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We have discused the stability of a rigidly rotating inflnite liquid column of 
infinite conductivity in the prescnce of a uniform axial magnetic field. We have 
derived the dispersion relation in the general case taliins the cylinder to be self- 
gravitating and accounting for the surface tension forces on the free surface of the 
liquid. We have shown that previous results obtained by Rayl~igh,~ Hocking' and 
Simonh are parlicuiar cases of the present dispersion relation. We have discussed 
the present dispersion relation for large wave-length disturbances neglecting surface 
tension forces in the cases of ( i )  non-gravitating cylinder with ;he vclocity of 
rotation small on the surface compared with the Alfven wave velocity (ii) non- 
giavitatingcylinder with velocity of rotation large on the surface compared with the 
Alfven wave velocity and (iii) gravitating cylinder. We find that in case ( i )  there 
is stabihty but in the other two cases disturbancec are unstable. 

INTRODUCTION 

The problem of gravitational and magnetogravitational stability of an 
infinite, homogeneous and rotating Auid medium has been studied recently by 
a number of authors [chandrasekharl, Pacholczyk and Stodolltiewicz2]. 
The corresponding prohlem for  a rotating fluid column of finite radius does not 
seem t o  have attracted the same attention. Recently Hocking and  Michael3 
and Hocking4 have considered the effect of rotation o n  the  stability of a 
nou-gravitating infinite liquid column without magnetic field. They find that 
rotation always tends t o  redace the stability. 

I n  the  present paper we have discussed the stability of an  infinitely 
conducting, infinite, rigidly rotating liquid column with a uniform axial 
magnetic field taking it t o  b e  continuous across the surface o f  the  cylinder. 
Tn deducing the,dispersion relation we have considered the cylinder t o  be self- 
gravitating and have taken account of the  surface tension forces o n  the free 
surfacc o f  the cylinder. In the axisy~nmetric case we can deduce the stability 
criterion given by Rayleigh5 for a nonrotating liquid jet o n  putting P - 0, 
G - 0  and B =  0 in the present dispersion relation, where 52 denotes the angular 
velocity o f  rotation, G the gravitational constant and 4 the magnitude of the 
axial m a ~ n e t i c  field. We can get the  dispersion relation given b y  ~ o c k i n d  
when we put G - 3 and B= 0 in the axisymmetric wse  of our  present dispersion 
relation, while the case considered by ~ i m o n "  vk., hydromagnetic oscillations 
122 
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of an infinitely conducting gravitating liquid column at  rest in equilibrium with 
an axial uniform magnetic field can be obtained by putting Y = 0. 

In the present paper we have discussed the dispersion relation for the 
axisymmetric disturbances with iarge wave length in the following three cases : 
(i) 17-0, Y,>> Duo, (ii) G =  0, V,<<Qro, (iii) G#O, where V, is the 
Alfven wave velocity in the cylinder and ro is the radius of the undisturbed 
cylinder. 

Wc find that in the case (i) the cylinder is stab!e against large wavelength 
disturbances, however it is unstable in cases (ii) and (,iii). 

In terms of the usual symbols p, p, v, E, B, 3, E ,  pa and ko for pressure, 
density, velocity, electric field, magneticinduction, volun~e current density, electric 
charge density, magnetic permeability and dielectric constants respectively we 
have in the M.K.S. system of w i t s  the following equations for the conducting 
liquid when the displacement current is neglected. 

V . E - E / ~ O ,  V2+,.- - 4 x G p ,  (7, 8) 

where +, is the gravitational potential inside the conducting liquid. 

The equations holding inside the vacuum are Maxwell's equations (4) to (7) 
with j - 0 and E -- 0 and the equation for gravitational potential 

where yio is the gravitational potential in the vacuum outside the liquid. 

Following Kruskal and ~chwarzchild' we can write down the surpdce 
condilions in the following form even when surface tension is present. 
(c.f. Chakraborty and Bhatnagars) 



where ii, 4- kb is the sum of the principal curvnlures of the surface of liquid at 
the point under considerations. Here a is the unit oorrnal to the surface and 
is directed into the conducting liquid, u is the normal component of the velocity 
of the surface, p and n are the pressure and the velocity of the liquid on the 
surface, j' and E* ase the surrace current density and surface charge density and 
T is the surface tension. The brackets denote the jump in the enclosed 
quantity upon crossing the surface from the vacuum into the liquid, and a bar 
above a quantity denotes the arithmatic mean of the values of that  quantity 
iust on each side of the boundary. The boundary conditions satisfied by the 
gravitational potential on the liquid surface are 

(i) the gavitational potential should be continuous. 

(ii) V $  should be continuous. 

Following ~ h a n d r a s e k h a r ~  we shall neglect the term r E  in (1) as its 
contribution can be ~ h o w n  to  be negligible in comparison with the Lorentz for 
j x B or the inertia force in our present problem. We shall similarly neglect 
r* E in comparison with j* x B in (15). 

