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Basing on earlier work of Bhagavantam and Chclam on thc elartic hehaviour 
of matter under high pressures wherein an effective elastic enerny expression was 
introduced, it has been shown that the positive definiteness of this expression signi- 
fies elastic stability. Sincg.the coefficients in this energy expression have hecn 
worked out, it may be expected that this would provide il convenient approach for 
determining the elastic instability in any system subjected to large strains. 

The subject of elastic instability has found application in a wide range of 
engineering problems such as structural stability, buckling of beams, columns 
and plates, stability of small vibrations, the  design of darns, bridges, ships and 
aircraft, etc. It 11% also a major role to play in geophysical phenomena such as 
earthquakes and rockbursts where presumably the  accumulated strains reach a 
critical stage, beyond which elastic instability accompanied by release of 
tremendous amounts of energy sets in. 

A survey of the basic problem of elastic instability will be found in books 
by Timoshenko (1936), Bleich (~952). ShanIey (1957) and in other recent 
contributions by Langharr (1958), Argyris (1954, 1955), Zeigler (1956), Hoff 
(1954), Pearson (1956), Goodier and Plass (1952), Lime (1952), Mofl(1951) 
and Prager (1947). Barring some exceptions when the forces are gyroscopic, 
nonconservative, largely dissipative etc. when the definition of elastic stability 
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itself has to be given on a dynamic basis (zciglcr 1956'1, the $:tncr:~I criterion 
for an system to remain stable in any cql~ilibri:i!n con1igtir:tcion is thet 
its total potential energy in that  configuration shouid be :in ti lm~lutc n.riilin~ui~. 
This criterion, proposed by Bryan in 1889, has now receiveci cxtcnsive ;~ppIica- 
tions. The total potential energy in this context is the sum of' tllc strain 
energy (which is also referred to as the potential cncrgy of the irltern:ll forces 
by zeigler) and the potential energy of ihc external f h x s  such as gravity, 
externally applied loads etc. Moreover, it is the pcltcntial criergy o f  thc body 
as a whole (i.e.1 integrated over the entire volume of the h ~ d y .  'This criterion 
therefore appears as the minimization of a certain integr:rl reprcscnting the 
potential energy. The criterion of equilibrium as stated ahnvc is hcst studied 
by considering the change in such potential cncrgy (say V )  brought ctbout 
when an infinitesimally small virtual displaccment from the contigoration is 
considered. This small displacement could be specilicd by suit:thle parameters 
such as the infinitesimal strain components, and thc chnngc in poten!ial crlcrgy 
could be developed as a power series in these components. The cncrey 
minimum would then require that the linear terms in this dcvelirpment vanish, 
( 8 ~ = 0 ,  corresponding to  the stationary valuc of the cncrgy) while thc sccond 
order terms comprise a positive definite quadratic forin (8 'V>O corrcsponding 
to the minimum value of V). Tf this quadratic, thrown into its ' nornnl  ' Form 
(i.e.) as a sum of squares with no cross products. has any of its tcrrns with 
a negative coefficient, then instability sets in. From thc theory of small 
oscillations, i t , is clear that the corresponding original smnll disturbance will, 
nuder such conditions, grow with time and tecome unhoundcd (Zeigler 1956). 

CR~TERION FOR INSTABILITY IN A STATE OF FlNr.nl STRAIN 

At this stage, we note the important point that the equilibrium configuration 
referred to could be either the natural or undcformcd state of the  body o r  a 
state of initial strain, caused by the presence of initial stresses. This second 
type is of particular importance in practical applications as wc face here the 
question whether a substance, which is stable in its undcformed state, could be 
rendered unstable when it is subjected to  a specified degree of finite strain. In 
dealing with such cases, a mere statement about the criterion o f  minimum 
potential energy has only a limited practicalvalue. One should therefrom dcduce 
criteria which relate the onset of instability with the magnitude and nature of 
the initial finite strain. 

In previous papers  hagav avant am and Chelam 1960), the problem of the 
elastic behaviour of substances, which are already under a state of finite strain, 
was investigated. I t  is the purpose of this paper toshow that the positive definite- 
ness of the quadratic form $,(the effective elastic energy as defined in those papers), 
in any portion of the elastic medium or body, is the criterion for the elastic 
stability of that portion a f  the medium or body. This criterion is therefore to 3 

be shown as equivalent to the criterion of minimum potential energy computed 
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over the appropriate portion of the medium. Presentation of the criterion in 
this form, rather than as the minimum value of an integral taken over the whole 
body, has the additional advantage that we could consider the presence or absence 
of elastic instability in any portion, or what amounts to the same thing, in the 
small neighbourhood around any point within the body, by investigating the 
positive definiteness of the function 9, at  that point. Of course this gives us 
only the magnitude of initial strain, or equivalently, the magnitude of initial 
stress at each point, the exceeding of which results in instability. Whether this 
magnitude is reached a t  any point within the body under given boundary condi- 
tions and applied external loads has t o  be separately examined for each individual 
problem, using the finite deformation theory. 

