are coefficients of the linear terms, while $b_{1 t}$, etc., are the coefficuents of the quadratic terms in ϕ^{\prime}. They can be represented by $b_{r s}(r \leq s ; r, s=1,2 \ldots 6)$ and are thus 21 in all. It will also be observed that except for $b_{11}, b_{22}, b_{33}, b_{12}, b_{23}, b_{13}$ every other $b_{r 9}$ occurs with a multiplying factor of 2 . In ϕ^{\prime}, we retain only upto second powers of $\delta \eta$. On the left side, we retata all terms up to the squares and products of the finite strain derivatives $\theta_{1} \ldots \theta_{6}(t e)$ the cubic powers of these are neglected. The values of

$$
\frac{d \phi}{a \eta}, \frac{a^{2} \psi}{a \eta, y}
$$

used in [12] are given below.

$$
\begin{aligned}
& \frac{\partial \phi}{\partial \eta_{1}}=c_{11} \eta_{1}+c_{12}\left(\eta_{2}+\eta_{3}\right)+3 C_{111 \eta_{1}^{2}}^{2}+C_{122}\left(\eta_{2}^{\frac{2}{2}}+\eta_{1}^{2}\right)+2 C_{122} \eta_{1}\left(\eta_{2}+\eta_{3}\right) \\
& +C_{12: \eta_{2} \eta_{7}}+C_{144} \eta_{4}^{2}+C_{155}\left(\eta_{5}^{2}+\eta_{5}^{2}\right) \\
& \frac{\partial \phi}{\partial \eta_{2}}=c_{11} \eta_{2}+c_{12}\left(\eta_{3}+\eta_{1}\right)+3 C_{111} \eta_{2}^{2}+C_{122}\left(\eta_{3}^{2}+\eta_{1}^{2}\right)+2 C_{112} \eta_{2}\left(\eta_{3}+\eta_{1}\right) \\
& +C_{123} \eta_{1} \eta_{1}+C_{144} \eta_{5}^{\frac{3}{5}}+C_{155}\left(\eta_{6}^{2}+\eta_{4}^{2}\right) \\
& \frac{\partial \phi}{\partial \eta_{3}}=c_{11} \eta_{\eta}+c_{12}\left(\eta_{1}+\eta_{2}\right)+3 C_{11} \eta_{3}^{2}+C_{112}\left(\eta_{1}^{2}+\eta_{2}^{2}\right)+2 C_{121} \eta_{3}\left(\eta_{1}+\eta_{2}\right) \\
& +C_{123} \eta_{1} \eta_{2}+C_{144} \eta_{0}^{2}+C_{155}\left(\eta_{1}^{2}+\eta_{3}^{2}\right) \\
& \frac{\partial \phi}{\partial \eta_{1}}=4 C_{4.4} \eta_{4}+C_{456} \eta_{5} \eta_{6}+2 C_{144} \eta_{1} \eta_{+}+2 C_{155}\left(\eta_{2}+\eta_{7}\right) \eta_{4} \\
& \frac{\partial \phi^{2}}{\partial \eta_{5}}=4 c_{44} \eta_{5}+C_{466} \eta_{6} \eta_{4}+2 C_{144} \eta_{2} \eta_{5}+2 C_{1: 55}\left(\eta_{5}+\eta_{1}\right) \eta_{5}
\end{aligned}
$$

$$
\frac{\partial^{2} \phi}{i \eta_{1} \partial \eta_{6}}=\frac{h^{2} \phi}{i \eta_{2} s \eta_{6}}-2 C_{1 s s} \eta_{6}
$$

