ELASTIC EEHAVIOUR OF MATTER UNDER VERY HIGH PRESSURES

Simple Shear

By E. V. Chblam
(Duector's Rescarch Yabaratary, Indan Insttute of Science, Dangalore-12)
Recuived on July 11, 1960

ABSTRACT

This paper feals with the study of the elastic behavour of substances whech are mitally subjected to a finte smple shear. Following the earler work of Bhagavantam and Chelan on the formulation of an effective elasic energy to deal with such cases, expressions have been derived for the effectue elasuc constants in the case of a substance of conbe symmetry.

Introduction

In prevous papers (Bhagavantam and Chelam 1960) a convenient approach to the problem of elastic behaviour of matter under high pressures was indicated. The case of a finte simple shear was excluded from those papers, as the general theory would have become very complicated if it were to cover this case as well. This is because a stmple shear has to be specried by an unsymmetrical Jacobian Matrix. In all other cases so far considered, this matrix is symmetric. The case of a simple shear acting on a substance of cubic symmetry is now considered separately and expressons derived for the 'effective elastic constants'. The results can be casily simplified so as to be applicable to an isotropic substance, by using the appropriate additional symmetry relations

Strain Matrix for Finite Shear

For detals of the notation erraployed here, reference may be made to the papers cited earlier and also to Murnaghan (1951). We take the undeformed state of the body (State I) and consider its fimte deformation by a sumple shear to State II, the displacement being specified by

$$
\begin{equation*}
x_{0}=a+\theta b ; \quad y_{0}=b ; \quad z_{0}=c \tag{1}
\end{equation*}
$$

Here a, b, c are the mitial coordinates of a typical particle and x_{0}, y_{0}, z_{0} the coordnates of the same particle afier the prescribed deformation, referred to a convenient set of axes. This deformation is thus given by the unsymmetrical matrix

$$
J_{0}=\left|\begin{array}{lll}
1 & 0 & 0 \tag{2}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

The strain matrix appropriatc to wach deformation on great by the
 the unit matrix of dimension 3. Hence the stram matra Gor Shate II ra weta by

$$
\eta_{0} \quad \begin{array}{ccc}
0 & \vdots & 0 \tag{3}\\
\vdots & 1 & ! \\
0 & 0 & 0
\end{array}
$$

We now impose an infintesimal deformation specified by the drplacement [4] on State II, so as to study the elastic behaviour of the subsance for such deformations from State II.

$$
\begin{align*}
& x=\left(1+\delta_{1}\right) x_{0}+\delta_{0} y_{0}+\hat{o}_{5}=0 \\
& y=\delta_{6} x_{0} \div\left(1+\delta_{2}\right) y_{0}+\delta_{4}=0 \tag{-1}\\
& z=\delta_{5} x_{0}+\delta_{4} y_{0}+\left(1+\delta_{3}\right)=
\end{align*}
$$

Thus x, y, z are the final positions of the partiche and the Jacobian J_{S} specifying displacement from State II to final State III is

$$
J_{i}=\left|\begin{array}{rrr}
1+\delta_{1} & \delta_{6} & \delta_{9} \tag{5}\\
\delta_{6} & 1+\delta_{2} & \delta_{4} \\
\delta_{5} & \delta_{4} & 1+\delta_{3}
\end{array}\right|
$$

From [1] and [4], it is easy to see that the Jacobian correpmonding to the total deformation from State I to State $1 / 1$ is given by

$$
\begin{equation*}
J_{\doteq}=J_{\delta} J_{0} \tag{6}
\end{equation*}
$$

Hence the corresponding strain matrix is given by

$$
\begin{equation*}
\eta=\frac{1}{8}\left[\left(J_{8} J_{0}\right)^{*} J_{5} y_{0}-E_{3}\right]-\left[\frac{1}{2} J_{0} * J_{0} * J_{8} J_{0}-\frac{1}{2} E_{3}\right]=J_{0}^{*}\left(\delta_{\eta}+\frac{1}{2} I_{3}\right) J_{0}-\frac{1}{4} E_{3} \tag{7}
\end{equation*}
$$

where $\delta \eta$ is the symmetric matrix $\frac{1}{3}\left[J_{\delta}^{*} J_{\delta}-E_{3}\right]$ with elements given by

