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ABSTRACT 
The equations satisfied by vorticity and current density are derived for a com- 

pressible infinitely conducting fluid in the presence of a magnetic field. It has been 
shown that the components of vorticity and current density along the direction of 
the magnetic field will be propagated with AlFven velocity only if the charge 
separation takes place in the medium. The propagation of the disturbance caused 
by homogeneous and inhomogeneous condensations at a point in the medium are 
considered Finally, a proof of Walen's problem, namely an annular disturbance is 
propagated along themagneticlines of force with Alfven velocity without distortion 
has been given. 

INTRODUCTION 

The problem of propagation of waves in compressible fluids in the presence 
of uniform magnetic field was initiated by Herlofsonl and Van dc ~ ~ 1 s t ~ .  
Recently carstoiu3 has discussed this problem from the consideration of the 
propagation of vorticity and current density fields associated with the wave of 
infinitesimally small amplitude. I n  section 1, we establish the equations deter- 
mining density fluctuation, vorticity, and current density fields and solve them 
in section 2 for the case of a plane harmonic wave. We find, that in the 
absence of free charge the components of vorticity and current i n  the direction 
of primitive magnetic field are zero unless we take into account the separation 
of charge, in which case they are propagated with Alfven velocity. It is of 
importance to  compare this statement with the corresponding statement of 
Carstoiu. 

In section 3 and section 4, we have studied the propagation of disturbance 
produced by sudden density fluctuation at some point in the medium and in 
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section 5, we have obtained explicit solution for the  Waleu problem4 dealing 
with the propagation of a ring of disturbance along the magnetic field when the 
electrical conductivity is infinite. In this case, compressibility has no effect, as 
expected. Tn passing, we may mention that Walen has given the solution of 
this problem when conductivity is finite; but it does not appear possible to 
deduce the present solution from that of Walen. 

1. BASIC EQUATIONS OF THE PROBLEM 

Equation of continuity : 
ap/at + div (pv) - 0, 

Equation momentum : 
p [ a ~ / a t  + (v. V )  v] - -grad p + pJ x H, 

(neglecting external forces), 

Maxwell's Equations : 
curl H = 4 7 ~  J, L1.31 

(neglecting the displacement current), 

d ivH-0 ,  [I .3a] 

curl E = - p a , ~ / a t ,  [1.41 

div E - 0, (no free charge), [I .5a] 

= ( ~ T / K ) G ,  [1.5b] 

where s is the free charge density and K the dielectric constant. 

Current equation : In the case of infinite electrical conductivity, 

E= - p v x H .  [l.d 

We assume that  the undisturbed fluid is uniform and is embedded in a 
uniform magnetic field Ho (0, O,fio). Let po, po be the  density and pressure of 
the fluid in the undisturbed state. Further let the  density, pressure, magnetic 
field, electric field and current in the disturbed state be noted by po + p, PO + P 3  
Ho + h, E and J, respectively. In order to study thesmall disturbances we shall 
linearize the equations by neglecting the powers and products of the small 
quantities I h 1, p, p, I E I and I J1. The linearized set of equations is 

ap/at + po div v = 0, 11.71 
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c u r l h - 4 5 3 ,  divh=O, [1.10], [ l . l l ]  

curl E = - fi hh/ht , div E = 0 ,  (no free charge), [1.12], [1.13] 

]E- - fi v x Ho. [1.14] 

Eliminating E between (1.12) ahd (1.14) we have the equation determining the 
induced magnetic field : 

hh/bt = ~ ~ 3 v / a z  - Ho div v. [1.15] 

Perf2rming curl operations on  (1.8) and (1.15), we have equations for 
vorticity w and current J : 

-, 
4 a t  - ( P H ~ I P ~ )  a ~ l a z ,  [1.16] 

and, b ~ / a t  = ( H ~ / ~ R ) & / &  - 1 3 ~ / 4 . i r ~ ~  x grad (>plat), (1.17) 

on using (1.7). 