Here $\eta_{1} \ldots \eta_{6}$ are elements of the strain matrox u to the initinl finite strains. They are functrons of $\theta_{3} \ldots \theta_{0}$ as given in [4]. Substutulag theye vilues in [13], and equating powers of $\delta \eta_{1}, \delta \eta_{1}^{2}, \delta \eta_{1} \delta \eta_{2}$, ete, we get the valimy of tite first order coefficients $c_{1}^{\prime}, c_{2}^{\prime} \ldots c_{6}^{\prime}$ as also the valuce of all the $b_{r}(r, s$ itw 0).
ϕ^{\prime} is so far expressed in terms of the strain components ofy. It can now be expressed in terms of the displacement derivatives $\delta_{1} \ldots \delta_{0}$ by uning retations [8]. Retaining up to the quadratic terms in the 8 's, we can write ght $^{\prime}$ ti

$$
\begin{equation*}
\phi^{\prime}=\Delta W+\phi \tag{16}
\end{equation*}
$$

where $\phi_{\mathrm{r}}=\frac{1}{2} \sum c_{11}^{\prime} \delta_{1}^{2}+\sum c_{12}^{\prime} \delta_{1} \delta_{2}+2 \sum c_{44}^{\prime} \delta_{4}^{2}+2 \sum c_{45}^{\prime} \delta_{1} \delta_{5}+2 \sum c_{14}^{\prime} \delta_{1} \delta_{4}$
and $\Delta W=c_{1}^{\prime} \delta_{2}+c_{2}^{\prime} \delta_{2}+c_{3}^{\prime} \delta_{3}+2 c_{4}^{\prime} \delta_{4}+2 c_{5}^{\prime} \delta_{5}+2 c_{8}^{\prime} \delta_{5}$
and $c_{11}^{\prime}, c_{12}^{\prime}$, etc., are new constants connected by simple relationships with b_{11}, b_{12}, etc., and with the first order constants $c_{1}^{\prime} \ldots c_{f}^{\prime}$. It has been shown in the preyous paper of the authors referred to earlier that $t_{1}^{\prime}, c_{2}^{\prime} \ldots e_{6}^{\prime}$ represent the components $T_{1}, T_{2} \ldots T_{6}$ of the intial stress. \triangle wherefore

$$
\begin{aligned}
& \frac{i^{2}}{B_{j}}=4 c_{1 \eta_{6}}+C_{4 C_{6} \eta_{1} \eta_{5}}+2 C_{1 \eta_{1} \eta_{3} \eta_{6}+2 C_{1 \sigma_{5}}\left(\eta_{1}+\eta\right) \eta_{1,},}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial \eta_{2} \eta_{4}}=\frac{\partial^{2} \phi}{\partial \eta_{5} \partial \eta_{4}}-2 C_{155 \eta_{4}} ; \left.\quad \frac{\partial^{2} \psi}{\partial \eta_{2} \eta_{3}}=c_{12} \right\rvert\, 2 C_{42}\left(\eta_{2}+\eta_{1}\right): \zeta_{2}^{*}+\eta_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial \eta_{3} \eta_{1}}=c_{12}+2 C_{122}\left(\eta_{1}+\eta_{1}\right)+C_{123} \eta_{2} ; \quad \quad{ }^{2} \eta_{7}=2 C_{14}+\eta_{5},
\end{aligned}
$$

