JOURNAL OF

THE

INDIAN INSTITUTE OF SCIENCE

VOLUME 42 JULY 1960 NUMEBER 3

ELASTIC BEHAVIOUR OF MATTER UNDER
VERY HIGH PRESSURES

General Deformation

By S. BHAGAVANTAM AND E. V. CHELAM
(Director's Researck Laboratory, Indian dnstinte of Science, Bangalore-12)

Recerved on June 21, 1960

ABSTRACT

Fxpressions have been derived for the effective elastic constants in respect of a
substance possessing mmt1al cubic symmetry and subjected to &8 general type of
finite deformation. Some special’cases of particular interest are deduced therefrom
by introducing suitable relationships between the various parameters. Results for
the simple case of Uniform Compression dealt with in an earher paper, easiy
follow.

~

InTRODUCTION

A method of evaluating the effective elastic constants from the expression
for the strain energy, utilizing the theory of non-lnear elasticity, has been given
in detail in a previous paper by us (1960). In that paper, the special case of
uniform hydrostatic stress apphed to a substance with cubic symmetry was
considered. In the present paper, the initial finite deformation will be assumed
to be of a general type, and a general infinitesimal deformation will be super-
posed on the same. The effective elastic constants for such a case are derived
in terms of the second and third order elastic constants of the substance in the
stress free state, so as to include up to the sccond powers of the imitial finite
stramn components. By giving particular values to these components, the
effective elastic constants approprate to (1) a triaxial strain, (2) a uniaxial
stram and (3) a shear are derived. It has also been indicated that several
other types of strains or combinations of strains could be easily dealt with as
particular cases of this general treatment.
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STRAIN MaTRIX FOR A GENERAL DLEQRMATION

For the notation and other details of the meihod employed, reference
should be made (o the paper aited carhier, Here, the applieation of the metlnd
to the general case 1s dircetly worked out

As a result of the general finite deformation let a point with co-urdinates
a, b, ¢ referred to a convenient space fixed axes be carried over to the position
X0, Yuo Zo teferred, for convemence to the same axes, so that

XomlJo@i Xo=XoVulo, G- b, f1}

and J, is the Jacobian of the transformation with six independent componeats
as given by [2].

146, 45 B
Jy= 8, 146 4, i2]
85 84 10,

This entaus that
Xo=(14+0)a+ 8,01 e

FomGoa+ (L4004 6,
zo=Osa-+ 0,6+ (140 ¢ [1}

We have assumed that J, is symmetric.  In that form, o is not the most
gencral displacement, as the case of a sumple shear is not covered.  The sepi-
ration of the rotational or antisymmetric part of Jy will be valid so fong as
wnfinitestmal deformations are considercd.  Xn the finite theory, the stram
mairix elements are given by o =3 (J* — E;) where J* is the transpose of
Jand £, is the unit matrix of dimension 3. The rotutional part cunpot be
removed from J wself, but will get so removed after /* J is formed and £y »
subtracied therefrom. To begin with therefore, one has fo ytart with an un-
symmetrical J with rune independent components if one wants to cover the mest
general cases.  However, the resuiting calenlations become rather vnwieldy and
it does not seem worthwhile to undertake such calculations for our present
purpose. The case of a simple shear alone will be treated separately i another
paper as a particular case.

The strain matrix 9 corresponding to Jy will have clements given by

m=0i+% (0] + 63+ 63) o B+ 3 (B2Bs -+ 0.6, 4 60,
=0+ 3 (8% + 6%+ 63) pe= 05+ 3 (095 1 634 8,8, [4]
ny= 0y + 3 (85 + 05+ 63) N Bs + (6,8, 4 8,8, 1 0,0

As a result of the further infinitesimal deformation let the point (g, 3, 20}
move to x, y, z where
(3] »
TR R
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xw (1480 X+ Subo - Bszo 148 56 85 E
yo= Sy + {1+ 82dvo+ Bz 5 So= ‘ 3 1+3 844 5]
ze=Bsx+ Sy + (14 8:) = 85 5 148 !

