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ABSTRACT

The offect of bevelling on the thickness-shear-llexure vibrations of ¢ ystalline
plates, especially AT cut quartz plates, 1s mvestigated.  The theoretical caleulations
for nfinitely long plates are based on MINDLIN’S plate theoy which takes mto
account the rotatory mertia and transverse shear terms and the equatwng of
the bevelled plate are obtwned from the reduced equatrons given by MINDLIN
and FORRAY for the umifoim plate and for the double wedge. Whereas the thick-

hear freq 13 practically flected by bevelling, the flexure vibrations ate
very scriously disturbed, the order of the flexme overtone which combines with the
fandamenta! ihickness-shear m a double wedge bewng almost twick that in a pmform
plate. The calculations are compaied with the experimental observations on long
strips of A cut quartz plates 1t 1s suggested that bevelling, together with edye
clamping, will considerably ryeduce the flexure coupling efects, as is borne out i
practice,

InrTrRODUCTION

Since the theory of the comiplete vibrational modes of crystalline plates of
finite thickness presents exceptional mathemauical difficultics, little progress has
been made m understanding all but the simplest problems (Mindim, 1955;
Hearmon, 1956). For example, one has fairly acourate deseriptions of pure
modes (thickness extension and shear, face-shear, flexure, etc.) but when the
modes are coupled, analysis has been very difficult. The situation is all the
mote unsatisfactory since in the crystal plates, used widely in science and
mdustry, the modes are always coupled and the crystal plates can be easily
excited inte a number of modes (Sykes, 1946).

The technique of contourmg the thickness of the crystal plate to improve
the frequency quality of the resonators 1s widely used. Bechmann (1952) has
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shown that on bevelling a cireular plate the spurious contour-shear frequencies
are displaced away fiom the basic thickness-shear frequency acd can thes be
ehiminated to result in a single tesponse near the designed frequency.  Warmer
(1952) has used the idea, that im a convex shaped plate the thickness-shear
motion s confined to the central portion, to reduce the effect of mounting on
the resonators, and this technmique bas subsequently been used by Vasm,
Pozdyakov and Varoslavsiai (1957), White (1958) and others.

Among the recent theorctical developments concerning the problem of the
vibrations of contoured plates, Mindiin and Forray (1934) have developed an
approximate way of solving Mindlin’s equations {1951) for a plate of variable
thickness. Essentially this consists in sphitting the complicated fourth order
equation with vanable coefficients representwng the coupled thickness-shear-
fiexure modes wto two pairs of equations representing the uncoupled thickness-
shear and flexure modes, still retaning the thickness-shear and rotatory inertia
effects.  This reduction is approximate but in the region of low thickness-shear
and high flexure overtones the reduced equations agree very well with the
complete equations for a uruform plate. Incidentally it s m this region n which
one 1s interested, for the fundamental thickness-shear mode ts usually coupled
with a lugh (20th-30th) even arder flexure mode.

The solutions available for the low flexure modes of wedge shaped plates
(Klewn 19356) are based on the classical plate theory and the neglect of the
rotatory shear and 1nertia effects renders them uscless at high overtones of plates
of appreciable thickness.  So in thus note, the fexure solutions of the Mindlin’s
plate theory ate obtained and using in addition Mindlin and Forray’s caleula-
tions ohe obtans the frequency spectrum of the bevelled plates

FREQUENCY SPECTRUM OF THE BEVELLED PLATE

The nature of the effects brought about by bevelling are clearly brought
out by suppressing the coupling 1n one lateral direction, 1¢., by considering a
v faced crystal plate (thickness 2) of infinite length along the z axis. In this
case Mindlm and Forray (1954) have obtained the thickness-shear solutions of
the bevelled plates starting from the full solutions of the uniform plate and of
the double wedge. Since these relations are needed both m deducing the
fexure modes of the bevelled plates (Eq. 17) and m plotting the full frequency
spectrum (Egs. 7, 11, 12, 15 to 18) they are very briefly summarized for the
subsequent use.

Taking the displacements as
w=y i (x,8); 1= 7 (x,0); w=0andh=h (x}

the teduced equations of Mindlin and Forray are ;

(A) for the transverse shear vibrations,
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The mioment 6f the forces M, and the resultant of the forces (7, arc
M.=D, ’:l‘é; Q.= Ds (lﬁz‘i' 113)

(c, are the rotated constants for the orientation of the plate).