STRAIN ENERGY, POTENTIAL ENERGY AND EQUILIBRIUM CONDITIONS 

When an elastic body is strained, internal forces (stresses) develop within 
the body which tend to take the body back to its natural or undeformed state. 
If therefore a body has to be maintained in equilibrium in such a strained 
condition, external forces have to he applied and maintained, t o  balance these 
internal forces. In every such equilibrium state, we have thus to take into account 
both the external and internal forces and obtain a balance between them. 
Instead of directly balancing the forces, one can also balance, according to the 
principle of virtual work, the  work done by these two systems of forces in any 
suitable small ( i .e . )  infinitesimal displacement form the equilibrium position. 
Since the work done against a force in a small displacement represents the change 
in potential energy associated with that force, balancing of the internal and 
external forces means that the gain in potential energy of. one is equal to the 
loss in potential energy of the other, thus requiring that the change in the total 
potential energy, (ie. composed of the internal and external forces) be zero. 
Now, the strain energy in a deformed medium is the internally stored up energy, 
brought about as the result of the work done against the action of internal forces 
resisting such a deformation. Hence the st& energy is the potential energy of 
the  internal forces and the criteria of equilibrium require this internal potential 
energy to  he related to the potential of the external forces. If 6 W be the work 
done by the external forces acting over a unit initial volume of the deformable 
medium in a small displacement, then - 6 W is the associated change in the 
external potential, and the equilibrium conditions require that the change in the 
internal and external potentials taken together is zero, (i.e.) that SV = j(S9 - SW) 
= 0, or that 6 W = 6$, where 9 is the strain energy per unit initial volume and 
655 is the change in the same, computed up to the first order of the infinitesimals 
specifying the change. Analytical expressions can be worked out for SW. The 
criterion that SV- 0 in every virtual displacement, leads first to the equations of 
equilibrium in the form ( i r zk /bxk )  + p F j =  0 connecting the stress matrix T 
with the body force F, p being the density. On using this relation, theexpression 
for 6 W, is given in the infinitesimal theory by 
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8~~ T,& + T2&+ T3S3 5 2T&-i. 2T& -k 2T686 C1I 

where T alld 8 are the  stress and infinitesimal strain matrices rcpresentcd 

I T1 T6 T5 I 1 4 fia Sr I 
T = ,  T; T4 8 = ' 8 6  62 8.1 1 [2] 

T T3 1 Sr 84 3 3  1 
The relation SW- S+ then leads to  the standard relation between stress and 
strain energy in the classical theory T = a$/dq assuming that $ is written as a 
function of the 9 independent components of the strain mutrix, disregarding the 
symmetry relation qn-  qki. In the finite theory, where the distinction herwcen 
a n  initial and final state has to be maintained, the expression for virturl work is 
nlore complicated (Murnaghan 1951). Let J be the matrix specifying thc 
deformation from an initial state (state 'a  ') to  a final state (slate ' x '), p,, and p, 
being the corresponding densities, so that a small volume elcrncnt dV, in t l ~ c  
initial state, which becomes dV, in the final state is connected by thc rclntion 

nvo p, 1 --=-- 
dV, p, Determinant J 131 

The elasticmedium is in equilibrium in the final ' x '  state, which is characterized 
b y  a specified amount of finite strain q (measured from conditions in the initial 
state) and a corresponding magnitude of finite stress T (which is always refcrrcd 
to  the conditions in the final state). We now impose a ' 8  ' displnccmcnt on  the 
system in the ' x ' state, specified say by a ' 8 ' matrix of the type given in [2]. 
Then Murnaghan's analysis shows that thc work of the extcrnnl forces in the 
' 6 ' displacemement is still given by [I], with the additional feature howevor 
that [I] now refers to a unit volume of the  ' x '  state and not of the ir~itial ' a '  
state. It  will be noted here that S W  in [ I ]  is the same thing as the  truce (1.e.) 
sum of the diagonal elements of the product martix T.6. If an unsyrnn~ctrical 
' 6 ' displacement is chosen, we form the symmetric matrix D - [ S  + sm]/2 
where S* is the transpose of 8, and SW is then given by the trace of  the  matrix 
T.D. Now, the strains q and consequently the variations Sq in the samc are 
however referred to the initial conditions while the 6 or D refer to the ' x'  state. 
Murnaghan shows that these two quantities are connected by the relation 
811 - J*.D.J, which reduces to  P .8 . J .  in our present symmetric case. On  using 
this relation, the virtual work of all the external forces acting on a unit volume 
of the ' x ' state is obtained as tho trace of the product martix J-'T(J*)-'S~, 
while the corresponding first order increase in strain energy is given by S+ per 
unit initial volume or, from [3] by (p,/p,)8+ per unit volume of the  ' x 7  state. 
In order therefore that a specified volume Vx of the deformnble medium remain 
in equilibrium, we must have 
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However Murnaghan points out that every portion of the deformable medium is 
in  equilibrium. Thus V, is arbitrary and the integrands in [4] must be equal. 
We thus obtain the  fundamental stress energy (or equivalently the stress-strain) 
relationship valid in the realm of non-linear elasticity as 