5o that

Xo = Xoy Jos S0
The 8's express the usual changes in fength and changes 1 angles, etc, alt
referred to the already fimitely stramned state as the base state which we may
refer to as the 5 state. As a result of these two deformations Jy and Ji, the
point a, b, ¢ will finally go over to (x, y, z) where

x=da, J=diy 18]

The strain matrix elements of this combined deformation will be given by
n=3(J*7—E) Notng that

(o = J*75 5 we get g=} LT3k — B {7

1(7"7; — Es) gives the clements of the strain matrix corresponding to
a general infinitesimal deformation. Either from the form of [4] or by direct
warking, we obtain its components as

Sy =8+ 1 (8} + 8+ 5%) Sns = 8q-+ (854 + 5354 + 5:8)
By =82+ 5 (83 + 8% + 5)) 5ps =85+ 3 (5,8 + 8,85+ 530 [8]
By = 83 -+ (83 -+ 83 + 59) 5n6= 86+ & (8,85 + 5.9 + 8,35)

In terms of these components, the strain matrix [7] corresponding to the
entice deformation, (1 e., finite plus infimtesimal) will be given by

7~
‘1+91 8 Bl B+ 1 B Snsl| L+ 6, 8 6

| B 148, B3y Sp+d sm‘ o 140 621l
i 6 0 1+ 065 8y« Sne S+l 95 8y 146;

Conssquent on the § deformation therefore, each of the stramn elements
M ... 7s in [4] has mereased by an amount Ay, .. Ags whose values
are given from [9] by

A= 80y (1+ 0,02 39,05 + 5363 + 28048505 + 2895 (1 + 8,) 05 + 2895 (1 81385
Ay= 802 (1 5 02 + 59363 + 5,02 + 25958684 = 2557 (1 + 85) 8¢ -+ 28ns (1 + 62)0,
Ay 83 (1403 + 596 + 5582 + 25750405 + 254 (1 + 85) 04 + 259 (1 + 65)05
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Ane =l #8024 00+ 0,8, 5 00) + 5qs(0, + 048, + Blds) 3 By (11 09, )
+ 80586+ 5ma(1 + 8,005 £ Sl =00,

Anse=0n5(1 40540 + 6,8, 4 02) 1+ 80,(00 1 08, 1 08,0 1 Byfu, i, 0y
BBl 1 Spd 1 0005+ 5Ly €8,

Ame=8ne(l 01+ 8,4 0,0, 4 07) + S0 4 6,0 1 #0,) 1 syl (108, 08

+ 5730405 + 59.(1+ 6.8, + 8,01 1 6,)0, [10]

It may be noted here that Ayg can bz obtwinad from Ay, and Ay

from Awn, by the mere cyclic permutation S-{1223) (4 56) of the various

suffizes attached to 6 and 5y Subsequently, the same permutabon can be

used to give A gz from Ay and Axs from Ans. This wall ke found a uselul
device for simphifying {he caleulations.

StramN Exeray AND THE Brrecrive Urasie Consrases

The general expression for the steaun energy for a substance with cubis
symmetry, inclusive of second and third order terms is grven, when referred to
a unit volume of the inttial stress free state, by

d=Yen i+ g5+ D)+ e (pma+ mm+ qup) 1+ 2o Gt o 0 9l
4 Cin O+ 34 3) + Coafpme Gpb ) b Gz 0 ) ¢ g (s g

- Croapmas 4 Casenaysis + Cras (1111):? Toaens 7,1”1;{)

-+ Ciss [1]1 (1]% + ng) + 92 (r/4 B r)ﬁ) by (:‘u’i g 7;5)', [l I ]
If as a result of the infinctestmal deformation, the origmul finjle straws
M- .- e hive become g+ Aoy B Age, the inerease in energy dus o

the same, 15 given by the expression ¢ (4 Ay)-o (5), which can be
developed as a power series in the A9 using Taylor's theorem.

