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ABSTRACT

We have discussed the stability of a rigidly rotating infinite liquid column of
infinite conductivity in the presence of a uniform axial magnetic field. We have
derived the dispersion relation in the general case taking the cylinder to be self-
gravitating and accounting for the surface tension forces on the free surface of the
liquid. We have shown that previous results obtained by Rayleigh, Hocking¢ and
Simon® are particular cases of the present dispersion relation. We have discussed
the present dispersion relation for large wave-length disturbances neglecting surface
tension forces in the cases of (i) pon-gravitating cylinder with the velocity of
rotation small on the surface compared with the Alfven wave velocity (ii) non-
gravitating cylinder with velocity of rotation large on the surface compared with the
Alfven wave velocity and  (7if) gravitating ¢ylinder. We find that in case (i) there
is stability but in the other two cases disturbances are unstable.

INTRODUCTION

The problem of gravitational and magnetogravitational stability of an
infinite, homogeneous and rotating fluid medium has been studied recently by
a number of authors [Chandrasekhar', Pacholezyk and Stodolkiewicz?].
The corresponding problem for a rotating fluid column of finite radius does not
seem to have attracted the same attention. Recently Hocking and Michael®
and Hocking® have considered the effect of rotation on the stability of a
non-gravitating infinite liquid column without magnetic field. They find that
rotation always tends to reduce the stability. )

In the present paper we have discussed the stability of an infinitely
conducting, infinite, rigidly rotating liquid column with a uniform axial
magnetic field taking it to be continuous across the surface of the cylinder.
Tn deducing the dispersion relation we have considered the cylinder to be self-
gravitating and have taken account of the surface tension forces on the free
surface of the cylinder. In the axisymmetric case we can deduce the stability
criterion given by Rayleigh® for a nonrotating liguid jet on putting £=0,
G=0and B =0 in the present dispersion relation, where 2 denotes the angular
velocity of rotation, G the gravitational constant and B the magnitude of the
axial magnetic field. We can get' the dispersion relation given by Hocking’
when we put G =9 and B =0 in the axisymmetric case of our present dispession
relation, while the case considered by Simon®, viz., hydromagnetic oscillations
122
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of an infigitely conducting gravitating liquid column at rest in equilibrivm with
an axial uniform magnetic field can be obtained by putting £ = 0.

In the present paper we have discussed the dispersion telation for the
axisymmetric disturbances with large wave length in the following three cases :
() G=0, Va>> R2r, (i) G=0, Vo< <Qr, (iii) G50, where F, is the
Alfven wave velocity in the cylinder and 7, is the radius of the undisturbed
cylinder.

We find that in the case (i) the cylinder is stable against large wavelength
disturbances, however it is unstable in cases (ii) and (iii).

Basic EqQuaTions

In terms of the usual symbols p, p, v, B, B, j, €, uo and kg for pressure,
density, velocity, electric field, magnetic induction, volume current density, electric
charge density, magnetic permeability and dielectric constants respectively we
have in the M.K.S. system of units the following equations for the conductmg
liquid when the displacement current is neglected.

p(dv]d) =7 x B+ eE— Vp+pV, 1
Vy=0, 2

E+vxBw=0, V % B = 0], G4
V-B=0, V %E = —~(3B[.1), (5, 6)
V-E-clko, V= ~4mGp, .9

where ¢, is the gravitational potential inside the conducting liguid.

VacuuM EQUATIONS

The equations holding inside the vacuum are Maxwell’s equations (4) to (7)
with j =0 and ¢ = 0 and the equation for gravitational potential

Vige=0, ‘ 6]
where ¢ is the gravitational potential in the vacuum outside the liquid.