STABILITY CRITERION AND EFPECTIVE ELASTIC ENERGY 

The fundamental contribution of Murnaghan presented above reveals 
incidentally two important aspects. Firstly, the principle of virtual work, or in 
other words, the requirement of the stationary value ofthe total potential energy 
can be applied over any arbitrary portion of the deformable medium, t o  derive 
thecriteria of equilibrium of that portion. I t  hence follows that the supplementary 
criterion regarding tbe sfability of such an equilibrium state will be determined 
by application of the criterion of the minimum of potential energy viz. a2v>0 
over any arbitrary portion of the deformable medium, this approach having the 
same validity as the applicability of the stress strain law [5]  at any point with 
in  the medium. As the portion over which V is computed is thus arbitrary, it 
follows that the criterion that any selected unit volume element of the deformed 
state is in stable equilibrium is given by S2v>0 where v is the total potential 
energy in that unit volume. The variation in v is however composed of the 
variation in  the  strain energy minus the work done by the external forces. TO 
quantitatively obtain its expression, we note that the second important point in 
Murnaghan's work is that when the strain energy is referred to  a unit volume 
of the finitely defoimed state (maintained in equilibrium by external forces), 
and the variation of this strain energy consequent on a '8' displacement from this 
equilibrium state is expanded as a power series in the  s's, then the terms linear 
in the 8's in this expansion, balance the work of the external forces, the 
equilibrium stresses just developing to such a magnitude so as to ensure this. 
This necessitates that the development of v in terms of &can have no linear 
term, while the second order terms 8% can only arise from terms of the second 
degree in  the  expansion of (p,/p,)+, there being no contribution to the same 
from the work of the external forces. Thus 

8 "  = & pg) 
Po 

161 
In the earlier papers of B!lagavantzm and Chelam refsrred to, terms of 

the second degree in the s,, contained in the expansion of (p,/p,)+, have been 
denoted by 9, and called the effective elastic energy. Thus +, - (p,/po) s2+ 
and we hencc get 

s2v = +e [71 



Thus we deduce the criterion that the efjec~ive elastic EIIOWJ' sho1rld rcmoin positive 
dejinite for elastic stability to be mairtluineci. If in any p~lrtion of  the elastic 
medium, $, assumes negative values (which can be tllc case when : ~ n y  of its 

in the normal form is negative) then clastic instability and rclcase of 
kinetic energy appear in that portion of the elastic mcdiom. This cstahlishes 
the important role of the effective elastic energy in relation to cl:Wic inst:~bility. 

The criterion regarding the positive definiteness of +,. a t  311y point within 
an elastic medium subjected to  large initial stresses is generally si~nplcr to apply 
than the conventional criterion regarding the minimization of the integr;tl of 
the total potential energy, although the two are equivalent, in tlic ultimate 
analysis. In the earlier paper by Bhagavantarn and Chelam, thedctniled method 
of deriving the expressions for the coefficients occurring in the qtiadrirtic fcwm 
?, was outlined, assuming that +, was developcd as a function of thc 6 
mfinitesimal strain components Z1, 62 . . . a6 in thc form 

Each el, was developed a s  a function of the elemcnts of the J:~cohiar~ Matrix 
specifying the initial finite displacement. I t  thus bocomcs easier t o  determine 
the magnitude of the initial finite strain a t  which the  c:,, or rathcr an nppropriate 
combination of them in a normal form of +,, becomcs negativc. This procedure 
thus providesa convenient approach t o  determine the  onset of clasric instability. 

A study.of the stability of the system after it has reached some postulated 
stale of finite strain, has also the advantage aspoined out by Pragcr (1947) that 
the problem of elastic instability is clearly separated from the more involved 
investigations into the type of initial forces which led t o  the dcvclopn~cnr of 
such a state of finite strain. 

The author records his gratitude to  the Government of India in the 
Ministry of Communications and to the Director General of Obscrvatorics Tor 
kind grant of study leave which rendered possible the present investigation. 
The author has also great pleasure in acknowledging his indebtedness to Prof. 
S. Bhagavantam, Director, Indian Institute of Science, for valunblc guidance in 
the preparation of this paper. 
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