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In the pressnce of uniform suction, we tind a solution of Navier-Stokes equa. 
tions near the leading edge of a flat plate. We flnd analytical expressions for the 
first two terms of the stream function by a psocess of successive approximation. 
In theparticular case of no stiotion, we Bet the expression for the stream function, 
obtained by Carrier an4 Lin6. 

INTRODU~TION 

It is well known that Prandtl Boundary Layer Equations do  not  hold at 
the leading edge of a flat plate. Several attempts by the previous workers 
have been made t o  extend the boundary layer solution near the leading edge of 
the fiat plate. ~ l d e n '  solved this problem by taking second and higher order 
approximations, but  he found that the h~ghe r  order approximations become 
progressively singular. ~ i ~ h t h i l l '  gave the technique by which the solution of 
an  approximated non-linear equation can be extended in the  neighbourhood of , 
the singularity merely by straining the argument of the solutinn. KUO' used 
this technique to  improve the  Rlasius4 solution so as to exten& its validity upto 
near the leading edge. This improved Blasius solution has no singularity except 
a t  the leading edge and bring out the effect of the leading e d ~ e .  I t  is found to 
satisfy Stokes equation of slow viscous motion in the immediate vicinity of the 
leading edge. 

Carrier and   in^ solved the full Navier Stokes equations in the  neighbour- 
hood of the leading edge and found analytical expressions for the first two terms 
of the series expansion for $. In what followa, an attempt has been niade to 
modify their solution to  suit the requirements of uniform suction near the 
leading edge. The method essentially consirts of solving the equation in term 
of the stream function 4, obtained by eliminating the  pressure terms by cross- 
multiplication from the Navior-Stokes equations for the  two-dimensional incom- 
pressible viscous flow. This equation is solved by successive approximations. 
Analytical expressions for the first two terms of the series expansion for rl: 
satisfying the boundary conditions for uniform suction have been obtained. 
Further, explicit expression for the skin-friction on the plate has also been 
found. It i s  t o  be  noted that although, velocity components parallel and 
170 
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normal to the plate directions are  of the same order of magnitude, yet, the 
contribution to the wall shearing stresses, arising due t o  the presence of the 
normal velocity component is zero even in the case pi' uniform suction. Secondly 
the solution holds within a certain radius of convergence of the ordcr of v / ~ o  
where v is the kinematic viscosity and Uo is the velocity of the incoming fluid. 

This paper is the extension of the previous paper6 where linear law of 
suction was assumed. I t  is shown here that by the proper choice of the stream 
function, i t  is possible to extend the results for any power law of the suction 
and in fact, results can be extended to any arbitrary law of suction velocity 
distribution, expressed by a series in terms of the ascending powers of the 
distance on the plate from the leading edge. 

The necessity for this investigation arises, as in most cases of interest, 
boundary layer separates just near the leading edge. Therefore, by applying 
suction near the leading edge and joining the  solution thus obtained, with the 
solution, given on the basis of. boundary layer theory, i t  is possible to shift 
the point of separation, far downstream. Experiments on Sailplanes with 
suction, applied near the  leading edge have been performed by ~ a s p e t '  and 
his co-workers. 

The Navier-Stokes equations for the two-dimensional, incompressible, 
viscous flow on the plate in cartesian co-ordinaies are 

and the equation of continuity is, 

"'*?3"'-0. 
axl ayl 

b.31 

Here, x,, y, are the distances, measured along and perpendicular to the plate, ut, UI 

are the components of the velocity in these directions. p i ,  p,, v are respectively 
the density, pressure and kinematic viscos~ty of the fluid. 

These equations are rendered dimensionless by the following substitutions: 

where U ,  is the free-stream velocity. 

The equations [2.1] - [2.3] assume the forms 



The equation of continuity is automatically satisfied by assuming the exis. 
tence of the stream function $ such that 

Eliminating the pressure terms from [2.5] and [2.6] by cross-multiplication 
and using [2.8], the above equations 12.51, [2.6] reduce to tho single following 
equation : 

where 

The equation [2.9] espresied in terms of the polar co-ordinates can be 
written in the form, 

where v" -9 +L % + I  a 2 4 .  [2,12] 
ar2 r ar rZ aOz 

This equation [2.11] is to be integrated under the  boundary conditiofls i 

where V is the velocity of uniform suction. For the sake of s)mfxtrY, suction 
is assumed to be applied on both sides of the plate. 
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Further cooditions to be satisfied by the stream function can be derived 
from symmetry considerations : 

For the sake of convenience, the equation [2.11] is written in the form 

L ($1 = L* ($), [2.15] 

when L denotes the biharmonic operator and L* denotes the non-linear operator 
on the right. 

We assume a solution of [2.15] in the form : 

We shall choose go such that i t  satisfies the boundary conditions 12.131 
completely, i.e. 