$$
\begin{array}{ll}
\delta \eta_{1}=\delta_{1}+\frac{7}{2}\left(\delta_{1}^{2}+\delta_{6}^{2}+\delta_{5}^{2}\right) \\
\delta \eta_{2}=\delta_{2}+\frac{1}{\Delta}\left(\delta_{2}^{2}+\delta_{4}^{2}+\delta_{6}^{2}\right) & \delta_{\eta_{4}}=\delta_{4}+\frac{1}{8}\left(\delta_{2} \delta_{4}+\delta_{3} \delta_{4}+\delta_{5} \delta_{6}\right) \tag{8}\\
\delta \eta_{3}=\delta_{3}+\frac{7}{2}\left(\delta_{3}^{2}+\delta_{4}^{2}+\delta_{3}^{2}\right) & \delta \eta_{6}=\delta_{5}+\frac{1}{2}\left(\delta_{1} \delta_{5}+\delta_{3} \delta_{5}+\delta_{4}\left(\delta_{4} \delta_{6}\right)\right. \\
\left.\delta_{1} \delta_{6}+\delta_{2} \delta_{6}+\delta_{4} \delta_{5}\right)
\end{array}
$$

Hence if Δ_{η} is the matrix denoting the increase in the strain elements from State II (I e) putting $\eta=\eta_{0}+\Delta \eta$, we get from [7] and [3]

$$
[9]
$$

It will be observed that where as $\delta \eta$ is an increase of strain elements measured with reference to conditions of State II, $\Delta \eta$ gives the values of such increases when referred to State I. From [10] we get

$$
\begin{array}{ll}
\Delta \eta_{1}=\delta \eta_{1} & \Delta \eta_{4}=\theta \delta \eta_{5}+\delta \eta_{4} \\
\Delta \eta_{4}=\theta^{2} \delta \eta_{1}+2 \theta \delta \eta_{6}+\delta \eta_{2} & \Delta \eta_{5}=\delta \eta_{5} \tag{11}\\
\Delta \eta_{3}=\delta \eta_{3} & \Delta \eta_{6}=\theta \delta \eta_{1}+\delta \eta_{6}
\end{array}
$$

Strain Energy and its Increase due to Addotronal Deformation

The strain energy ϕ per unte volume of State I developed upto cubic powers of the strain components is given, for a substance of cubic symmetry, by [Ref. I]

$$
\begin{align*}
\phi= & \frac{7}{2} c_{11}\left(\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}\right)+c_{12}\left(\eta_{1} \eta_{2}+\eta_{2} \eta_{3}+\eta_{3} \eta_{1}\right)+2 c_{44}\left(\eta_{1}^{2}+\eta_{3}^{2}+\eta_{6}^{2}\right) \\
& +C_{111}\left(\eta_{1}^{3}+\eta_{2}^{2}+\eta_{3}^{3}\right)+C_{122}\left(\eta_{1} \eta_{2}\left(\eta_{3}+\eta_{2}\right)+\eta_{2} \eta_{1}\left(\eta_{2}+\eta_{3}\right)+\eta_{3} \eta_{1}\left(\eta_{3}+\eta_{1}\right)\right\} \\
& +C_{123} \eta_{1} \eta_{2} \eta_{3}+C_{456} \eta_{4} \eta_{5} \eta_{6}+C_{144}\left(\eta_{1} \eta_{4}^{2}+\eta_{2} \eta_{5}^{3}+\eta_{3} \eta_{6}^{2}\right) \\
& +C_{155}\left(\eta_{1}\left(\eta_{5}^{2}+\eta_{5}^{2}\right)+\eta_{2}\left(\eta_{4}^{2}+\eta_{6}^{2}\right)+\eta_{3}\left(\eta_{4}^{2}+\eta_{5}^{2}\right) ;\right. \tag{12}
\end{align*}
$$

Here, all the η 's are measured from State 1 When the substance attains State II., the $\eta^{\text {'s }}$ attan values given by $\eta_{1}=\eta_{3}=\eta_{4}=\eta_{5}=0, \eta_{2}=\frac{1}{2} \theta^{2}, \eta_{6}=\frac{1}{2} \theta$, and substitution of these values in [12] gives the straln energy of State II, When each of these stram components increases further by $\Delta \eta_{1}, \Delta \eta_{2} \ldots \Delta \eta_{5}$, the resulting increase in stram energy can be ensily obtained from the Taylor expansion

$$
\begin{equation*}
\phi(\eta+\Delta \eta)-\phi(\eta)=\sum \frac{\partial \phi}{\partial \eta_{r}} \Delta \eta_{r}+\frac{1}{\nu} \sum \frac{\partial^{2} \phi}{\partial \eta_{r} \partial \eta_{r}} \Delta \eta_{r} \Delta \eta_{s} \tag{13}
\end{equation*}
$$

