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ABSTRACT

In the presence of uniform suction, we find a solution of Navier-Stokes equa.
tions near the leading edge of a flat plate. We find analytical expressions for the
first two terms of the stream funetion by a process of successive approximation.
In the particular case of no suction, we get the expression for the stream function,
obtained by Carrier and Lin®,

INTRODUCTION

Tt is well known that Prandt]l Boundary Layer Equations do not hold at
the leading edge of a flat plate. Several attempts by the previous workers
have been made to extend the boundary layer solution near the leading edge of
the flat plate, Alden® solved this problem by taking second and higher order
approximations, but he found that the higher order approximations become
progressively singular.  Lighthill* gave the technique by which the solution of
an approximated non-linear equation can be extended in the neighbourhood of
the singularity merely by straining the argument of the solutina, Kuo® used '
this technique to improve the Blasius® solution so as to extend‘its validity upto
near the leading edge. This improved Blasius solution has no singularity except
at the leading edge and bring out the effect of the Jeading edge. It is found to
satisfy Stokes equation of slow viscous motion in the immediate vicinity of the
leading edge.

Carrier and Lin® solved the full Navier Stokes equations in the neighbour-
hood of the leading edge and found analytical expressions for the first two terms
of the series expansion for . In what follows, an attempt has been made to
modify their solution to suit the requirements of uniform suction near the.
leading edgs. The method essentially consists of solving the equation in terms
of the stream function i, obtained by eliminating the pressure terms by cross-
multiplication from the Navier-Stokes equations for the two-dimensional incom.
pressible viscous flow. This equation is solved by successive approximations,
Analytical expressions for the first two terms of the series expansion for
satisfying the boundary conditions for uniform suction have been obtained.
Further, explicit expression for the skin-friction on the plate has also been
found, It is to be noted that although, velocity components parallel and
170
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normal to the plate directions are of the same order of magnitude, yet, the
contribution to the wall shearing stresses, arising due to the presence of the
normal velocity component is zero even in the case of uniform suction. Secondly
the solution holds within a certain radius of convergence of the order of v/l
where » is the kinematic viscosity and U is the velocity of the incoming fluid.

This paper is the extension of the previous paper® where linear law of
suction was assumed. It is shown here that by the proper choice of the stream
function, it is possible to extend the results for any power law of the suction
and in fact, results can be extended to any arbitrary law of suction velocity
distribution, expressed by a series in terms of the ascending powers of the
distance on the plate from the leading edge.

The necessity for this investigation arises, as in most cases of interest,
boundary layer separates just near the leading edge. Therefore, by applying
suction near the leading edge and joining the solution thus obtained, with the
solution, given on the basis of boundary layer theory, it is possible to shift
the point of separation, far downstream. Experiments on Sailplanes with
suction, applied near the leading edge have been performed by Raspet’ and
his co-workers.

2. EqQuaTiONs Or MoTtiON

The Navier-Stokes equations for the two-dimensional, incompressible,
viscous flow on the plate in cartesian co-ordinates are

N N 2 <2
ula_“z+vlfjil=_l,c_1’_l+,,(§g+°ljl>, [21]
Axy 321 p1 OXy dx{ oy
] N 1 2 2 :
u1°'——"1+v13—”~1=————afz‘+v<a-yzl+o?), [2.2]
axy o p1 O¥1 axy  ayi
and the equation of continuity is,
L PR ) [23]
ax; Oy

Here, x;, y; are the distances, measured along and perpendicular to the plate, #, v1
are the components of the velocity in these directions. py, p1, v are respectively
the density, pressure and kinematic viscosity of the fluid.

These equations are rendered dimensionless by the following substitutions:

D V. L/ SN L IO RIS [2.4]
U v v o Us

where U is the free-stream velocity.