represents the work done by these nitnally present stresses durng the infinttesimal displacement $\delta_{1} \ldots \delta_{5}, \phi^{\prime}$ represents the total energy required for causing the addtional infintesimal deformation, while ΔW indreates the part already ayalable for thas purpose in the shape of work done by the existing inutal stresses. The difference $\phi^{\prime} * \Delta W$ therefore represents the effective extra energy requred for causing the infintesimal deformation and this quantity has been denoted by ϕ_{c} and referred to as the "effective elastic energy' in our earlicr paper. The c_{11}^{\prime}, c_{12}, etc, occurtang in ϕ_{c} are called effective elastic constants and thoy completely speafy the elastic response of the substance to mfintesimal deformations superposed on the existing state of a general finte strain. It has also been indicated in the earher paper that ϕ_{e} and the effective elastic constants play an mportant role in determining the elastic stability of the substance. We now proceed to give expressions for these effective constanis. The coefficients $c_{1}^{\prime} \ldots c_{6}^{\prime}$ and b_{21}, b_{12}, etc, occurring in ϕ^{\prime} are already determmed as mentioned in an earlier paragraph. On writing ϕ^{\prime} in terms of δ_{1}. . δ_{3} and comparing with $\dot{\rho}_{c}$ we get simple relationships between the effective elastic constants $c_{r s}^{\prime}$ and the constants $b_{r s}$ and c_{r-}^{\prime}. The results, in respect of c_{r}^{r} and c_{r}^{\prime} are given in Table I. Although $b_{r s}$ are first directly determined and $c_{r,}^{\prime}$ are subsequently deduced therefrom, we give here, for the sake of simplicity values of c_{r}^{\prime} and $c_{r v}^{\prime}$ only. It will be noted that all these coefficients are doveloped up to the second powers of the intial strann components. The task of deriving all the coefficients is simplified when we observe as before that the permutation $S=\left(\theta_{1} \theta_{2} \theta_{3}\right)\left(\theta_{4} \theta_{5} \theta_{6}\right)$ and S^{2} can be employed to derive two constants simular to each $b_{r r}, c_{r}^{\prime}$ and c_{r}^{\prime}. Thus one needs to evaluate directly only 7 of the $b_{r e}$ and 2 of the $c_{r e}^{\prime}$

The values of the effective elastic constants in the special case of a triaxial strain are given in Table II. In Table III, we give sub-divisions of this case, which correspond to [1] a uniaxial compression and [2] unform compression In Table IV, we consider the case of a pure shear.

Acknowledgrment

One of us (E V. C.) is indebted to the Government of Inda in the Ministry of Communications, and to the Director General of Observatories, New Delh, for kind grant of study leave, which has rendered it possible for him to take up the present work.

Reference

1. Bhagavantam S. and Chelam E Y. .. Sroc. Ind Acad Sci., 1960, 52, Sec. A, 1-19.

Table I Genlral Deformánon
(A) Expressions for initial stress:

$$
\begin{aligned}
& \left.T_{1}=c_{1}^{\prime}=\theta_{1} c_{12}+\left(\theta_{2}+\theta_{3}\right) c_{12}+\theta_{1}^{2}\left(3 C_{111}+3_{1}^{3} c_{11}\right)+\left(\theta_{2}^{2}+4\right)^{1}\right)\left(c_{12}-\frac{1}{2} c_{12}\right) \\
& \left.+\theta_{4}^{2}\left(\sigma_{12}+C_{144}\right)+\left(A_{5}^{2}+\theta_{6}^{2}\right)\left(1 c_{11}+1 c_{1}+A_{1+4}\right) C_{14}\right) \\
& +\left(\theta_{1} l_{2}+\mu_{1} \theta_{3}\right)\left(2 C_{112}-c_{11}+c_{12}\right)+O_{2} \theta_{1}\left(c_{12} ; 2 r_{0}\right)
\end{aligned}
$$

Thus $\quad T_{2}=S T_{1} ; \quad T_{3}=S T_{2}=S^{2} T_{1}$

$$
\begin{aligned}
T_{4}=c_{4}^{\prime}=\theta_{4} 2 c_{44} & +\theta_{1} \theta_{4}\left(2 c_{12}-2 c_{44}+C_{144}\right)+\left(U_{2} y_{4}+\theta_{2} I_{4}\right)\left(c_{14} ; c_{12}: c_{44}:\left(c_{14}\right)\right. \\
& +\theta_{5} A_{6}\left(1 C_{4}^{1} C_{46}+5 c_{44}\right) \\
T_{5}=c_{5}^{\prime}=S T_{4} ; & T_{6}=c_{5}^{\prime}-S T_{5}=S^{2} T_{4}
\end{aligned}
$$