on neglecting higher powers of $\Delta \eta$. Here the derivatives of ϕ are to be computed at State II, (ie.) after obtaining the derivatives from [12] we set $\eta_{2}=\frac{1}{2} \theta^{2}, \eta_{6}=\frac{1}{2} \theta$ and all other η_{r} as zero. We thus get

$$
\begin{aligned}
\phi(\eta & +\Delta \eta)-\phi(\eta)=\theta^{2}\left(\frac{1}{2} C_{12}+\frac{1}{4} C_{155}\right) \Delta \eta_{1} \\
& \div \theta^{2}\left(\frac{1}{1} c_{11}+\frac{1}{4} C_{155}\right) \Delta \eta_{2}+\theta^{2}\left(\frac{1}{2} C_{12}+\frac{1}{1} C_{144}\right) \Delta \eta_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \eta=J_{a}{ }^{k} \delta \eta J_{0} \\
& =\left|\begin{array}{lll|lll|lll}
1 & 0 & 0 & \delta \eta_{1} & \delta \eta_{6} & \delta \eta_{5} & 1 & \theta & 0 \\
\theta & 1 & 0 & \delta \eta_{6} & \delta \eta_{2} & \delta \eta_{+} & 0 & 1 & 0 \\
0 & 0 & 1 & \delta \eta_{5} & \delta \eta_{4} & \delta \eta_{7} & 0 & 0 & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{align*}
& +C_{155} \eta\left(\Delta \eta_{1} \Delta \eta_{5}+\Delta \eta_{2} \Delta \eta_{0}\right) \tag{14}
\end{align*}
$$

In a simple shear, there is no change in volume involvei ficme Stute In state II. Thas is clear also by anspection of the determana of , whelt is 1 . Hence op $(\eta+\Delta \eta)-\phi(\eta)$ may be eqated to ϕ^{\prime}, wheh gites the whata wersy al the additional deformation per unt volume of Suite $i 1$. By wame telathms [H] we can express ϕ^{\prime} in terms of $\delta \eta$ rather than $\triangle \eta^{\circ}$ and thic give us
where the values of the varous coeflicients are in under, ratande to the squares only of the θ.

$$
\begin{aligned}
& c_{1}^{\prime}=\theta^{2}\left(\begin{array}{l}
1 \\
2
\end{array} c_{12}+2 c_{44}+1_{1}^{1}\left(C_{155}\right) ; c_{2}^{\prime}=\theta^{2}\left(\begin{array}{l}
1 \\
4
\end{array} c_{11}+C_{14}\right) ; i_{1}^{\prime}+\theta^{2}\left(1, r_{10} ;\left(c_{14}\right)\right.\right. \\
& c_{1}^{t}=0 ; \quad c_{5}^{t}=0 ; \quad c_{5}^{\prime}=\theta c_{44} \\
& b_{11}=c_{11}+\theta^{2}\left(2 c_{12}+4 c_{14}+C_{112}+2 C_{154}\right) \quad b_{12}=c_{12}+t^{3}\left(r_{14}: C_{112}!C_{i}^{\prime}, 1\right) \\
& b_{22}=c_{11}+\theta^{2} 3 C_{111} \quad b_{23}-c_{12}+t^{2} C_{11}
\end{aligned}
$$

$$
\begin{aligned}
& b_{44}=c_{14}+\theta^{2} C_{155 / 4} \quad b_{16}=0\left(c_{12}+2 c_{44}+\frac{1}{2} C_{1<6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& b_{66}=c_{44}+\theta^{2}\left(c_{11}+{ }_{4}^{5} C_{155}\right) \quad b_{36}=0\left(c_{12} \div 4 C_{141}\right) \\
& b_{45}=\theta\left(2 C_{44}+\frac{1}{4} C_{455}\right)
\end{aligned}
$$

There are thus 4 first order and 13 second order nonvanishang cowficients in [15]. When the substance is isotropic, we can obtam appropriate values in [16] by usirg the additional relations

$$
\begin{aligned}
& C_{44}=\frac{3}{4}\left(c_{11}-c_{12}\right) ; \quad C_{144}=2 C_{112}-C_{113} ; \quad C_{155}=3 C_{111}=C_{112}: \\
& C_{456}=6 C_{111}-6 C_{112}+2 C_{123}
\end{aligned}
$$