The equations [2.1]— [2.3] assume the forms

du du 3p u BZu) [2 5]
ELAI O :
ety T T e (ax2 ar
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N 52 2
uﬁl+u3~vm—§f—+(ﬂ+-a—”), [2.6]

2% 3y dy ax® 3y
du dv
g; -+ -a*y = (. [27]

The equation of continuity is automatically satisfied by assuming the exis.
tence of the stream function  such that
i »

=t = — L 2.8
u 5 ] - [2.8]

Eliminating the pressure terms from [2.5] and [2.6 6] by cross-multiplication
and using [2.8], the "above equatlons [2.5], [2.6] reduce to the single following
equation :

a(s, V24) 4
G TP 2ol
where ~ Vi = _552?&/: + a;;ﬁ . [2.10

The equation [2.9] expressed in terms of the polar co-ordinates can be
written in the form,

4,250 1L 13y 218 208 1%
at Trart P oal P P\ ¢ araft | P ab? ”oagt
LR gy 2B o2y } 211
r {56 ar v ¥) or BG(V ) [2.1]
- . 2,
" 2p O 12 1 2% \
where Ve ar * roor * P 30 [21]

This equation [2.11] is to be integrated under the boundary conditions s
ER
"/g-0 AT g

(1 azﬁ) (1 a¢)
—— =0, . {—= =0,
r 59. 020 P 0'm 2

where ¥ is the velocity of uniform suction, For the sake of symihetry, suction
is assumed to be applied on both sides of the plate.

[2.15]
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Further conditions to be satisfied by the stream function can be derived
from symmetry considerations :

TR -
Y =\ . 2.14
r 260 =R r o6 FeR a
#=a B =27 -
(iﬁ) =_(a_¢~) .
ar r=R or r=R [2'141;]
0=~a 0 ==2x — 5

For the sake of convenience, the equation [2.11] is written in the form

L{g)="L" (), [2.15]

when L denotes the biharmonic operator and L* denotes the non-linear operator
on the right. .

We assume a solution of [2.15] in the form :

h=tho+ ittt oo [2.16]
where o, 1, o, =, i, are defined by
L (o) =0, [2.174]
L (1) = L*(io), [2.17]
L () = L*(sho + 1) — L*(0), [2.17]

L () =L (o + iy + o + hnes) = L7 Cho+ i+ + i a). [2.174]

We shall choosé iy such that it satisfies the boundary conditions [2.13]

completely, i.e.
(y_) -7, ( _@i) -7
orJo0 /g mam

<l §i¢lf9.) =0, (1 M) =0,
r 26 0-0 r a0 6 =2

so that the remaining components of ¢, viz. i, i --- satisfy the following
conditions

[2.18]

2 L3 g oap 60, 2 fori>0. [2.19]

ar  r af
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The symmetric conditions [2.14] is to be satisfied separately by each compo-
nent of .

It can be seen easily that a solution of [2.174] with the boundary condi-
tions [2.18] and the symmetry conditions [2.14] can be written in the
following form :

o = (6), [2.20]
where 78) +2£"(6) + £(8) =0, [2.21]
and F0) =¥, fQx)=-V, f(0)=0, f'(2x)=0. [2.29]

The required solution of [2.174] is
$o = (Vr/=)[( ~ 0) cos 8 +sin 6]. [2.23]
It is seen that the solution of the problem, without suction cannot be
obtained as the particular case from [2.23] by putting ¥=0. The equation
[2.174] is a linear equation, therefore, we add to its solution [2.23] with suction,

the solution without suction which corresponds to the following boundary
conditions, besides the symmetry conditions [2.14],

R
o /g =0 o /g cam

%) -0 (%) -0
(39 9=0 30 /g 2 om

This is found to be of the form
i =24 r*"* (cos 10 —cos 34), [2.25]
where A is an arbitrary constant to be evaluated later on.

[2.24]

Hence, ¥, can be taken as
$o =247 (cos 16 — cos 26) + (¥r/#) [(w — 0) cos 0 +sin 0],  [2.26]

Substituting this value of i, in [2.17], we get
L () = (24%/r) (2 5in 6 — 3 5in 29)

AV . 38 50 0 30
=2 |2 ) = 6
EIE) [ (w )Sm ) + 6 cos 2 —( cos 7 + 5cos 3 )]

C e
—r—zV—ﬂz[z (7 —8) cos 20 +5in 20 ] . [2.27]
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We find the selution of [2.27] in the form
f=A7 [£1(0)+¢:1(6)10gr]
AV sz o
o [%:(0) + x:(6) log r] g £2(6). [2.28]