o

T e
$lran-p6)= Pt an 1 Y T ppar: 1

We retain up to quadratic terms only in the Ay, as they are treated as infliite-
simal. Here the derivatives

2
g, wn iy,

can be easily obtained from [11] and they are to be evaluated at Ag 0. The

values are given in [15],  With the use of equations [10], which express Ay

as a linear function of 8y, we can express ¢ (1] 4 /_\17) ~ ¢ () piven abave us

a quadratic function in 3%, This difference 1 energy however refers to a unit
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volume of the stress free state  Dividing 1t by the determinant of J expresses
1t per unit volume of the g state. Equating finally with ¢, where </;' 15 the
total energy of the finstesimal deformation, we get expressions for all the
coefficients in ¢ by a comparison of the coeflicients of sumlar powers. Thus

1

I)et7~ @ (71 A ") —¢ (77) = ‘f" (8'7) [13]
where
¢ (8y) = Teidgy + 2Tk By + 3 Zhy St + EbdyiSys + 2Zbudnd
+ 2}:[)45811451)5 + 25b4b7, 64
b"cin] By BBy B0 4 B3 80,4 00,4 8,8+ 03+ 02403 [14]

It will be noted here that ¢, £k etc, are coefficients of the lmear terms,
while by, etc., are the coefficients of thequadratic terms in ¢'.  They can be
represented by b, (rse;r,5=1,2 ... 6} aod are thus 21w all. It will also
be observed that except for by, by, by, bizs bas, by3, every other b, occurs
with a multiplying factor of 2. In ¢', we retain only upto second powers of 7.
On the left side, we retam all terms up to the squares and products of the finite
strain derivatives 8,. .. 6, (e ) the cubic powers of these are neglected. The
values of

2

an, ’

used m [12] are given below.
a 2 2 A
;ﬁ w iy + o2 (g 4 1) + 3Cumgt + Cu (5 + 7 + 2C0om (24 13)
g
+ Croznpats + Cm?ﬁ + C1ss (")% + ﬂ%)

dh 2
BL; =epmten (p+ )+ 30+ Cie (s + 75) + 2Can: (s +1)
a1z

+ Crasmae + Cu,uﬁ + Ciss (7!3\+ 1)3)
\;(/') = e + e (g + ) + 3C0mE+ Cin (gt + 13) + 2Ciams (q+ )
Cf)‘

+ Crasnqupa -+ Cmf]g + Css (1]% + ']g)

2 =dcyuns + Cesensns + 2Camns + 2C;s5 (111 + q;)m

Qpy

B
2 4equns + Casenpsna + 2Cuamays + 2Ckss (s + 1)

ri;
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L= Aoy b Cognee + 2C iy + 2 (gl
&4

= ey 6CH A+ 200z (s + ﬂ‘v)

&

s
o

S ey 1 2 20 ()

2 o
\." (3.“ eyt 68 + 2C2 (o 1) "j; —degy b 2050y 200 Lyt )
on; '

N : o
ot = ey 1 20 1 D0 -}

aZ
"“(/5:' e ey -+ 6C11s + 2C0g (g0-+ )
EUH

RO
22 52 2, ,
° = Casong A 2 Casola s e Crants
3nadays ans” 15 S
EX A .
P . i+ 2Cy2 (qy + 72 2) - Cingy; - _'[I" 2y
dmd7z CIpT
~2 a2 2
UL N 5. =2Cys5m43 "‘——‘“012 1 2C(nz 4 gt Cap
Dadna Ondm RUPRE
2 -2,
AN 2Ca4ms 5 —-4—’[{ s P 2
31205 andgs oy A
—i'-fé—- = 012+ 2C2 (2 ) + Craama Pt 2
Aty 73 RE
L S A, f1s]