From (1.13) and (1.14) we can show that  in the absence of free charge 

w,=O. [1.18] 

Since the  second term on the  right hand side of (1.17) is a vector in (x, y )  
plane and w, - 0, 

J, - 0. [I. 191 

However, if we allow the separation of charges due to the propagation of 
disturbance we use (1.5b), namely 

div E - ( 4 ~ l ~ ) e .  [1.20] 

Then from (1.14) and (1.20), we get 

wZ = ( - ~ R / K ) E / H ~ .  [1.21] 

Taking the z components of (1.16) and (1.17), we get 

So that, 

where, a = [ (PH;)  / ( 4 9 ~ ~ ~ ) ] " ~ ,  the  Alfven wave velocity. 

Thus we see that, if there is no free charge in the medium the components 
of vorticity and current in the direction of the primitive magnetic field vanishes ; 
it is only when we allow tke separation o f  charges due to the propagation of 
disturbance, that the vorticity and current components parallel io ihe primitive 
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magnetic field are proparafed with the Alfven wave veiocity +a in the direction of 
theJield. I t  wdl be interesting to compare the above statement with that af 
~ars toi? .  

The following equations determine the components of vorticity and current 
perpendicular t o  Ho : 

We note that whether we allow for the separation of charge or not, the 
equations determining the components of vorticity and current perpendicular 
to the primitive magnetic lield are the same. 

Performing the divergence operation on  (1.8) and using (1.9)-(l.l l), we get 

If we assume now that the disturbance is propagated adiabatically, we have 

where c2 - YPO/PO is the velocity of sound in the undisturbed medium and in 
the absence of magnetic field. 

Eliminating p, J, and J, between (1.27)-(1.30), we get the equation deter- 
mining the propagation of density disturbance, namely, 

where A is the Laplacian operator. 

We now assume that the perturbed quantities are proportional to 
exp. [ l (wt+  k.r)]. From (1.31), we get two modes of propagation with wave- 
velocities. 

V: - [(a2 + cZ) lfl {(az + c2)' - 4aZc22] '"1, i2.11 
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where (1, m, n) are the direction cosines of k. The wave-velocities depend on 
the inclination of the direction of propagation to the primitive magnetic field. 
The wave-velocity of the fast wave vWf( > c), is maximum when the propagation 
is perpendicular to %, while the wave-velocity of the slow wave, V,,(< c), is 
maximum when the propagation is along HG. If a =c, the two wave-velocities 
for the propagation in the direction of HG are equal. We can easily show that 
vnf> a and that  V,, < a always. When u and c are unequal, there is no pro- 
pagation with velocity lying between a and c. 

From (1.25) - (1.28), we get 

We notice that the vorticity vector 

is perpendicular to the primitive magnetic field and to  the direction of wave 
propagation. Similarly the current vector 

is also normal to tha plane containing the primitive magnetic field and the 
direction of propagation. The expressions for as  well as J contain a factor 
(i p/po) showing that the propagation of these vectors is always out of phase 
by n / 2  from the propagation of density disturbance. 

To complete the solution we note below the expressions for velocity, 
induced magnetic field and electric field : 

and 

We may note that the present invcstigation is more general than that of 
Carstoid in as much as his discussion is based on the relations [(20) -(22) 
of his paper] 



which are only the particular cases of the more general solution 

where (curl A), = 0 if we allow the separation of charge. If there is no sepa- 
ration of charge, then w,- J,=O and there is no interlocking between his 
equations (17) and (18). This particular choice of F and G results in reducing 
the order of density equation by two. 

To conclude this section we note that the dispersion relation (2.11, which 
we have obtained through the equation determining the  density fluctuation is a 
particular case of the  general dispersion relation obtained by Van de HulstZ 
directly dealing with the scalar equations determining the physical quantities. 
We have obtained the equations in the present form in order to study in the 
following sections, the propagation of a small disturbance produced by a sudden 
density fluctuation and similar initial value problems. 