Substituting [2.28] in [2.27], we get the following system of eguations,
determining the O-functions ;

¢1” +104," +9¢1 =0, [22.94]
Si¥ 4+ 10/" + 9f; = — 246, — 8¢," + 45in § — 6 5in 26, [2.208]
2+ 1—23" X"+ %%xz =0, [24290]

xliv + 1_23_xlu + %Z Xy
=~ 130 — 63" +2( —0)sin 20 + 6cos $6 — (cos 10 + Scos 20), [2.294]
£+ 4f" = —2(x - 8) cos 20 —sin 26. [2.29¢]

These equations are to be integrated with the boundary conditions,
F18) = $:1(8) = £(0) = x:(8) = x(#) =0 at 6 = 0, 2, f [2.30]
71(8) = $1(0) = £1(8) = x}(6) = x)(8) = 0 at 0 = 0, 2, '

and the symmetry considerations [2.14].
The equations [2.29] admit of direct solutions, and we get

Vzrz
5 [7(6 — m}(1 — cos 20) ~ 26(8 ~ 27)sin 26]

el T

52
+ AI:: [7%‘%)-6(65 sinf 6 — 60sin 26 + 23 sin %6)

+12 (cos 20 —cos 3 0) +55(cos 1+ 0 ~cos £ 0) log Br]

+ 4% [5;:—9 (cos 36 — cos 0) + 2 (sin 26 — 25sin §)
i

L1 d o .
+3(3sin 0 ~sin 36) log Cr ] > [2.31]

where B, Care the additional constants, yet undetermined.
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3. DETERMINATION OF THE CONSTANT 4
In the case of no suction i.e. ¥ =0, the stream function ¢ is given by
i = 2477 (cos } 8 —cos 36)
+ A2 P~ - 0)(cos 30 —cos 8) + 2 (sin2 0 — 2sin 0)
+1(3sin-sin38)logCrl. [3.1]
For small values of 8, the velocity # is given by
u=4A4P04 540 ¢ £~ 10 455 (1 + 5log Cr)6*
+2x 00— (144 LlogCr)BY] & oo [3.2]

The velocity profile, obtained by Blasius for the flow, downstream is
given by

2 4
an
d=on—-2M ..
RUREYN) [33]
where ,1=.;/3_’-.
x
For small values of r and 8
2,202
u:qr*@_glﬁ ERTN
43 [3.4}

For sufficiently small values of r and 6, the leading term of the expansion
describes the fiow. Hence, comparing the coefficients of /%0 in the above
expansions [3.2] and [3.4], we get

4=2.9332 4083
a4~ a

4. DISCUSSION OF SKIN-FRICTION
The complete expression for ¢ is
& = (¥r/m)[(7 — 6) cos 6 + sin 8] + 0.166 "> (cos 16 — cos 36)
vt
+ 55?[7 (8 - =) (1 —c0s20) ~ 20 (6 ~ 27 sin 26]
0.083 .
= V2 [xhs(m — 8) (65 sin L0 — 60sin 20 +23 sin $0)

+ 4% (cos 3 0 —cos £ 0) + 75 (cos 10 — cos £8) log Br]
+(0.083) #* {[(= — 0)/8] (cos 30 — cos 8) + 2 (sin 20 — 2 sin §)
+4(3sin6~sin30)log Cr} ++ -+ [4.1]
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The skin-friction

u @
roﬁ,u(—u—le) > [4.2]

Ay X [yeo

REYE 1/ 8% R
Ml’<5f)9:0+ <002)9 =0 (5’) ]'

ﬁﬂlo 332, 0:083 ( 342 1og B ) - (0-083)2r7v—§ v
#* kS 43

] [43]

It will be secn from here that although near the leading edge, « and v are
of the same order of magnitude, yet the contribution to the wall shearing
stresses, arising out of the additional term viz. u (3v/ax) in [4.2] is zero even
in the case when uniform suction is applied. This means that the law of
resistance is given by the usual formula

°=“(5$)y o | [4.4]
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