«,maq(, &l

Here 1y . .« 16 are elements of the strain matoix up to the initial finite sirains,
They are functions of ;... 8, as ngen in[4]. Subsututing these values
in [13], and equating powers of Sm, Snt, Bm Sya ete., we get the values of the
first order coeflicients ¢y, ¢ . . . cs 26 also the values of all the b,, {r,s 1 to 63

@' 1s s0 far expressed in terms of the strain components 8y. [t can now
be expressed in terms of the displacement derivatives 8, ... 8, by using yela-
tions [8]. Retaining up to the quadratic terms in the &5, we can write ¢ as

o = AW, (16}
where ¢, = § Zcly 8} + Bl 518, + 28che 83 + 28eks 8,55 4 22eia 5,56 117}
and AW ee 8+ b5y + ey 5y + 26 8 + 2¢k 85+ 26 86 [18]

and cyy, ¢f, etc., are mew constants connected by simple relationships with
by, bz, ete., and with the first order constants cf . .. ¢k, It has been shown
in the previous paper of the authors referred to euslier that ¢i, €3 . . « ¢i
represent the components 7, T3 ... 7% of the imitia} stress. A W therefore
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represents the work done by these witially present stresses during the nfini-
tesimal displacement 5, ... 8; ¢ represents the total energy requied for
causing the addiioral infimtesimal deformation, while AW indicates the part
already available for this purpose mn the shape of work dome by the existung
imtl siresses.  The difference ¢ & AW therefore represents the effective
extra energy requured for causing the mfimitesimal deformation and this quantity
has been desoted by ¢, and referred to as the ‘ effective elastic energy’ in our
earlier paper. The ci,, ¢y €1C, Occurring m ¢, are called effective elastic
constants and they completely specify the elastic response of the substance to
snfinitesimal deformations superposed on the existing state of a general finite
strain, Ii has also been indicated in the earher paper that ¢, and the effec-
tive elastic constants play an importaat role in determining the elastic stability
of the substance. We now proceed to give expressions for these effective con-
stants. The coefficients ¢j . .. cg and by, by, etc, occurring m ¢ are already
determuried as mentioned n an earlier paragraph. On writing ¢’ n terms of
5;. .5 and comparmg with ¢, we get simple relatronships between the
effective elastic constants ¢, and the constants &, and ¢. The results, in
respect of ¢ and ¢, are given in Table I.  Although b, are first directly deter-
mined and ¢, are subsequently deduced therefrom, we give here, for the sake
of sumplicity values of ¢ and ¢, only. It will be noted that all these coefficients
are developed up to the second powers of the initial stram components. The
task of derving all the coefficients is simplified when we observe as before that
the permutation S = (8, 0,8,) (6,850s) and §* can be employed to derive
two constants sinular to each by, ¢, and ¢, Thus oue needs to ovaluate directly
only 7 of the &, and 2 of the ¢,.