Following Kruskal and Schwarzchild” we can write down the surface
conditions in the following form even when surface tension is present.
(c.f. Chakraborty and Bhatnagar®)

U=ny, (10)

1 [B] = uof*, ’ p[B] =0, (11,12)

n x [E] = «[B], n-[E] = */ko, (13, 14)
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PFxB+e*E—nlpl+nT{k+k) =0, (15)

where k, + k; is the sum of the principal curvatures of the surface of liquid at
the point under considerations. Here n is the unit vormal to the surface and
is directed into the conducting liquid, « is the normal component of the velocity
of the surface, p and w are the pressure and the velocity of the liquid on the
surface, j° and €” are the surface current density and surface charge density and
T is ttre surface tension. The brackets denote the jump in the enclosed
quantity upon crossing the surface from the vacuum into the liquid, and a bar
above a quantity denotes the arithmatic mean of the values of that quantity
just on each side of the boundary. The boundary conditions satisfied by the
gravitational potential on the liquid surface are

(i) the gravitational potential should be continuous,
(i) V ¢ should be continuous,

Following Chandrasekhar® we shall neglect the term ¢kE in (1) as its
contribution can be shown to be negligible in comparison with the Loreniz for
jx B or the inertia force in our present problem. We shall similarly neglect
*E in comparison with j* x B in (15).

STEADY STATE

In the steady state the liquid cylinder is rotating rigidly about its axis with
uniform angular velocity 2. The magnetic permeability e of the liquid is taken
to be the same as in the vacuum and the magnetic induction B = (0, 0, B) in the
cylindrical polar co-ordinates (8, z), z-axis coinciding with the axis of the
cylinder, is taken uniform in the liquid as well outside. From the equations
(1) to (7) we have for the liquid

v=(0, 2r,0), j=0, E={-0rB 0,0), e=-2kQB,
=G (-} + (p2%2)(F - ) + pss,

where p;, is the pressure of the lignid on the surface and r; is the radius of the
cylinder. The gravitational potential is given by

=~ wGp (1))
o= —2% Gprilog(r/m) (16)

From the surface equations (10) to (15), we have, assuming continuity of B and
the normal component of E,

j*=0, €*=0, T/rg—pi=0. (1

By definition n is given by n=(—~1, 0, 0) in the cylindrical polar co-ordinates.
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SMALL PERTURBATIONS AND THE SOLUTIONS OF THE LINEARIZED EQUATIONS
We consider the follownig perturbations from the steady configuration.
g=go+q, g=q(r)exp.(imd+ikz+wt), (18)

where g denotes the steady state value of any physical quantity g. Since we
are interested in the stability problem we shall neglect the powers and products
of the small quantities g{(r).

We linearize the equations and finally obtain the following equations that
hold inside the liquid.

V¥ =0, (19)

E+VxB+vxB=0, VxBewl, (20, 21)
v-B-0, V xE=-2B/0r, (22, 23)

V-E = Bk, V24 =0, (24, 25)

pllo+Qim)V +205,e)-207,6]= —grad P +§ x B, (26)
where P =3 —p ¢7 and e,, e, are the unit vectors in the directions of » — and
8 — increasing respectively and v =(¥,, vy, ¥5). In view of (18) we can express
all the perturbed quantities of interest in terms of ¥ with the help of equations
(20) to (24). Using (19) and (26) we have

P, [dr) + r (a5, [dr) — [n? + (B CNCP + 4 2pY)5. =0 (27)
where A=w+imQ, Cm=pd+kB(uod) (28)

The solution of (27) regular on the axis is given by
ve=DI, {kr[(C*+42°p7)[C? }, (29)
where [, is the modified Bessel function of the first kind and order m and D is -

an arbitrary constant. All the perturbed quantities can now be expressed in
terms of v, and its derivatives.

The perturbed equations in the vacuum are the Maxwell’s equations
(21) to (24) with 7 =0 and ¢ = 0 ; together with the equation for perturbations
in the gravitational potential

Vip =0 (30)
Solving (25) and (30) under the appropriate boundary conditions we have

3,- —4nG 70 p kon (kro) LAkr) 3
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Bom 4 7 Gry p Jyy (kre) Ko () 8, (31)

where K, is the modified Bessel function of the second kind and m th order and

m

3r is given by the equation for the disturbed liquid surface, viz., )
r=ro+3rexp (ikz+im0-+awi). (32)
By solving the Maxwell equations in the vacuum we get
B = Eqy [k (ks), (im]r) En(kr), ik K (kr)], (33)

where F; is a constant.