In the steady state the liquid cylinder is rotating rigidly about its axis with 
uniform angular velocity Q. The magnetic permeability fro of the liquid is taken 
to be the same as in the vacmim and the magnetic induction B - (0,0, R )  in the 
cylindrical polar co-ordinates (r,  0, z) ,  z-axis coinciding with the  axis of the 
cylinder, is taken uniform in the liquid as well outside. From the equations 
( I )  to (7) we have for the liquid 

where p, is the pressure of the liquid on the surface and ro is the radius of the 
cylinder. The gravitational potential is given by 

From the surface equations (10) lo (IS), we have, assuming continuity of B and 
the normal component of E, 

By definition n is given by n = ( -  1, 0, 0) in the cylindrical polar co-ordinates. 
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SMALL PERTURBATIONS AND THE SOLUT~ONS OF THE LINEARIZED EQUATIONS 

We consider the follownig perturbations from the steady configuration. - A 

q - q ~ i ; ,  4 = 4 ( r ) e x p . ( i m O + i k z + w t ) ,  (18) 

where go denotes the steady state value of any physical quantity q. Since we 
are interested in the stability problem we shall neglect the powers and products 
of the small quantities i ( r ) .  

We linearize the equations and finally obtain the following equations that 
hold inside the liquid. 

va;=0, (19) 

where F=; - p  $7 and e,,  es are the unit vectors in the directions of r - and 
8 -increasing respectively and ; - (';, , v e  , Tz), In view of (18) we can express 
all the perturbed quantities of interest in terms of ; with the help of equations 
(20) to (24). Using (19) and (26) we have 

where A - o + i m B ,  c - ~ A + ~ ~ B ~ / ( , I L o A )  (28) 

The solution of (27) regular on the axis is given by 

Ŷ, = D I, jkr [(CZ + ~ Q ~ ~ ~ ) / c ~ ] ~ ' ~  1, (29) 

where I, is the modified Bessel function of the first kind and order m and D is 
an arbitra~y constant. All the perturbed quantities can now be expressed in 
terms of v, and its derivatives. 

The perturbed equations in the vacuum are the Maxwell's equations 
(21) t o  (24) with ? = 0 and = 0 ; together with the equation for perturbations 
in the gravitational potential 

V2+ - 0  (30) 

Solving (25) and (30) under the appropriate boundary conditions we have 
0, 
+i - 4 ?r G ro p k, (kro) ~ ( k r )  6r 



where K,,, is the nlodiiied Bessel function of the second kind and i97 th order and 
Sr is give11 by the equation for the d~sturbed liquid surface, viz.. 

By solving the Maxwell equations in the vacuum we get 

E = En [k~";(kr), (i m/?) K?,, ( k  r), i k K,, ( k  r ) ] .  (33) 

where Eo is a constant. 

Substituting the solutions for the perturbed quantities in the surface 
equations (10) to (15) we obtain the following dispersion relation 

where N - - ~A{c' +4SZ2 p2]1,{kro[(C2+ 482P2)!~2]1'Z] 

and D = (2 nz 9 p/ro) I, {k ro [(c* + 4 RZ $)/C2]"'] 

- ikC[(cZ -t 4 52' p2)/~Z]"Z~,' {k  ro [(c2 + 4 R? p2)/~2]112] (34) 

PARTICULAR CASES 

(i) Royleigh's Resuh. When the cylinder is non-gravitating, non-rotating 
and the magnetic field is absent, (34) in the axisymlnetric case reduces to 

(dd )(I - = [ p  w2 ro)]/[k lof (k ro)]. (35) 

From (35) we can see that stable disturbances are possible only when 

1 < r i  1''. 

(ii) Hocking's Result. If the cylinder is non-gravitating, disturbances axi- 
symmetric, and the magnetic field is absent, (34) reduces t o  

a Jo (a) - J, (a) { ~ ( 1 -  r i  k2)/(ri p 52') + I )  (~5: kZ/w2), (36)  

where a 2  - - k2ri [l + 4R2/oZ]. 
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(iii) Simon's Result. If the cylinder is non-rotating and the surface tension 
is absent the dispersion relatlon (34) reduces to 

{[B'/(@o p) ]k2 %,(k d/[& (k ro)] t 4 R G p k  70 &(k ro) Im (k TO) - 2 n G p rok 

x { d & r ~ ) / [ L ( k  r ~ ) ] )  - w2 + k 2  B'/(MP). (37) 

Dispersion relation in the present case. The dispersion relation (34) in the 
axisgmmetr~c case and in thc absence of wrface tension reduces to 

where we have introduced the quantities kro  = R, VA - ~ / l / ( ~ ~  p), (Alfven wave 
veloc~ty), V,, - u / h  and 

4 d r g  w' = 1 , 
R3 V: ( I  + v, /v~) '  ' (39) 

We shall discuss the dispersion relation for disturbances of large uravelength, 
i.e., R is small. 

Case (i). 