{B) for the flexural vibrations
(D 7)) =2k pha g1 =05 e~ —
where =0+l g; Di=(2ecn— a3
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The moment and the resultant of the forces are
Mio=-Din; Q=—(Dig) 6]
One now sees that for a uniform plate, as shown m Fig. T4 the thick-
ness-shear solution is obtamed as
n2=A sin 8, x + B cos 5, x |74}

and with the fiee plate condition, the fundamental mode (antisymmetric in x)
has a frequency given by

8 (2 bg) = nm (n=1,2,...) [78]
where
o LOAPS ) el ) »
(2 he) ks (2h)|® 1

In the flexure waves, with the free plate conditions, the odd oirder modes are
01 = A [cos §; x -+ cos §; by sech & by cosh §; x]
tanh 3,6y = — tan §; &, [oa]
and the even order modes (antr-symmetric 1n x) are
9= A’ [sin§, x - sin §; bgcosech 8, by sinh §; x]
tank §; B = tan §, by [o}
where
8 =124 p /(2 o) {ers — hfen) {10]
Takig both the modes, at large r
5 (25) =Qr+1)xf2 fu]

In the case of the double wedge of dimensions shown in Figure 5, the
thickness-shear mode 1s

do = Ax70 7, (82) + B2y, (B) [124]
and the fundamental frequency is obtained from the first root of
a y]p(y)} -0 [128}
dy

v

where
B =12k, poitmices s P =1+ 12kofa; y=Bboi a=2hfbo f13]
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The flexure solution 18
qu=x AL () + By () + €% () 4+ DY ()] [142]
where
(A2)* = 12k, pu’fa (en — ehofezn) [148]

Treating the symmetric and antisymmetric modes, the high overtones are

given by
A =(2r+5) /4 1]

Tn order to get the fundamental thickness-shear mode of the bevelled plate

of cross section (Figure Ic),
2h=ax for O=<x=by-b
=2hy for by— b=x<hy
and a=2h/(bo~b)

one assumes the antisymimetric solution of Eq. {8] with the conditions fixed at
X' (=by—x) by for the uniform portion and the solution [124] with the
conditions fixed at x =0 for the wedge portion. Then, demanding the con-

tinuity of s and 5 at x=by— b as done by Mmndlin ard Forray, one gets the
secular equation

Sxbe —b) tandy b, J,+(p—~ 1), — B (bo =~ £) Jpuy =0
Jo=J, 18 (Bo~8)] (16)

In the case of the flexural vibrations, it is sufficient to consider the even
modes, since the fiundamental thickness-shear mode (antisymmetrie in x) couples
almost only with the even flexural modes {also antisymmetric m x) (Sykes 1946),
(The method 15 easily applied to odd modes also and the resulting cquaiion has
tan x instead of cot x in Eq. 18).

The general antisymmetric soluiton for the umiform pertion 1s
n=Asin § '+ Bsinh 5, x', = byt x
and that in the wedge portion is
m=Cxt QA+ D L (A

oae demands the coutinuity of the displacements 5 and f and also of the
morments M, and the stress sesultants Q, at x=by— b. Usmg Eqs. [4] and (6],
the secular determinant after soms simplification becomes
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<ot §, brcoth §, 551 (5o — 6 [81 (bo - h) ~ KT, + Jof7,] (11
+ 8y (ho— B} [1—8, (b = BY &/ L1 i ~ 8 (b = DY 7/ 7]
+ coth 8, 5-[1 — 8y (B — BY Lo A [1 + 52 (8o — BY — 5, (b0 — ) 1/ 1.}
—cot B br{t =5, (b~ 8} LI} 11 — 51 (8, 5~ 5, (by - b) 1o/ 1] =0

where the Bessel functions are of argnments A(bg— b} =28, (hp—b5). In the
region §;4>3 and §;(by—b5)>>5 this egnation can be approximated by the
simpler equation

[1— 8, (B - b} cot ] — cot 8,6-[1 = 5,(by— b} — 8, (85—~ b} cot ¢] =6
6 =25 (by—b) — r/d {13}

Thus one can evaluate the complete frequency spectrum. To solve the
secular equations, the methed of alternating signs was used and the roots were
estimated to 1% accuracy only in view of the experimental complications.

Discussion

The numerical computations have been made for AT cut quartz plates
2hy=01cm. m thickness and of widths 22, =2.0cm. and 2by=05cm. A
bolho ratio of 20 1s common for the plates widely wsed in industry and science
while by/hy ~ 5 was found reasonably convenient as discussed below to simu-
late experimentally the conditions of an infinitely long plate. The values of
the rotated elastic constants are the same as those used by MINDLIN (1951)

[ =2934; ex=120.9; ¢p= — 10.49; ¢ =86.05 x 10" dynes/om®;
o —2 660 gm/em’]
which are based on Mason’s observations.