(B) Effective eiastic constants:

$$
\begin{aligned}
& c_{11}^{\prime}=b_{12}+\boldsymbol{c}_{1}^{\prime}=c_{11}+\theta_{1}\left(4 c_{21}+6 C_{111}\right)+\left(\theta_{2}+\theta_{3}\right)\left(c_{12}-c_{11}+2 c_{12}\right) \\
& -\theta_{1}^{2}\left(\frac{2}{2} c_{11}+24 C_{11}\right)+\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\left(c_{11}-\frac{1}{2} c_{12}\right)+\theta_{4}^{2}\left(c_{11}+c_{12}+2 C_{112}, C_{141}\right) \\
& -\left(H_{5}^{2}+\theta_{6}^{2}\right)\left(\frac{3}{2} c_{11}+\frac{5}{8} c_{12}+8 c_{44}+C_{112}+5 C_{154}: 3 C_{111}\right) \\
& +\left(0_{1} \theta_{2}+\theta_{1} \theta_{3}\right)\left(c_{12}-4 c_{11}-6 C_{11}+8 C_{12}\right)!1_{2} \theta_{3}\left(\epsilon_{11}-2 c_{12}: G_{12}-4 C_{1}\right. \\
& c_{22}^{\prime}=S c_{11}^{\prime} ; \quad c_{33}^{\prime}=S^{2} c_{11}^{\prime} \\
& c_{44}^{\prime}=b_{44}+\frac{3}{4} c_{2}^{\prime}+\frac{3}{4} c_{3}^{\prime}=c_{44}+\theta_{1}\left(1 c_{12}-c_{44}+I c_{144}\right) \\
& \therefore\left(\theta_{2}+\theta_{3}\right)\left(\frac{7}{4} c_{11}+\frac{1}{3} c_{12}+c_{44}+{ }_{3}^{3} C_{155}\right)+\theta_{1}^{2}\left(c_{44}-\frac{1}{1} c_{12}+\frac{1}{2} c_{12}-1 c_{144}\right) \\
& +\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\left(\frac{3}{3} C_{11}-8 c_{12}+\frac{1}{1} C_{11}+\frac{1}{4} C_{112}+{ }_{3}^{2} C_{155}\right) \\
& +\theta_{4}^{2}\left(\frac{9}{1} c_{11}+{ }_{4}^{4} c_{12}+5 c_{44}+5 C_{155}\right) \\
& +\left(\theta_{3}^{2}+\theta_{6}^{2}\right)\left(\frac{1}{3} c_{11}+\frac{3}{1} c_{12}+3 c_{44}+\frac{7}{2} C_{144}+\frac{1}{3} C_{255}+3 C_{456}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\theta_{2} \theta_{3}\left(C_{112}+C_{155}-\frac{1}{2} c_{11}+\frac{1}{2} c_{12}+c_{44}\right) \\
& c_{55}^{\prime}-S c_{44}^{\prime} ; \quad c_{\text {56 }}^{\prime}=S^{2} c_{4+}^{\prime} \\
& c_{12}^{\prime}=b_{12}=c_{12}+\left(\theta_{1}+\theta_{2}\right)\left(r_{12}+2 C_{12}\right)+\theta_{3}\left(c_{123}-c_{12}\right) \\
& +\left(\theta_{1}^{2}+\theta_{3}^{2}\right) 3 C_{112}+\theta_{3}^{2}\left(c_{12}-\frac{1}{2} C_{123}\right)+\left(\theta_{4}^{2}+\theta_{5}^{2}\right)\left(2 c_{12}+C_{112}+2 C_{144}+1 C_{121}\right. \\
& +\theta_{6}^{2}\left(2 c_{11}+c_{12}+4 c_{44}+2 C_{112}+4 C_{155}\right)+\theta_{1} \theta_{2}\left(c_{12}+4 C_{112}\right) \\
