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ARSTRACT

This paper deats with the study of the elastic behaviour of substances which
are imually subjected to a {imte wmple shear. Following the earler werk of
BRhagavantarm and Chelam on the formulation of an effective elasiic energy to deal
with such cases, ecxpressions have been derived for the effective elastic constants in
the case of a substance of cnbic symmetry.

INTRODUCTION

In previous papers (Bh:\guvamﬂm and Chelam 1960) a convenient approach
to the problem of elastic behaviour of matter under high pressures was indicated.
The case of a finite simple shear was excluded from those papers, as the general
theory would have become very complicated if it were to cover this case as well.
This 18 because a stmple shear has to be specified by an unsymmetrical Jacobian
Matrix. In all other cases so far considered, this matrix js symmetric. The
case of a simple shear acting on a substance of cubic symmetry is now considered
separately and expressions derived for the effective elastic comstants’. The
tesults can be easily simplified so as to be applicable to an isotropic substance,
by using the appropriate additional symmetry relations

STRAIN MATRIX FOR FINITE SHEAR

For details of the notation employed here, reference may be made to the
papers cited earlier and also to Murnaghan (1951). We take the undeformed
state of the body (State I) and consider its fimite deformation by a sumple shear
to State II, the displacement being specified by

Xo=a+0b; yo=b; m=¢C ]

Here a, b, ¢ are the mitial coordinates of a typical particle and x;, yo, 7 the
coordinates of the same particle afier the prescribed deformation, referred to o
convenient set of axes. This deformation is thus given by the unsymmetrical
matrix
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The strain matrix appropriate 1o wuch deformation 1 given by the
Murnaghan formula 50— 3 (e Ex) where Jy® 18 the transpose of Jy and £
the unit matrix of dimension 3. Hence the stram matox for State 1 s waen by

S R
o A0t o {3
Lo o 9!

We now impose an infinitesimal deformation specified by the displacement
[4] on State 11, so as to study the clastic behaviour of the subsiance for such
deformations from State II.

X (1 8y) Xo B¢ Yo+ 84 5
P8y = (1482 po+ 8 20 [1]
8 xo + B4 yo -t {14 Bp)z.

Thus x, ¥, z are the final positions of the particle and the Jacobian J;

specifying displacement from State II to final State 111 is
|1+, 3, 5 |
J,;al 3 1+8; 84 | {s]
l 85 By 148

From [1] and [4], it is casy to sec that the Jacobian correwponding to the
total deformation from State I to State Il is given by

J e Jgdy {(,]
Hence the corresponding strain matrix is given by
0= 3(BRY Jodo ~ Esl = 30T sk — 3 Bsl = ot (394 ) Fa) do~ 1 [7]

where 8y is the symmetric matrix % L5 — E;] with elements given by

Sm=bi+} ( + 85+ 83) = Byt (3580 - 5aBa + 5sd)
BBt 5 (81483480 ¢ SpewBi 3 (3854 8054 58y (8]
Sy =83+ % (83 +85+38%) Brgg = Bg 3 (5186 + 8255 -+ B48s)

Hence if A+ is the matrix denoting the increase in the strain elements from
State I (1) putting p=1a+ Ay, we get from [7] and [3]
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An=Jq* Sy ly fs]
;IOO‘!;Sm 3ns 57;;’;190}
-0 o ! sne oy sr,,,fin ool {10]
P00 1|isgs Bp Spilo o 1)

It will be observed that where as 8y 15 an increase of strain elements
measured with reference to conditions of State II, A 7 gives the values of such
increases when referred to State 1. From [10] we get

Ay =5y Ang=03y5 + 5nq
Ay =0 5 + 2055 + B, Ans=15rs [11]
Ay =By Ane= 081+ 8y

STRAIN ENERGY AND ITS INCREASE DUE TO ADDITIONAL DEFORMATION

The strain energy ¢ per unit volume of State I developed upto cubic powers
of the strain components 1s given, for a substance of cubic symmetry, by [Ref. []

¢ =% (nf + 95+ 43) + 62 (e -+ mams + msmn) + 2606 (g + 73 + )
+ G (ol + o+ 0D + Cuz e e = 92 + 9 G 09) + o (s +
+ Cizs Muans + Case nansnys + Cras (T]mi + T]zvz + 1]37];;)
+Ciss f’]l (ﬂ? - 7)%) R (qf - 17%) + (775. + 7)2); (12]
Here, all the ¢’s are measured from State I~ When the substance atiains
State II, the 5's attain values given by ny=m=mu=55=0, u=% 6 56=% 6,
and substitution of these values m {12] gives the stram emergy of State IL
When each of these stran components increases further by Any, Anz... Ags

the resulting increase 1 strain energy can be easity obtained from the Taylor
expansion

b — - P—Sb- 1 324) 1
¢+ An)—o(y) ZamAnﬁzEamamAm A [13]

on neglecting higher powers of Ay. Here the derivatives of ¢ are to be com-
puted at State II, (fe.) after obtaning the derwatives from [12] we set
m—}% 6, =10 and all other g, as zero. We thus get
s+ An)=g ()= (FontiCs)An

+ 6 G Cut+ i sts)Aq:+ 6 GT Cutt CIM)A’]B
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A {en L Con 8 A Aop v b o BA A e i Gy TA iy
+ Cros A (AP A g+ A f14]

In a simple shear, there is no change 1 vohwme fnvolved from Ste 1o
state I This 1s clear also by mspection of the deternunant of 4y which L
Hence ¢ {5+ Ay () may be cqated Lo ¢, which zises the strin 2y ol
the additional deformation per umt volume of State 11 By usieg telations {H]
WE Can express r/;' mn terms of &g rather than Ay and this gives us

¢ =1 Bk 6 B+ 63 By ok 260 86 b & (Byy Byl 4 dax it A Byl
2 (Bay 8%+ bssSnE 1 b Si) - by B B 1 hridag Byy . Ay
) [14]

where the values of the varous coeflicients are as under, retaming ap w0 the
squarcs only of the 8.