The values of the effective elastic constants in the special case of a triaxal
stram are given m Table II. In Table III, we give sub-divisions of this case,
which correspond to [1] a uniaxial compression and [2] umform compression
In Table IV, we consider the case of a pure shear.
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Tasie I  GENLRAL DEFORMATION
(A) Expressions for inigial stress:
Tycf =046 + (B2 83)ern + 63 (3Ca + § o) + (A4 #1) (Cap = L o)
85 et Caad (034 8 (G end bep tdas 1 C)
+ (42 1 hi3) (2Ca— e e} + hth (G 22)
Tymc; obtuned from 7)= ¢ by the cyche pemutation S (a0 (e}
Thw T =37y T =STh=5T
Ty== ¢y = Bala + 6‘164(2£12 —2ey + Cug) + (U:’h I f‘x(h)(l'n fo b | Cle)
+ 0586 (3 Cus + 5¢as)
Tim s =STy; Tommth=STs= 5Ty
(8) Effective elastic consiants :
Chy= by + €)= ey B, (8ey +6Cy) + (B2 + 02)ers — ey +2¢42)
= 01 (e +24C0) + (034 08 (ery - Jo) + 3oy 1 e v 20 1 Cud)
(B 46D (fen+ foat Bhag+ Cuz ot 5Cisa 1 3CH0)
+ {010;+ 6.33) (2 — deu — 6Cin + 8Cin) 1 thiley - 2ot Ciove 40y,
=Sl ey Ste
Ciy=bas+ tert Zoy = cu+ 0} en— e+ 3Cua)
= B2+ 02)(F ern + Aea+ can+ 3Cis) + 0 (eas ~Ser + 4 Coa— 1C1a)
O3+ 0D e Fen+ § Gu+iCn+ i Cs)
+ 4 ey + Lo+ 5eaq+ 5Chss)
+ (85408 (Jeu+ Fona + ea+ $Ca+ 3 Cugs + } Cue)
+ 016+ 98) (F Cn +% Cim + $C1u ~FCiss ~ Foy ~ Yo ~ cag)
+ 80 Cra+ Crss— Fen+ ¥ e+ i)
Cgs - Scus C\"aa =8 "-;4
cpmbiz= g+ 0.+ 62)(¢'12 +2Cp) + 33(C123—° €12)
+ (07 + 0303 Cuz + 6% (en ~ FCin) + (03 + 0D (2c12+ Ciip +2Cuan 4 L0y
+ 6 (2o + €un + e+ 212 + 4C1ss) + 8382 (ca+ 4C1)
+ (8265 + 6,6)) (Cizs— ez~ 2C12)
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’J."_‘l = Sﬁjwi Cln = S:";:
Chie=byst b eh = 8, (e, 1 Gis)
{0 003 (e Do = Feat g+ 3 Cras b Cyse)
+ th, (’Jn 4300 5 Clag +2C 5+ 75 Cis)

+ Bafls (200 + 602+ 5% e + 4100 +4C, 50

= Seiss oy ST

o =bia =By (Z ey + Crag) + Pibs (20 < AC 2 + Cua)
+(8:80% 0:0) QCie + Cins+ ) Cran—¢y)
1058 (2314 66044 5 Craa o+ Casg o 2C1s5)

= SC;-‘; f.’;u = S:U;Q

chs=bys b bk O oy + €+ Bew + Ci)
6,85 (:* cr +F et Feas 6CH+ 200+ 4C155)
+08; (2C112 + Cps + & Craa~ Cuss — 3: — 30u0)
4838, (L e+ S —1 e +9Cin + 2051)
gy (€t et § Ciss + Crag + 3 Casy)

Cl’h = *?1';5 3 l';1 =8 of

o= big e 3 e B (en 4+ €2+ 3ea + Ciss)
+ 00605 ey + 2 ep 4 Fesat 60+ 2012+ 4C154)
+ (2Cl|2+ Ciant 2 Cug— Ciss ~ €1 — 36;‘)

Loy + 40 - 2Cs5)

+ 0485 (e + 2 g+ 3 Cuss+ Ciaa A= F Case)

A+ 085 (3 ezt ) cag -

(’,,14 = SC;& 3 C;s =57l
Tasre 1Y
TRIAXIAL STRAIN 85 0254 0550 BBy Py = O
{4) Expressions Jor winal stress
Toeey =000y + (0 + 8) et 9 (30 + 5 enr) o+ (654 83) (Crpe
+ (928 +0162) (2 Chra ~ ek 62) + oy (Con— 2612)
Do=a=S5d; D=c=5T; Ti=Ti=%=0
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(B) Effective elastic constants .