& +\left(\theta_{2} \theta_{3}+\theta_{1} \theta_{2}\right)\left(C_{123}-c_{12}-2 C_{122}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{24}-C_{12}^{\prime} \therefore_{11}^{\prime}-S_{12}^{2} \\
& c_{44}^{\prime}=b_{14}+\frac{?}{3} c_{0}^{t}=\theta_{5}\left(S c_{4}+\stackrel{y}{2}\left(c_{4}\right)\right. \\
& +\left(\theta_{1} A_{1 i}+A_{2} \theta_{1}\right)\left(b_{3}^{3} a_{11}+{ }_{2}^{2} c_{22}-\frac{3}{2} c_{41}+C_{141}+{ }_{2}^{3} C_{15}+\frac{1}{1} C_{414}\right) \\
& +\theta_{3} \theta_{6}\left(c_{12}+3 c_{44}+\frac{3}{4} C_{141}+2 C_{54}^{+}+{ }_{2}^{T} C_{45}\right) \\
& +\theta_{4} A_{5}\left(2 c_{11}+6 c_{12}+C_{2}^{17} c_{41}+4 C_{144}+4 C_{134}+1 C_{15}\right) \\
& c_{50}^{\prime}=S c_{15}^{\prime}: c_{66}^{\prime}=S^{2} c_{25}^{\prime} \\
& c_{14}=b_{14}=\theta_{4}\left(2 c_{12}+C_{144}\right)+\theta_{1} \theta_{4}\left(2 c_{12}-1 C_{122}+C_{144}\right) \\
& +\left(\theta_{2} \theta_{4}+\theta_{3} \theta_{4}\right)\left(2 C_{62}+C_{123}+3 C_{64}-c_{12}\right) \\
& +\theta_{5} \theta_{0}\left(c_{11}+6 c_{44}+3 C_{5,4}^{1}+C_{450}+2 C_{555}\right) \\
& \dot{c}_{25}^{\prime}=S c_{14}^{\prime} ; \quad c_{j 6}^{\prime}=S^{2} c_{14}^{\prime} \\
& c_{15}^{\prime}=b_{15}+Y_{2}^{3} c_{5}^{\prime}-\theta_{5}\left(c_{11}+c_{23}+3 c_{14}+C_{154}\right) \\
& +\theta_{L} A_{S}\left(\bar{j} c_{11}+\frac{2}{2} c_{12}+2 c_{44}+6 C_{111}+2 C_{112}+4 C_{155}\right) \\
& +\theta_{2} \theta_{5}\left(2 C_{12}+C_{123}+\frac{3}{13} C_{144}-C_{155}-c_{12}-3 c_{14}\right) \\
& +\theta_{3} \theta_{51}\left(\underline{1} c_{12} \div 3 c_{44}-\frac{1}{2} c_{11}+4 C_{112}+2 C_{155}\right) \\
& +\theta_{44} C_{6}\left(c_{12}+\frac{2}{4} \sigma_{41}+? C_{155}+C_{145}+C_{454}\right) \\
& c_{36}^{\prime}=S c_{15}^{\prime} ; c_{7,4}^{\prime}=S^{2} c_{15}^{\prime} \\
& c_{16}^{\prime}=b_{16}=3 c_{6}^{\prime}=\theta_{6}\left(c_{11}+c_{12}+3 c_{44}+C_{15}\right) \\
& +\theta_{1} \theta_{6}\left(C_{12}+3 c_{12}+\frac{1}{2} c_{14}+6 C_{111}+2 C_{112}+4 C_{155}\right) \\
& +\theta_{1} \theta_{6}\left(2 C_{112}+C_{125}+3 C_{144}-C_{155}-c_{11}-3 c_{41}\right) \\
& +\theta_{2} d_{5}\left(1 c_{12}+?\right. \\
& +\theta_{4} G_{5}\left(c_{12}+\frac{9}{2} c_{44}+3 C_{155}+C_{144}+3_{4}^{3} C_{446}\right) \\
& c_{24}^{\prime}=S c_{15}^{\prime} ; \quad c_{35}^{\prime}=S^{2} c_{16}^{\prime}
\end{aligned}
$$