Bounpary CONDITIONS AND THE DISCUSSION OF THE
DiSPERSION RELATION

Substitut‘ing the solutions for the perturbed quantities in the surface
equations (10) to (15) we obtain the following dispersion relation .

Bk Ky (kro){Tuo K (erd) + 4 15 G 1o 97 Ko (ke ro) (B r0) = 27 G oy + p @1
(7)) =1 +rg k) = N[D
where N = —iA{C* +42% 2 1 1k 1o [(CP+ 40P p7) CP]H2)
and D =02mQ pfre) Lk [(CP+4Q% p?)[C?1}
—kC[(C? + 42 DL o [(CP+ 422 B[ (34)

PARTICULAR CASES

(i) Rapleigh's Result. 'When the cylinder is non-gravitating, non-rotating
and the magnetic field is absent, (34) in the axisymmetric. case reduces to

(7/r3)(1 =) = [p o ol ro)) [k ' (£ ro)]. (35)
From (35) we can see that stable disturbances are possible only when
1< k2

(ii) Hocking’s Result. 1If the cylinder is non-gravitating, disturbances axi-
symmetric, and the magnetic field is absent, (34) reduces to
a o) = A () {T(1 -2 (R p ) +1} (R kH ), (36)

where o’ = ~ K43 [T+ 40Q%w?.
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(iii) Simon’s Result. If the cylinder is non-rotating and the surface tension
is absent the dispersion relation (34) reduces to
118 o p) 12 Kok 10} /1K (k7)) 4 4 % G p ke 1y Kl 7o) o (R 10) = 270 G p 1o }
s AL r) I, ro) [} =0 + k> B/ {uop)- (37)

Dispersion relation in the present case. The dispersion relation (34) in the
axisymmetric case and in the absence of surface tension reduces to

R @R~ K o ER . VIRK®R)
¢ ° 2 4xGp 4nCGripKi(R)

R V(W - DR -4 AP — 4 R v (W - 1P W R (RW)
8w Gpra(W*—1)L{RW)
(38)

where we have introduced the quantities krg =R, V= B/«/(,uu p) (Alfven wave
velocity), ¥, = w/k and

40°r3

R B — .
Rvi(+7ive ) (39)

We shall discuss the dispersion relation for disturbances of large wavelength,
ie., R is small.

Case {i).

V,>>Qr, and the material is non-gravitating. = We shall neglect
~ PR K (®)]/[FEK,(R)] in comparison with Q%R as R is small. Putting
W iW;, (38) can be written as
2R 5TLRW) (1 + W)

-~ W IR (423 £ V162 + 16 @A VIR (1 + W]}, (40)

In order to discuss the nature of the roots W; of (40) we shall follow a method
adopted by Hocking* We consider the ratio

2 R+ Wi (R Wl) S | (a1)

W (RIA) (4074 V16278 + 1622 A VIR (L W
| ,

when | W, ] = a,, where W, = q, is the n th non-zero zero of J; (RW,) and n is
large. Now [/, (RW,) ] and |J, (RW,)]are of the same order in the circumference
of the circle | F, | = o, except near Wy = + g, where |J; (RW) | <[ h(rRW)|.
We can easily sce that on the circumference of | ;| = oy, the ratio (41) is of
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the order of the large quantity ¥,{(2ro) except near the points Wi ~ -t ay, where
the tatio tends to an indefinitely large guantity as either of these points are
approached along the circumference. Hence by Rouche’s Theorem