Efrictire Elastic Constants and Efrective Elastic Ekergy

On expressing each $\delta \eta$ in terms of $\delta_{1}, \delta_{2} \ldots \delta_{6}$, by means of relations [8], we can write ϕ^{\prime} as

$$
\dot{\phi}^{\prime}=\Delta W+\dot{\psi}_{l}
$$

where
$\Delta W^{r}=c_{1}^{\prime} \delta_{1}+c_{2}^{\prime} \ddot{b}_{2}+c_{3}^{\prime} \dot{\delta}_{3}+2 c_{4}^{\prime} \delta_{4}+2 c_{5}^{\prime} \delta_{5}+2 c_{1}^{\prime} \delta_{6}$
and $p_{1}=\frac{1}{2}\left(c_{11}^{\prime} \delta_{1}^{2}+c_{22}^{\prime} \delta_{1}^{2}+c_{13}^{\prime} \delta_{3}^{2}\right)+2\left(c_{44}^{\prime} \delta_{4}^{2}+c_{5 j}^{\prime} \delta_{5}^{2}+c_{54}^{\prime} \hat{c}_{6}^{2}\right)$

$$
\begin{equation*}
\div\left(\epsilon_{12}^{\prime} \delta_{1} \delta_{2}+c_{23}^{\prime} \delta_{2} \hat{\delta}_{3}+c_{13}^{\prime} \delta_{1} \delta_{3}\right)+2\left(c_{45}^{\prime} \delta_{4} \delta_{5}+c_{16}^{\prime} \delta_{1} \delta_{6}+c_{26}^{\prime} \delta_{2} \delta_{5}+c_{36}^{\prime} \delta_{3} \delta_{5}\right) \tag{17}
\end{equation*}
$$

Here the new constuats $\sigma_{\text {, }}^{\prime}$ are connected with $b_{\text {r }}$ by the relations

$$
\begin{array}{lll}
c_{11}^{\prime}=b_{11}+c_{1}^{\prime} ; & c_{22}^{\prime}=b_{22}+c_{2}^{\prime} ; & c_{33}^{\prime}=b_{33}+c_{3}^{\prime} \\
c_{44}^{\prime}=b_{44}+\frac{7}{4}\left(c_{2}^{\prime}+c_{3}^{\prime}\right), & c_{55}^{\prime}=b_{55}+\frac{1}{4}\left(c_{1}^{\prime}+c_{3}^{\prime}\right), & c_{65}^{\prime}=b_{66}+\frac{1}{4}\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \\
c_{12}^{\prime}=b_{12} ; & c_{23}^{\prime}=b_{23} ; & c_{13}^{\prime}=b_{13} \\
c_{45}^{\prime}=b_{45}+\frac{1}{2} c_{61}^{\prime} ; & c_{16}^{\prime}=b_{16}+\frac{1}{2} c_{61}^{\prime} ; & c_{26}^{\prime}=b_{26}+\frac{1}{2} c_{6}^{\prime},
\end{array}
$$

$$
\begin{equation*}
c_{36}^{\prime}=b_{3 \sqrt{1}} \tag{18}
\end{equation*}
$$

In the earher papers, it has been pointed out that the first orders constants $\epsilon_{1}^{\prime}, c_{2}^{\prime} \ldots c_{6}^{\prime}$ represent the six components of the inutial stress $T_{1}, T_{2} \ldots T_{6}$, associated with the deformation of State II and that $\triangle W$ is thus the work done by then during the small displacement under consideration. Hence $\phi_{p}=\phi^{\prime}$ '- ΔW represented the total potential energy associated with the ' δ ' deformation, and this was also called the effective elastic energy, the coefficients in the same being the effective elastic constants Accoidngly, we can now glve expressions for the initial stresses $T_{1}, T_{2} \ldots T_{6}$, and also for the effective elastic constants $c_{r,}^{\prime}$ from [18].

$$
\begin{aligned}
& T_{1}=c_{1}^{\prime}=\theta^{2}\left(\frac{1}{2} c_{12}+\frac{1}{4} C_{15 s}+2 c_{44}\right) \quad T_{4}=0 \\
& T_{2}=C_{2}^{\prime}=\theta^{2}\left(\frac{1}{2} c_{11}+\frac{2}{1} C_{155}\right) \quad T_{5}=0 \\
& T_{3}=c_{3}^{\prime}=\theta^{2}\left(\begin{array}{l}
1 \\
1 \\
c_{12}
\end{array}+{ }_{1}^{1} C_{144}\right) \quad T_{6}=c_{6}^{\prime}=\theta c_{44} \\
& c_{11}^{\prime}=b_{11}+T_{1}=c_{11}+\theta^{2}\left(\frac{1}{2} c_{12}+6 c_{44}+c_{112}+\frac{9}{4} C_{155}\right) \\
& c_{22}^{\prime}=b_{22}+T_{2}=c_{11}+\theta^{2}\left(c_{11 / 2} \div 3 C_{111}+\frac{1}{4} C_{155}\right) \\
& c_{33}^{\prime}=b_{33}+T_{5}=c_{11}+\theta^{2}\left(\frac{1}{8} c_{12}+C_{112}+\frac{1}{4} C_{144}\right)
\end{aligned}
$$