Table IY

Triaxial Sthain $\theta_{1} \neq \theta_{2} \neq \theta_{3} \neq 0 ; \quad A_{4}=\theta_{5}=\theta_{6} m=0$
(A) Expressions for mital stress

$$
\begin{aligned}
T_{1}=c_{2}^{\prime}= & \theta_{1} c_{11}+\left(\theta_{2}+\theta_{3}\right) c_{12}+\theta_{1}^{2}\left(3 C_{11}+3 c_{11}\right)+\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\left(c_{112}-\frac{2}{3} c_{12}\right) \\
& +\left(\theta_{1} \theta_{2}+\theta_{1} \theta_{3}\right)\left(2 C_{112}-c_{11}+c_{12}\right)+\theta_{2} \theta_{3}\left(C_{123}-2 c_{12}\right) \\
T_{2}=c_{2}^{\prime}= & S c_{1}^{\prime} ; \quad T_{3}=c_{3}^{\prime}-S^{\prime} T_{1} ; \quad T_{4}=T_{1}=T_{6}=0
\end{aligned}
$$

(B) Effective elastic constants.

$$
\begin{aligned}
& c_{11}^{\prime}=c_{11}+\theta_{1}\left(4 c_{11}+6 C_{11}\right)+\left(\theta_{2}+\theta_{3}\right)\left(c_{12}-c_{11}+2 C_{12}\right): r_{1}\left(\begin{array}{l}
\prime \prime \\
2 \\
c_{12}
\end{array}+24 c_{11}\right) \\
& \left.+\left(A_{2}^{2}+\theta_{3}^{2}\right)\left(c_{11}-\right]_{12} c_{12}\right)+\left(\theta_{1} \theta_{2}+\theta_{1} \theta_{1}\right)\left(c_{12}-4 c_{11}-6 C_{13}+8 c_{12}\right) \\
& +\theta_{2} \theta_{3}\left(c_{11}-2 c_{12}+C_{123}-4 C_{112}\right) \\
& c_{22}^{\prime}-S c_{11}^{\prime} ; c_{33}^{\prime}-S^{2} c_{11}^{\prime} \\
& c_{44}^{\prime}=c_{44}+\theta_{1}\left(1 c_{12}-c_{44}+{ }_{2}^{T} C_{144}\right)+\left(\theta_{2} \theta_{1}\right)\left(1 c_{11}+1 c_{12}+c_{11}!\vdots\left(c_{14}\right)\right. \\
& +\theta_{1}^{2}\left(c_{44}-\frac{1}{4} c_{12}+3 C_{112}-\frac{1}{12} C_{144}\right) \\
& \div\left(\theta_{2}^{2}+\theta_{3}^{2}\right)\left(\frac{3}{5} c_{11}-\frac{1}{3} c_{12}+\frac{3}{4} C_{111}+7 C_{112}+{ }_{1}^{3} C_{148}\right) \\
& +\left(\theta_{1} \theta_{2}+\theta_{1} \theta_{3}\right)\left(\frac{7}{2} C_{122}+\frac{1}{4} C_{12}+{ }_{2}^{2} C_{141}-\frac{1}{3} C_{155}-1 C_{11}-\frac{1}{1} s_{12}-C_{44}\right) \\
& +\theta_{2} \theta_{3}\left(c_{112}+C_{155}-\frac{3}{2} c_{11}+3 c_{12}+c_{44}\right) \\
& c_{55}^{\prime}-S c_{44}^{\prime} ; c_{66}^{\prime}=S_{r_{44}^{\prime}}^{2} \\
& c_{12}^{\prime}=c_{12}+\left(\theta_{1}+\theta_{2}\right)\left(c_{12}+2 C_{112}\right)+\theta_{3}\left(c_{123}-c_{12}\right)+\left(11_{1}^{2}+t_{2}^{2}\right) 3 C_{122}: 11_{3}^{2}\left(c_{2}-c_{12}\right) \\
& +\theta_{1} \theta_{2}\left(c_{12}+4 C_{112}\right)+\left(\theta_{2} \theta_{3}+\theta_{1} \theta_{3}\right)\left(C_{121}-c_{12}-2 C_{11}\right) \\
& c_{23}^{\prime}=S c_{12}^{\prime} ; \quad c_{13}^{\prime}=S^{2} c_{12}^{\prime} \\
& \text { All other } c_{r s}^{\prime}=0 ; 9 \text { independent elastic constants }
\end{aligned}
$$