[2.18] 

- 0, 
so that the remaining components of $, viz. <jl,  $2 ... satisfy the following 
conditions 

a t  6-13, 2m for i > O .  [2.19] 
ar r a6 



The symmetric conditions l2.141 is to  be satisfied separately by each compo- 
nent of $. 

I t  can be seen easily that a solution of [ 2 . 1 7 ~ ]  with the boundary con& 
tions [2.18] and the symmetry conditions [2.14] can be written in the 
following form : 

$0 - r f  (O) ,  [2.20] 

The required solution of [2.17a] is 

$i, = ( ~ r / . x ) [ ( . x  - 0) cos % +sin %I. [2.23] 

It is seen that the solution of the problem, without suction cannot be 
obtained as the particular case from 12-231 by putting V = 0. The equation 
[2.17u] is a linear equation, therefore, we add to its solution [2 .23]  with suction, 
the solution without suction which corresponds to  the following boundary 
conditions, besides the symmetry conditions [1.14],  

This is found to  be of the form 

Go - 2A r3'"cos $ 3  - cos S O ) ,  [2.25] 

where A is an arbitrary constant to  be evaluated later on. 

Hence, fro can be taken as 

$, = 2A r3" (COS $0 - cos +B) + (Vr/?() [((x - 0) cos 0 + sin 81, 12.261 

Substituting this value of $0 in [2 .17b] ,  we get 

L (+,) = ( 2 ~ ' / r )  ( 2  sin 0 - 3 sin 2 0 )  

3% 2 ( m  - 8) sin - + 6 cos 
2 
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Substituting [2.28] in [2.27], we get the following system of equations, 
determining the &functions ; 

@I'" 4- 10@ln + 9$1- 0, [22.9u] 

filV + 10fi" + 9fi = - 2441 - 8$1" $ 4  sin 0 - 6 sin 28, [2.296] 

These equations are to be integrated with the boundary conditions, 

f,(e) =@,(e) = f,(e) = ~ ~ ( 0 )  -x,(H) = o at 0 - 0,2n, 

f i(0) = &(e) = f:(e) - n-:(e) = d(0)  - o a t  0 - 0 , 2 ~ ,  

and the symmetry considerations l2.141. 

The equations [2.29] admit of direct solutions, and we get 

v2r2 
$1 3 -- [7(0 - ?r)(l- cos 20) - 20(8 - 2n)sin 26'1 

32n2 

+ AX 65 sin; 0 - 60 sin30 + 23 sin $0) 
n [ 240 ( 

++(3sin8-s in30) logCr , 1 [2.31] 
where B, Care the additional constants, yet undetermined. 



In the case of no suction i.e. V- 0, the stream function $ is given by 
# = 2 ~ ~ ~ ' '  (COS + 6 - cos 3 e) 

+A2?[$(r i -e)(c0~30-cos8)+$(sin20-2sin8)  

+ + ( 3 s i n e - ~ i n 3 8 ) l o g ~ r ] .  l3.11 

For small values of 8, the velocity zr is given by 

u = 4 ~ r ~ e + ~ A r ~ ~ + A ~ r ~ [ - n B + & j ( l + 5 l o ~ ~ r ) t ? ~  

+ + m e 3 - ( + $ + + i ~ g c r ) e 4 ]  I+-- l3.21 

The velocity profile, obtained by Blasius for the flow, downstream is 
given by 

2 4 
- 2-7. + - ... 

2 (4 !) [3.31 

where 7=-L. 
Jx 

For small values of r and 8 
aZrZiY + . . . u = ar" - 

48 

For sufficiently small values of r and 8, the leading term of the expansion 
describes the fiow. Hence, Comparing the coefficients of r"'0 in the above 
expansions [3.2] and [3.4], we get 

4. Drscussro~ OF SKIN-FRICTION 
The complete expression for 4 is 

# - (~r/.rr)[(.rr - 8) cos +sin e ]  + 0.166 r3" (COS +f3 - cos $9) 

v2r2  + -----i [7 (9 - ?r) ( I  - cos 20) - 2% (9 - 2?r) sin 281 
32 .rr 

0.083 + .--- vrSiZ [&(n - 9) (65 sin + 0 - 60 sin @I + 23 sin $8) 
?t 

+ ++ (COS 3 e - cos e) + (COS +e - cos $e) log BT] 

+ (0.083)' r3 {[(n - @/8] (cos 38 - cos 9) + +(sin 28 - 2 sin 0) 

+ $ ( 3 s i n ~ - s i n 3 8 ) l o ~ ~ r ] + . . .  , [~JI 
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The skin-friction y 

I t  will be seen from here that although near the leading edge, u and u are 
of the same order of magnitude, yet the contribution to the wall shearing 
stresses, arising out of the additional term viz. p (&/ax) in 14.21 is zero even 
in the case when uniform suction is applied. This means that the law of 
resistance is given by the usual formula 
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