Takimg the case where bolhy = 20, the frequency spectrum near the funda-~
mental thickness-shear vibration 1s plotted (n Fig. I¥ for various values of b/by.
The thickness-shear frequencies were computed from Eq. [16]. The flexare
frequencies in the range 0 1< h/b,<<0.7 were computed from Eq. [18] and then
Eqs. [11, 15] were nsed to fix up the orders of the various overtones. Fig. I
shows immediately two features A slight bevelling say b/bn ~ 0.8, does not
cause any percephible change m the thickness-shear frequency, but completely
changes the position of the flexure frequency. [t iz obvious that by giving
controlled amounts of small bevelling the troublesome flexnre froquencies can be
moved away from the thickness-shear mode so as to cause the least disturbance.

Similar calculations for Byjhy— 5 ate given in Fig. 1I. In addition to the
general features mentioned above, two other features appear. One is that
already the effect of small lateral dimension on the thickness-shear 1s felt both
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in the shift of the frequency from that of an infinite plate and m the dis‘p.zrsi_on
of the frequency with 5/hs. Secondly the order of the flexure overtone which
combines with the fundamental thickness-shear is reduced considerubly, thus
leading to a greater disturbances of the thickness-shear mode.

w
w

Fe. 11
Fr ies of the fund thickness-shear (full hine) and he flexure
overtones (dashed lines) for various b/ b (2 hg=0 | ; 2bc=2,0 cm.) The thick~
ness-shear freequency @ of the mfintely wide plate is also indicated.

The causes of the different sensitivities of the two types of modes to the
bevelling has been already indicated by Mindlin and Forray (1954). Taking the
thickness-shear of a double wedge (Eq. 12a), in the case treated above
(25 =0.1; 25y =2.0 cm.), p ~ 16, § x varies from 0 to 15 and x72 J, (8x) is
negligible at small x near the edge and becomes appreciable only near the centre.
(Numerically 1727,{1)~1.107%,  10727,6(10)~2.107%, 15727,4(15)~.4.107%),
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So the edge portions do not at all participate in the thickness-shear motion and
only the central portion vibrates appreciably. Hence the bevelling of the edges
has only a minor influence on the thickness-shear vibrations. In fact it 15 this
absence of motion at the edges which enables one to reduce the mounting losses
in hugh O resonators. For {lexure vibrations [Eq. 14 a], A~ 30-40. So x™%/,(Ax")
is large at the edges and becomes small at the centre of the double wedge.
Mumerically  1787(1)~4.107%,  10757410) ~ 1 1072, 3073/,(30)~3.1072).
So any alteration of the conditjons at the edges has a pronounced bearmg on
the flexure modes.
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Tundamental thickness-shear (fulf line) and flexure overtones (dashed hnes)
for a bevelled plate 2 ho==0 1; 2 5,=0.5 cm. Experimental pomts arc indicated
by dots, Corrections to the plotted values are also shown tn the case of the
umform plate. .

This consideration suggests that cdge clamping m addition lo bevelling
will still further reduce the flexure coupling effects Of course, the solutions
derived above are for free plates and must be extended to the required case.
But it is obvious that the damping of the flexure vibrations where they are most
pronounced will mmimize the coupling effects.

The cxperimental studies to check some aspects of the caleulations were
made on AT cut guartz plates of size 2/ =0.1, 2 &= 0.5 cm. and the largest
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dimension was~ 8 cm. so that the ratio of the thickness to he breadih is
smaller than that of the breadih to the length  Though the ccupling to the
length will still persist to some extent, this effectively stmulates the conditions
of an mfinite plate within reasonable dimensions In actual practice several
frequencies are obtained which are due to coupling with this fengih and with
the face shear modes. They are easily recognised by altermg the clamping
conditions at the edges of the largest dimension or by alterng ihis sive, when
the unwanted frequencies are changed considerably.

The experiments were made by the usual [i-network transimission method
and are compared with the theoretical results given m Fig 11f  Unfortunately,
as already pointed out, the method of computation has serious errors
the region of low flexure overiones and in the case of the umform plates the
correct values can be obtained from the exact solutions of Mindlm (1951). The
corrections are indicated in Figure 11, where 1t is seen that the thickness-shear
values should be mereased and the floxure values should be lowered  Also, in
the sumplification of the exact equations, the “ pulling ” of the frequencies due
to the coupling 1s lost  On the cxperimental side, the fimite value of the length
is a departure from the idealised mode! considered  In view of these, nothing
more than a qualitative agreement between the experimental results and the
theoretical computations can be claimed.

Some experiments were tried with edge clamping of the bevelled plate.
A considerable reduction i the mtensity of the various side overtones was
observed while the thickness-shear mode is only slightly damped. In the absence
of any theoretical value for the amplitude ratios, a quantitative compartson was
not attempted. All the same, this bevelled edge clampmg techuique is alicady
widely used m Bharat Elecronics Ltd , Bangalore, for improving the performance
of several types of crystals.
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