Table III

Spectal Casfs of Triaxtal Strain

(1) Uniaxial compression: $\theta_{1}=\theta_{2}=0 ; \quad A_{3}=\eta$
(A) Expressions for initial stress:

$$
\begin{aligned}
& T_{1}=c_{1}^{\prime}=\eta c_{12}+\eta^{2}\left(C_{112}-\frac{1}{2} c_{12}\right) ; \quad T_{2}=T_{1} \\
& T_{3}=c_{3}^{\prime}=\eta c_{11}+\eta^{2}\left(3 C_{111}+\hat{2} c_{11}\right) ; \quad T_{4}=T_{5}=T_{6}=0
\end{aligned}
$$

(B) Effective clastic constants:

$$
\begin{aligned}
& c_{11}^{\prime}=c_{11}+\eta\left(c_{12}-c_{11}+2 C_{112}\right)+\eta^{2}\left(c_{11}-\frac{2}{2} c_{12}\right) \\
& c_{22}^{\prime}=c_{11}^{\prime} \\
& c_{13}^{\prime}=c_{11}+\eta\left(4 c_{11}+6 C_{11}\right)+\eta^{2}\left(\frac{7}{2} c_{11}+24 C_{111}\right) \\
& c_{44}^{\prime}= \\
& \quad c_{44}+\eta\left(\frac{1}{4} c_{11}+\frac{1}{2} c_{12}+c_{44}+\frac{1}{2} C_{155}\right) \\
& \quad \quad+\eta^{2}\left(\frac{8}{8} c_{14}-\frac{1}{8} c_{12}+\frac{3}{4} C_{111}+\frac{1}{4} C_{112}+9 C_{155}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c_{55}^{\prime}=c_{44}^{\prime} \\
& c_{65}^{\prime}=c_{41}+\eta\left(1 c_{12}-c_{14}+\frac{7}{2} c_{144}\right)+\eta^{2}\left(c_{41}-\frac{1}{4} c_{12}+{ }^{1} c_{112}-\frac{1}{1} c_{24}\right) \\
& c_{12}^{\prime}=c_{12}+\eta\left(c_{23}-c_{12}\right)+\eta^{2}\left(c_{12}-7 c_{123}\right) \\
& c_{23}^{\prime}=c_{12}+\eta\left(c_{12}+2 c_{162}\right)+\eta^{2} 3 c_{12} \\
& c_{13}^{\prime}=c_{23}^{\prime}
\end{aligned}
$$

All other $t_{r i}^{\prime}=0 ; 6$ independent elastic constants.
(2) Unform compression: $\theta_{1}=\theta_{2}-\theta_{3}=\eta ; \theta_{4}=\theta_{5}=\theta_{6}=0$
(A) Expressions for initial stress.

$$
\begin{aligned}
& T_{1}=C_{1}^{*}=\eta\left(\epsilon_{11}+2 c_{12}\right)+\eta^{2}\left(3 C_{113}+6 C_{13}+C_{13}-\frac{1}{2} c_{11}-\epsilon_{12}\right) \\
& T_{3}=T_{3}=T_{1}=-P \text { where } P \text { is the hydrostatic pressure }
\end{aligned}
$$