DENSITY FLUCTUATION IN THE MEDIUM 

Let us assume that a density fluctuation is produccd a t  t - 0 a t  the origin 
(0,0,0) which can be represented by 

where 6 (r) - 8 ( x )  S (y) S (z), the three dimensional Dirac delta function. 
We take the Fourier transform of (1.31) under the conditions that p and 

its derivative$ up to  third order with respect to space corodinates tend to  zero 
as r rends to infinity ; then, 

and ~ = 5 2 + l , Z + 5 2 .  

In what follows, the bar over any perturbed quantity would be talcen to 
mean its Fourier Transform. 

From (3.1). at t - 0 
(;lo - ~ / ( 2 , p ,  L3.31 

where the suffix 0 denotes the value of the quantity a t  time t - 0. In addition. 
we assume that 
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The solution of (3.2) satisfying the above initial conditions is 

- 1 
P -- . ---[m: cos mz t - m; cos m,  2 1 ,  

( ~ m ) ~ "  (m; - m:) 13.51 

where ml,z = $k [ d ( a 2  + 2ac cos 0 + cz)  f d(a2 - 2ac cos 0 + cZ)], [3.6] 

and cos 0 = elk. L3.71 

We shall now determine the equations and the initial conditions satisfied by 
the Fourier transforms of other physical quantities. From (1.7), (1.8) and 
( I . I I ) ,  we get 

hp/?t - i k.;, E3.d 
po(a6 /b t )  - i c z p k  + ,us x  Ha, L3.91 

k.h = 0 ,  [3.10] 

and 5 - ( - i / 4 x ) k x h .  [3.11] 

From the above equations, we can show that 

and 

In view of (3.3). (3.4), (3.14) and (3.15), we obtain 

4m cZ 
( E ) o  - - (;lo and (%) - 0 . [3.16] 

fi Ho o 

The initial values of h and J can easily be written from (3.12), (3.13) and first 
condition in (3.16).  Using the second condition of (3.16) we find that 
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We also note that 

and 

Hence 

But from (3.9), (3.13) and (3.16) we have 

giving non-zero initial values of the time derivative of 7. 

We consider below the two special cases : (i) c >> a and (ii) c <<a, 
as the inversion in these cases in less complicated than in the general case, 
Care (i). When c > > a, we neglect quantities of the order of (a/c)'. We have, 

m,=ck, mz-at, 

so that, 

On inverting this we have 

Thus the density disturbance travels with Alfven wave velocity in the direction 
parallel and anti-parallel t o  the primitive magnetic field and a t  time t the 
density fluctuation exists only at the points (0, 0. + at). 

We may easily deduce from (1.25) and (1.26) that v,, v,, v, are deter- 
mined by 

where >is the unit vector along z direction. 
The Fourier transform of (3.24), under the assumption that the velocity 

and its first order derivatives with respect to space coardinates tend to zero as r 
tends to infinity, yields 

where t is the unit vector along 5 direction in wave vector space. 
Using (3.22) and integrating (3.25) under the initial conditions determined 
already, we have 
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The inversion then gives 

where R and R' are the  distances of (x ,  y, z) from (0,  0 ,  a t )  and (0,0, - at) 
respectively. 

Proceeding similarly, we can see that 

a 2 7 t  w = -- -- --i--- sin a i t - -------- b cos a l t k x 2 , [3.27] [, po~f : r12  p- :,2 2 ( 2 ~ ) ~ ~ ~  I 
to our approximation. Their inverses are zero at all points except at 
(0, 0, * a t )  where they are highly singular, the nature of the singularity being 
given by 

The transforms of current densities are 

so that 

Also to this approximation h, - h, - 0 except a t  (0,0,+ at) where they are 
undefined, and 

h, - - ( 2 n c 2 / p ~ 0 )  S ( x )  S ( y )  [ S  (z+ at) + 6 (z  - at)] [3.29] 

Thus the magnetic disturbance also travels with Alfven velocity along the 
primitive magnetic field. From the knowledge of the velocity field, using (1.14) 
the electric field can immediately be obtained. 