Sy oy 8 (doy 46 Cru) + (B + 830 (e = ey + 2C0) £ 5 (L ey v 24C,)
+ (024 0D (o3 — % cwa) + (9482 - 6,83) ey - deyy ~ 6 Cpyy + 8 Coz)
818y (o~ 2 e + Cizy = 4 Coi)

£y - Scly; ey mSiey

i =cpq+ 0, (1 =i b} C.M) + (02 1) (I‘ cpbleptent )

+ 0t (em—ten+iCua-1 Cua)

+ (9% + 9%) (:t < l izt i Ciyy + 11 Cyia + '1‘ Cl«s)

+(8:82+ 810 (L Cro+ F Cim+ 3 Craa— & Ciss = Low = L ¢ - o)
+ 0283 (Cina+ Crss = 3 ev + 5 ez cua)

C;s - SC‘;a; Cés = 52514

=i+ (81 + 82)(ciz+ 2C1ma) + 0(Cimy = 1) + (034 #8) 3¢z 1 e 5C02)
+8182 (12 + 4C112) + (Bafs + 8:85) (Cp — €12 = 2C012)

Cha = SCla; Cla=Scly

All other ¢, =0; 9 independent elastic constants

TasLe III
SPECIAL CAsEs OF TRIAXIAL STRAIN
(1) Uniaxial compression: 0y wfy=03 0= 7
(A) Expressions for initial stress :
Ti=cl =90+ 9*(Cin—1 Gu); TamTy
7*3=c§=,7¢“+,12(3 Cu+3on); TamTsmTie0
(B) Effective elustic constants : -
Gy + 7 (G e+ 2C1) + 72 (6, - § 61a)
=6
Gy =Cur + 1 (463 + 6Cpr) + 7 (6 +24 Cpyy)
Chym Cag + 7 (Geu+ %ot} Clss)

#7736 — 3o+ Cu+E G+ § Cis)



[
)

Flastic Behaviour of Matier Under Very High Pressures

‘
Lon == Gyy

Con = Cag + 3 (1 = Caa b b ('m) + ?);(”-M_ 3o+ iCn-}
dz ={n+y {Cyp~Cia) + i‘/z (Cu =3 Ciz)

= p {n+ 20 g) + 7 3Ch

£yt

Al other ¢l =0; 6 independent ciastic constants,

{2) Umiform compression: 6;=6y=0;=n; §4=0s= G, =0
(A) Expressions for initial stress -
=0 = % (o + 200} + ?)7 (BCu +6Cip+ Cim~ Y ey — 9]
Ty e Ty=T = ~ P where P is the hydrostatic pressure
(B) Effectve clastic constanis*
Gy =Gy 2 (6 Ciu +4Cin+ 20 +263)
-+ 7)2 (12 Cin+ 12 G+ Cip = 3 €1~ 64)
o=y~
Ciu=cu-put+ ot iog+ 5 Cut Ciss)
-+ 772 (3 Clin+3C+% Cos+ § Cla+ 3 Ciss— 2 00— § ”Jl)
Chs = 6o = Ca
fly= b 7 (i + 4 Cipp Cias) + 7)2 (6 Cua+ 4 Ciz)
€y =Cry= 1z

All other ¢/, =0; 3 independent elastic constants.

Tapie IV
PURR SHEAR ! Xo=a + 9b; Yo = na + b %0 =¢; 01 =8,=0;=0:9=H=0;8=17
(A) Expressions for il stress:
7= ﬁ‘; = 712 (i; Cyp A% Cip Al + CISS) 3 DTy

Ty=cs=n? (6ot Cua); Ta=Ts=0; To=20uy
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(B) Effective clastic constants :

e e+ (F 60+ 5 G 864 + Cun -+ 5C1ss § 300,)

=65

Chgm by 112 (611 + 612+ 2C1 12+ Cran)

Ca=but Qe+ dent3a+l Cat st | Ol

Chs =64y

Chg =64+ 7 (T 611+ F G2+ 50ag +5C155)

Cly = Cpp 7)2 (2610 + deag + €12+ 2C 5 + 4C157)

Chy =i+ 57 (200 + Criz+ 2C1as + § Cias)

C13 = Chs

Cis= 1 (56u+3 C&sa)

Chg = 1 (2512 + Cm)

g {601 4 €z + 3bgg + Ciss)

GGl

All other £, =0; 9 mdependent elustic consiatite,