(B) Effectue elastic constants ${ }^{-}$

$$
\begin{aligned}
& c_{11}^{7}=c_{11}+\eta\left(6 C_{111}+4 C_{112}+2 c_{11} \div 2 c_{12}\right) \\
& +\eta^{2}\left(12 C_{11}+12 C_{112}+C_{123}-c_{2} c_{11}-c_{12}\right) \\
& c_{21}^{\prime}=c_{33}^{\prime}=G_{11}^{\prime} \\
& c_{44}^{\prime}=c_{44}-\eta\left(c_{44}+c_{12}+\frac{3}{2} c_{11}+{ }_{2}^{1} C_{144}+C_{155}\right) \\
& +\eta^{2}\left(3 C_{111}+3 C_{112}+\frac{1}{2} C_{123}+\frac{8}{3} C_{144}+\frac{3}{2} C_{155}-\frac{1}{4} C_{11}-\frac{1}{4} C_{12}\right) \\
& c_{55}^{\prime}=c_{66}^{\prime}=c_{44}^{\prime} \\
& \sigma_{12}^{\prime}=C_{12}+\eta\left(C_{12}+4 C_{112}+C_{125}\right)+\eta^{2}\left(6 C_{112}+3 C_{123}\right) \\
& \epsilon_{23}^{\prime}=c_{13}^{\prime}=\epsilon_{22}^{\prime}
\end{aligned}
$$

All other $i_{r,}^{\prime}=0 ; 3$ independent elastic constants.

Table IV
Pure shear: $x_{0}=a+\eta b ; y_{0} \cdots \eta^{2}+b ; z_{0}=c ; \theta_{1}=\theta_{2}=\theta_{3}=0 ; \theta_{4}=A_{5}=0 ; \theta_{6}=\eta$
(A) Expressions for unital stress:

$$
\begin{array}{ll}
T_{1}=c_{1}^{\prime}=\eta^{2}\left(\frac{1}{3} c_{11}+\frac{1}{2} c_{12}+4 c_{44}+C_{155}\right) ; & T_{2}=-T_{2} \\
T_{3}=c_{3}^{\prime}=\eta^{2}\left(c_{12}+C_{144}\right) ; \quad T_{4}=T_{5}=0 ; & T_{6}=2 c_{44} \eta
\end{array}
$$

(B) Effective clastic constants:

$$
\begin{aligned}
& c_{11}^{\prime}=c_{11}+\eta^{2}\left(3 c_{11}+5 c_{12}+8 c_{44}+C_{12}+5 C_{155}+3 C_{111}\right) \\
& c_{22}^{\prime}-c_{11}^{\prime} \\
& c_{33}^{\prime}=\hat{c}_{11}+\eta^{2}\left(c_{11}+c_{12}+2 C_{112}+C_{144}\right) \\
& c_{44}^{\prime}=c_{44}+\eta^{2}\left(\begin{array}{c}
3 \\
c_{11}+{ }_{8}^{3} c_{12}+3 c_{44}+{ }_{4}^{7} C_{144}+!C_{154}!!
\end{array} C_{16}\right) \\
& \epsilon_{55}^{\prime}=\epsilon_{44}^{\prime} \\
& c_{45}^{\prime}=c_{44}+\eta^{2}\left({ }_{1} c_{11}+2 c_{12}+5 c_{44}+5 c_{155}\right) \\
& c_{12}^{\prime}-c_{12}+\eta^{2}\left(2 c_{11}+4 c_{44}+c_{12}+2 C_{11}+4 C_{15}\right) \\
& c_{23}^{\prime}=c_{12}+\eta^{2}\left(2 c_{12}+C_{122}+2 C_{144}+\frac{1}{2} C_{123}\right) \\
& c_{13}^{\prime}=c_{23}^{\prime} \\
& c_{45}^{7}=\eta\left(5 c_{44}+\frac{3}{\Delta} C_{456}\right) \\
& c_{36}^{\prime}=\eta\left(2 c_{12}+C_{144}\right) \\
& c_{16}^{\prime}=\eta\left(c_{11}+c_{12}+3 c_{44}+C_{145}\right) \\
& c_{25}^{\prime}=c_{16}^{\prime}
\end{aligned}
$$

All other $c_{n}^{i}=0$; 9 mdependent elastic consimat.