Case (ii) : When c < < a, neglecting quantities of order (c/a)' we get as 
before 
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m, -- ulc, mz c b ,  [3.30] 

and , ;= [7/(2~)3'2] COS ~ b t ,  13.311 

so that p - ~ r S ( ~ ) S ( ~ ) [ 8 ( z f c t )  +S(z-ct)].  [3.32] 

Here the density disturbance travels with velocity of sound in the medium 
along the primitive magnetic field and a t  time t ,  the  density fluctuation exists 
only at (0, 0, c t ) .  

Same procedure as above yields, 

- c27 a b sin a l; t . - - c27 d sin a 5 t 
a pa (2*)3'2 ~2 +,,a 

' v, - - -- --- 
V x = 2 - -  -- aZpo ( 2 ~ ) ~ "  f 2  t r12 ' 

and Tz = {ic 7 / [ p o  (27~)~"]] sin c 5 t, 
so that v, - v, = 0 ; v, - (c ~ 1 2 ~ ~ )  8 (n) 6 ( y )  [6 (z - ct) - 8 (z + ct)] [3.33] 

Also the nature of the singularity of vorticity and current are given by 

The magnetic field is given by 

In this case, the electric field vanishes entirely to our approxi- 
mation. 

4. In the previous section we have discussed the fluctuation in density 
created by sudden spherical condensation or expansion at a point in the medium. 
Here we shall study the fluctuations produced by means of inhomogeneous 
condensation or expansion, so that,  the element of fluid at the origin has 
imposed velocities also. But we can show that any imposed transverse velocity 
involves charge separation and hence we must take into consideration (1.5b). 
(1.23) and (1.24). Rest of the basic equations remain the same. We agaln 
adopt the procedure of Fourier Transforms and take the following initial con- 
ditions for the Fourier rransforms of the perturbed quantities : 

and 

Initial conditions on other quantities can be obtained from (3.8) - (3.20). For 
simplicity, we shall restrict the discussion to  the limiting case c >> a. 
The limiting case c << a follows exactly on the same lines. 
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Particular Case : 

c >> n :  Under the  initial conditions mentioned above, 

The first term arises duc to sphericat part of the condensation and thc second 
due to the  imposed initlal velocity. Inversion of (4.4) gives 

x ~ ~ [ ~ o s ~ i r ) ~ ~ c 2 ] ~ ~ P [ - i ( ~ x + q y + ~ z ~ ] d ~ d ~ ~ d ~  14.51 
- m 

Consider I =  fi/[(cos c k i ) / l r ~  cxp. [ - i ( fx+  q y  4 (I)] d f  d l  d l  14.61 
- - 

"I2 - 
- / [cos(ck t + k~ cos 8 ros 6) + code k t - JCR cos f l  sos 611 x 

0 0 

x J&R sin /3 sin 8) sin O d H dk, 

-1, + (sap), 

on putting 

{ = k s i n ~ c o s p ,  1]-IcsinOsin$, l = k c o s O ,  

and integrating with respect to + 



Hence in evaluating these integrals with respect to  k, we have to discuss (he 
following three cases : 

(a) R < c t .  (b)  c t < I < < d 2 c t ,  (c) d 2 c t < R .  

(a) When R < c t ,  

I' - ~ c o s ( c  t X + i R  cosp cos 0) YXR sinp sin 19)dk - 0 

0 

so that I, = O .  [4.7] 

(b) When ct < R < d 2 c t ,  the integral can have non-zero value only if 
x - B o - $ < B < m + B o - p ,  whcre cos&=c t /R  so that 0 < 0 0 < ~ / 4 .  
When this condition is satisfied 

I' = ~ - ' [ s i n ~ p  sin2Bo - (cos 0 + cos 80 cos P)']' ' I 2  

Now, as p varies from 0 to m, we can verify that 

(c )  When R > d ( 2 )  ct, so that 7i/4 < &, < ~ / 2 ,  I' is given by the same 
formulae and we have 

[I - 0 if 0 < /3 < .x/2 - 80, 

We shall now evaluate 1,. Let 
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(a] When R < ct ,  I" - 0, and therefore 
I2 - 0 .  