W, Jo (RW) {4227+ V1624 + 16 QPR VIR (A + WD} ~0  (42)

and the equation (40) have the same number of roots in | | <a,, W, =01is
a root of (42) as well as of (40) and from (39) ¥, is negative indicating stability.
If we take the negative sign in the expression within the curly bracket in (42)
and in right hand side in (40), Wi= —1is root of the disperion relation.
Remembering that B =11, (39) shows that the corresponding ¥, is zero. We
shall now locate the roots of (40) corresponding to the 2n zeros + fy, -k fa, *-+,
+ B Of Ty (RW) in | W, | <@, We write the dispersion relation (40) as

2R 15 (RW) _ 1
— W L RW) AP R V16 + 6 PR VAR (L+ W)} 1+wi (#3)

We can easily see that the graph of the left hand side of (43) drawn against W;
(real) has n vertical asymptotes at 1 zeros By, fa,** , Pu of Jo(RW,) where f’s
are positive. We can show that the graph for the right hand side of {43)
intersects the previous graph » times as ) varies from Wy=0 to W; «a,.
Thus we have located n roots (all real and positive) of the dispersion relation.
As {40) is even in F¥; equal and opposite teal roots occur in pair. Hence the
2n roots (all real) that correspond to the roots + B, = fr***, + B, of (42) are
focated. Remembering that W =i W, we can varify from {39) that any real
root W, of the dispersion relation (40) implies negative V2 indicating stability.
Thus in this case disturbances with large wavelength are stable.

Case (i)

In this case we take the matter to be non-gravitating and Qr, >> V.
We consider the value of the ratio (41) on the circle | ;| = B, where B, is
the nth zero Jy (RW;). By a similar reasoning as in the case (i) we can
show that this ratio is of the order of the small quantity ¥,/@2s, at all points
on the above circle near W; = + R,, where this ratio tends to zero as these
points are approached along the circumference. Hence by Rouche’s theorem

2RGAQ+ W I (RW) =0 (44)

and the dispersion relation {40) have the same number of roots in | 7| < B
By considering the equation (43) in the same way as above we can show that
corresponding to the 2 (n—1) roots - «y, 4Gy, . . ., + tqy Of {44), where
o’s are non-zero zeros of J; (RW;), we have 2 (r— 1) real roots in [# | < B
These are the only real roots. Also W, = 0 is a root of (40) as well as of (44)-
It remains now to locate the roots of (40) that correspond to the ToOts
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w2~ —1 of (44). When we take the negative sign in the expression within
the curly bracket on the righthand side of (40), we find that W= —1 are also
roots of the dispersion relation (40), when we take the the positive sign instead
of the negative, W] = —1 are not roots of (40). All the real root of (40)
have already been located. Hence its remaining roots in this case must be
given by either complex or imaginary W,. If Wi is imaginary we can put
W =i W, and write the dispersion refation (40) in the form

23R (W= 1) 1 (RW)
= {4+ NV [16 2 - 16 PRV (W - )R]} wh (RW). (45)
It is clear that when W2 << 1, no solution is possible. When W? > 1, in order
that the right hand side of (45) may be real we must have
P> VIR (Wr-1). . (46)

But from (39) in this case ¥,> is positive indicating instability. If no real W
is a root of (45), the only altcrnative is that the root is complex. From (39)
it is clear that P’} is not real. In view of (28) in the axisymmetric case we
easily see that (34) is even in o, and hence a non real V2 will imply that one
of the corresponding w has positive real part. This again will indicate
instability.

Case (iii)

We take the cylinder to be self-gravitating. As R is small the dispersion
relation can be written as

8xGpraRlog(R/D)( +WH (& W)
= WA RW) AP RALV1I6Q24% + 16 2R VIRF(L+ WD (47)

We consider the ratio

SnGprARg (R (1 + W)L (RW)
W I (RW )42 R+ V16 A+ 16 P iV (1 + W]}

on the circle [ wy ] = B, where j3, is the nth zero of J, (RW;) and n is large.

We find that this ratio is large of the order of
21 G pro [log (R/2) ]
RV,
at all points except mear the points W; = + B8, Wwhere this ratio tends to

indefinitely large quantity as these points are approached. By proceeding
exactly as in case (ii) we find that for this case also there is instability.
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