$$
\begin{align*}
& c_{55}^{\prime}=b_{59}+\frac{1}{4}\left(T_{3}+T_{1}\right)=c_{44}+\theta^{2}\left(\frac{1}{1} c_{12}^{\prime}+\frac{3}{2} c_{44}+{ }_{1}^{3} C_{144}+\frac{1}{16} C_{155} \div \frac{1}{4} C_{456}\right) \quad[\mathrm{v}] \\
& c_{66}^{\prime}=b_{66}+\frac{1}{4}\left(T_{1} \div T_{2}\right)=c_{44}+\theta^{2}\left(\frac{1}{8} c_{14}+\frac{1}{5} c_{12}+\frac{1}{4} c_{44}+{ }_{h}^{11} C_{155}\right) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& c_{22}^{\prime}=b_{12}=c_{12}+\theta^{2}\left(c_{11}+C_{112}+C_{153}\right) \tag{VIY}\\
& c_{23}=b_{23}=c_{12}+\theta^{2} C_{112} \\
& c_{13}^{\prime}=b_{13}=c_{12}+\theta^{2}\left(c_{12}+\frac{1}{4} C_{122}+C_{144}\right) \tag{x}\\
& c_{45}^{\prime}=b_{45}+{ }_{4}^{1} T_{6}=\theta\left(\begin{array}{l}
3 \\
2
\end{array} c_{44}+{ }_{41}^{?} C_{466}\right) \tag{x}\\
& c_{16}^{\prime}=b_{16}+\frac{T}{2} T_{6}-\theta\left(C_{12}+{ }_{2}^{3} c_{44}+\frac{1}{2} C_{155}\right) \\
& \left.c_{26}^{\prime}=b_{26}+\frac{1}{2} T_{b}=t\right)\left(r_{11}+\frac{1}{2} c_{4:}+{ }_{2}^{7} C_{5-1}\right) \quad[x 11] \\
& c_{36}^{\prime}=b_{36}=\theta\left(c_{12}+{ }_{3}^{\mathrm{T}} C_{144}\right) \quad\left[x_{111}\right] \\
& c_{14}^{\prime}=c_{15}^{\prime}=c_{24}^{\prime}=c_{25}^{\prime}=c_{34}^{\prime}=c_{35}^{\prime}=0 ; \quad c_{45}^{\prime}=c_{54}^{\prime}=0 \\
& \text { [vin! } \\
& {[x]} \\
& \text { [x:1] } \\
& \text { [} \mathrm{x} 111 \text {] }
\end{align*}
$$

The expressions for $c_{t s}^{\prime}$ given above, can be computed if the thrid order: constants C_{111}, etc, are known. Sometimes, retention of the form of c_{p}^{\prime}, in terms of the initial stresses (such as $c_{11}^{r}=b_{11}+T_{1}$) would be uncful, as thas form reveals the dependence of the effective constants on the initual stress. It has already been mentioned that such meagre data as is available on thifo order constants seems to suggest that they are all negative and an order of magnitude larger than the second order ones. On this basis, it would seem that moxt of the effective elastic constants decrease with application of a finite shear. For a further discussion of this aspect, fo will have to be heparated as sums of squares (normal coordinates) This quastion together with upplication to specific cases will be examined in a separate communication.

Acknowlidghment

The author records his grateful thanks to Prof. S Bhagavatam, Difcetor, Indian Institute of Science, Bangalore, for vatuable guidance tn the preparation of this paper. He is also indebted to the Government of Imda in the Ministry of Commurications and to the Director General of Observatories for kind grant of study leave which rendered possible the taking up of this work.

References

1. Bhagatantams and Chelam E. V. . . Proe lnd. Acad Sct $1^{1} 60,52$, see. A. inith.
2. - J Indan lns Sit, 1960, 42, 20-70)
 (Nen York: John Wilev).