(b) When ct < R < d2.ct .  

1" =-- 1 
R[sinz 60 sinZ p - (cos 6 - cos eo cos p)Z]LIZ ' 

provided fl - Bo < 0 < f? + 60. When this condition is satisfied, 

where wZ = x2 + y2. 

Thus we see that the whole region is divided broadly into three parts by 
the spherical wave fronts R -ct and ~ d 2 c t .  Then again, the region outside 
the wave fronts and the annular region between them are divided into four parts 
by certain cones. In each of these regions, appropriate values bave to be 
associated. In  what follows in this section, we shall limit the discussion by 
exhibiting the various quantities explicitly in terms of the integral I, whose 
exhaustive treatment we have just now given. Proceeding as before, we get 

+ i f [ c2* sin ckt ipo k.V cos ckf 
p. ( i ~ ) ~ ~ ~  ck ( 2 ~ ) ~ ~ '  7 1  [4.14] 
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Changing the respective variable cyclically we obtain i, and v,, the extra term 
in the latter being neglected since it is of tile order aye" Inverting, we have 

v, - v,s (x) 8 ( Y )  [S (Z + at) + S(Z- a t j l  

V ,  and v, are obtained cyclically changing the  appropriate variables. We 
note, that, aparr from travelling with the Alfven wave velocity * a  along Lhe 
primitive magnctic ficld, due to the effect of interaction between compressibility 
and magnetic field, the last two distributions in (4.15) are created. The vorticity 
components are of the order of (ale)' except a t  the singularitics (0,0, & a t )  and 
their neture a t  the  singularities are of the following forms: 

As is expected, we note that the density Rnctudtion docs not affcct the vorticity 
in the  direction of the primitive magnetlc field. From Maxwell's equations, 
(1.27), (1.28) and (1.24) we get the following eqilations for the components of 
perturbed magntic field : 

whose transforms are 

Using the appropriate initial conditions and [4.4],  we see that 

Changing the  variable from x to p, we obtain h,, 
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These clearly show, that (0, 0, & at) are the singular points for the 
magnetic field. The nature of each term in itself shows the order of the 
singularity. 

Similarly, the singular current density is obtained from, 

+[--!&-.-V.~b'--2?!??-_?_1 327.;"' [4.20] 
ayat 327.;3po~2 ay3tZ ' I 

Changing x to y, we obtain J,. 

In this section we reconsider the Walen's problem namely the propagation 
of disturbance in the form of a ring in the plane perpendicular to the initial 
magnetic field in an incompressible fluid. We note that the disturbance being 
transverse to  the direction of propagation, the compressibilty does not play any 
part. Thus the present section may be regarded as supplementary to Walen's 
work in as much as it provides the complete solution of his problem in mathe- 
matical form when electrical conductivity is infinite. 

Let the initial disturbance be  
0 , - S Z S ( Z ) S ( ~ - ~ ~ )  at t - 0 ,  [ ~ J I  

Q being angular velocity of the element of fluid. Hence, a t  t - 0, we have 

and w, - w, - 0 ; w, - 32 S(z) S(w - wo). 
w  : 

Thus from (5.3), we have 
252 ~ d w o p )  , p2 _ p + ,,z. (GJO = - - 
wo ( 2 . ~ ) " ~  

In addition we assume that (2) - 0 .  P I  
0 
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Taking Fourier transform of (1.23), we get 

whose solution under the above initial conditions is 

- w, = 252 jo(woP) cosa 5 t .  
( 2 ~ ) " ~  wo 

On inversion, we obtain 

m 

Since Ices sir  exp.[- i i z ]  d l  - r [S ( r  + at )  i- 6 (z - at ) ]  r5.4 
- m 

0 

we get ws - (f2/wo) [S (z + at) + S (z  - at)] S (or - wo). [5.10] 

Thus, the ring of initial disturbance travels with the Alfven wave velocity, 
in t h e  positive and negative directions of the primitive magnetic field, the plane 
of the ring always keeping parallel to itself. 
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