VA> >Qro and the material is non-gravitating. We shall neglect 
- [ V ~ R ~ K ,  (A)] / [ r : k ( ~ ; ]  in comparison with Q 2 R  as R is mmll. Putting 

W -  iW,, (38) can be written as 

In  order to discuss the nature OT the roots W, of (40) we shall follow a method 
adopted by Hocking4 We consider the ratio 

when I W, 1 - o,,, where Wl -a,, is the n th non-zero zero of Jl (RW,)  and n is 
large. Now I f L  ( R W ~ )  / and I Jo ( R W , )  I are of the sameorder in the circumference 
of the circle 1 W , ( - a ,  except near W, - &a,, where /.ti ( R W L ) /  < IJO(RWI)I .  
We can easily see that on the circumference of 1 Wi 6;/ = a,, the ratio (41) is of 



the ordei of the large quantity v A / ( Q ~ O )  except near the points WI = a,,, where 
the ratio tends to  an indefinitely large quantity as either of theie points are 
approached along the clrcumferencc. Hence by Rouche's Theorem 

and the equation (40) have the same number of roots in 1 WI I < n,,,, W, - 0 is 
a root of (42) as well as of (40) and from (39) v,? is negative indicating stability. 
If we take the negative sign in the expression within the curly bracket in (42) 
and in right hand side in (40), W: - - 1 is root of the  disperion relation. 
Remembering that W =  i Wl, ( 3 9 )  shows that the corresponding I/,, is zero. We 
shall now locate the roots of (40) corresponding to  the 2n zeros 5 PI, f ,&, ... , 
k ij,, of Jo (RW])  in / Wl 1 < a,,. Wc write the disperrion relation (40) as 

We can easily see that the graph of the left hand side of (43) drawn against Wi 
(real) has n vertical asymptotes a t  n zeros 61, /31;-. , /3, of J ~ ( R w ~ )  where /?'s 
are positive. We can show that the graph for the right hand side of (43) 
intersects the previous graph n times as Wl varies from Wl -- 0 to  W, - a,,. 
Thus we have located n roots (all real and positive) of the dispersion relation. 
As (40) is even in Wl equal and opposite real roots occur in pair. Hence the 
2n roots (all real) that correspond to the roots *PI, + BZ ..., f & of (42) are 
located. Remembering that W- i Wl, we can varify from (39) that any real 
root Wi of the dispersion relation (40) implies negative V: indicating stability. 
Thus in this case disturbances with large wavelength are stable. 

Case (ii) 

In this case we take the matter t o  be non-gravitating and Qr,, >> VA.  
We consider the value of the ratio (41) on the circle I Wl 1 = p,, where 8, is 
the n t h  zero .To (RW]) .  By a similar reasoning as in thc case (i) we can 
show that this ratio is of the order of the small quantity vA/L?ro a t  all points 
on the above circle near WI - _f En, where this retia tends to  zero as these 
points are approached along the circumference. Hence by Rouche's theorem 

and the dispersion relation (40) have the same number of roots in I W1 / < P,,. 
By considering the equation (43) in the same way as above we can $how that 
corresponding t o  the 2 ( n -  1) roots + a , ,  _faz, . . . , & a,_l  of  (441, where 
a's are non-zero zeros of J1 (RW~), we h'ive 2 (n- I )  real roots in / < 81. 
These are the only real roots. Also W, - 0 is a root of (40) as well as of (44). 
It renrains now to  locate the roots of (40) that  correspond t o  the  roots 
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w:= - 1 of (44). When we take the negative sign in the expression within 
the curly bracket on the righthand side of (40), we find that w T -  - 1 are also 
roots of the dispersion relation (40), when we take the the positive sign instead 
of the negativz, 1 ~ :  - - 1 are not roots of (40). All the real root of (40) 
have already been located. Hence its remaining roots in this case must be 
given by either complex or imaginary Wl. If W, is imaginary we can put 
W=i W1 and write the dispersion relation (40) in the form 

It is clear that when W2 < 1, no solution is possible. When W" 1, in order 
that the right hand side of (45) may be real we must have 

But from (39)  in this case P': is positive indicating instability. If no real W 
is a root of (45), the only altcrnatwe is that the root is complex. From (39) 
it is clear that V: is not real. In view of (28) in the axlsymmetric case we 
easily see that (34) is even in w ,  and hence a non real V; will imply that one 
of the corresponding w has positive real part. This -again will indicate 
instability. 

Case (iii) 

We take the cylinder to be self-gravitating. As N  is small the dispersion 
relation can be written as 

8 5 G p ri R log ( ~ 1 2 )  (1 + w:) .I1 (I< w1) 
- W l ~ ~ ( ~ ~ l ) { 4 5 2 2 r ~ ~ 2 / [ 1 6 ~ 4 r ~ + 1 6 5 2 2 r ~ ~ ~ ~ 2 ( l + ~ ~ ) ] ~ .  (47) 

We consider the ratio 

on the circle 1 W, I = p, where 8, is the n t h  zero of Jo (RW,) and n is large. 

We find that this ratio is large of the order of 

a t  all points except near the points Wl = j-a,, where this ratio tends to 
indefinitely large quantity as these ~ o i n t s  are approached. By proceeding 
exactly as in case (ii) we find that for this case also there is instability. 
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