32 (bys Sy Ans + Bra S Snu b bog Sy g 4 g iinga

O =07 (] 0+ 200+ ) (1[55): G=0" (e VO & e s O
¢ =0; 6 =0 G e B4

By = €y + 6% (2615 + 404 -+ Cugz + 2C155) brpsed 87 {000 Gyt €4)

oy = 61y + & 3Cin byyeCpy #87Cipa

by = cy + 6 Cipp byyw Oy 1 6 i L a1 Chas)
Bug = g+ 6% Cussya byg o 0 (€12t 200y 1 L Cred)

Bos = Caq -+ 0 (Cag b & Cuaat T Chse) bag e 0 (64} Cras)

bgs = Cga + 8% (610 4+ § Ciss) by, = 0 (i L Chas)

bes = 0 (2030 + % Cass)

There ave thus 4 first order and 13 second order nonvanishing coviicients
in [15]. When the substance is isotropic, we can obtamn appropriate values
in [16] by using the additional relations

Gp= 5 (e —Cia) s Cra=2Chs— Oy ; Cuggme 3C 1~ Cpyz &

Cisg=6Ci1~ 6 Criz + 2 Ci3
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Errnctive Erastic ConSTANTS aND EFrECTIVE ELASTIC ENERGY

On expressing cach 85 10 terms of ), 8; . .. 3, by means of relations [8],
we can wrile ¢’ as

o = AW g,

Ba € By 4 204 By 4+ 268 B+ 26, By

where AW = 8+¢

and ¢, = L By 33 + s 3%) +2 (524 8%+ ¢l 8% + e §2)
+ (125182 + €haBs8s + €13 8183) + 2(chsDyds -+ €165185 + 630 5,8 + ¢3¢ B386)
17}

Here the new constunts ¢, are connected with b, by the refations

y=by 6 G =bn el Ga=by
Cia=bas + 3 (d +es), L’;= =bss+ } (et + Cg) s cio = bes + (\-”: + Lé)
cla= b ey = by ‘ C;: =bi3

Chs=bes+ 3 ch: C;A:buﬁréc('-; 0£e~"=bzfy+§‘ﬂgy

€36 by 8]

In the earlicr papers, it has been pointed out that the first orders constants
¢}, ¢ . .. ¢ represent the six components of the mutial stress 7%, Th. . Ty
assoclated with the deformation of State IX and that AP 1s thus the work
done by them during the small displacement under comsideration. Hence
= ¢’ — AW represented the total potential energy associated with the “&°
deformation, and this was also called the effective elastic energy, the coefficients
in the same bemg the effective elastic comstants Accoidingly, we can now
give expressions for the titial stresses 77, 75 . . . 75, and also for the effective
elastic constants ¢}, from [18).

Ti=cf =0 (3 cnt d Ciss +2¢0) Ty=0

Ty=ch =6 (3 ey +3 Cuss) Ts5=0

Ty=ci=6"(} e+ 1 Cuas) Ts=ci="0cu

ey =by+ Ti=cin+ 02 (3 crat 6o+ Cria+ § Cuss) [l
i =by+ Ty=c1+ 8 (eri+ 3 Ciiy + % Cigs) [ii]
byt To=c+ 087 cia+ Crp+ 2 Caa) [iu]
Cu=bu+ i (Tt To) =coa+ 0 ey + & ci2+ 75C0a + 55 iss) [w]

chs=bss+ H(T 4 1) = cas + 6 (4eia+ Seae + 15, Craa + T5Ciss + 2 Case) [V]

Cis=bost L (T4 To) mcaa+ 8 Qe+t ! st L1 Ciss) {w]
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Ga=bp=cp+ 8 (e + Ciz + Cis ) [wi]
by = o+ 5 Cin [vin]
Ay mbige e+ 0 (1 + 4 Crag 4 Crag) [1x]
smbis+ 3 To=8(d e b} Cuag) [x]
csmbigtt Tom 0 {cn+Dew+ i Ca) Ixd]
chombag+ 3 To= 8 (e + 3 cgg + 3 Cize) [x4]
Clgmbig= 0 (crz+ 3 Crad) [xw}

R Lo
cymCs=Cu=Cs=Ccy=05=0; Cy=0s=0

The expressions for ¢, given above, can be computed if the third order
constants Ciyy, etc, are known. Sometimes, retention of the form of ¢, in
terms of the initial stresses (such as ¢fy = &y + 77) would be wseful, as this
form. reveals the dependence of the effective constants on the ininal stress, 1t
has already been mentioned that such meagre data as is available on third arder
constants seenis to suggest that they are all negative and an order of magnitude
larger than the second order onmes. On this basis, it would seem that most of
the effective elastic constants decrease with application of a finite shear. For
a further discussion of this aspect, ¢, will have 10 be separated as sums of
squares {normal coordinates) This question together with upplication to
specific cases will be examined in a separate communication.
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