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ABSTRACT

The equations satisfied by vorticity and current density are derived for a com-
pressible infinitely conducting fluid in the presence of a magnetic field. It has been
shown that the components of vorticity and current density along the direction of
the magnetic field will be propagated with Alfven velocity only if the charge
separation takes place in the medium. The propagation of the disturbance cansed
by homogeneous and inhomogeneous condensations at & point in the medium are
considered. Finally, a proof of Walen’s problem, namely an annular disturbance is
propagated along the magnetic lines of force with Alfven velocity without distortion
has been given. v
INTRODUCTION

The problem of propagation of waves in compressible fluids in the presence
of uniform magnetic field was initiated by Herlofson' and Van de Hulst’.
Recently Carstoiu® has discussed this problem from the consideration of the
propagation of vorticity and current density fields associated with the wave of
infinitesimally small amplitude. In section 1, we establish the equations deter-
mining density fluctuation, vorticity, and current density fields and solve them
in section 2 for the case of a plane harmonic wave, We find, that in the
absence of free charge the components of vorticity and current in the direction

, of primitive magnetic field are zero unless we take into account the separation
of charge, in which case they are propagated with Alfven velocity. It is of
importance to compare this statement with the corresponding statement of
Carstoiu.

In section 3 and section 4, we have studied the propagation of disturbance
produced by sudden density fluctuation at some point in the medium and in
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180 C. DEVANATHAN AND P. L. BHATNAGAR

section 5, we have obtained explicit solution for the Walen problem? dealing

with the propagation of a ring of disturbahoe along the magnetic field when the

electrical conductivity is infinite. In this case, compressibility bas no effect, as -
expected. Tn passing, we may mention that Walen has given the solution of

this problem when conductivity is finite; but it does not appear possible to

deduce the present solution from that of Walen.

1. Basic BQUATIONS OF THE PROBLEM
Equation of continuity :
ap/at+div (pv) = 0, [1.1]

Equation momentum :
plavfar + (v V) v]= —grad p + pI x H, [1.2]
(neglecting external forces),

Maxwell's Equations :

curl H=4x J, [1.3]
(neglecting the displacement current), .
divH=0, [t.34]
curl E = — uoH/at, [1.4]
divE =0, (no free charge), [1.52]
= (4x/K)e¢, [1.50]

where ¢ is the free charge density and K the dielectric constant.

Current equation : In the case of infinite electrical conductivity,
E= —uvx H. [1.6]

We assume that the undisturbed fluid is uniform and is embedded ina
uniform magnetic field Hy (0,0, Hy). Let gy, po be the density and pressure of
the fluid in the undisturbed state. Further let the density, pressure, magnetic
field, electric field and current in the disturbed state be noted by ps+ p, po +P»
H; +h, Eand J, respectively. In order to study the small disturbances we shall
linearize the equations by neglecting the powers and products of the small
quantities [k|, p, p, |[E| and | J|. The linearized set of equations is

apfat+ py div v =0, [1.7]
podv[at = —grad ¢ + (uHo/47) 3h/az, [1.8]
¢ =p-+(u/4x) Heh, [1.9]
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cuslh==4xJ, divh=0, [t.10], [1.11]
curl B= —udhf3z, divE =0, (no freecharge), [1.12],[1.13]
E= —uvxH. [1.14]

Eliminating E between (1.12) ahd (1.14) we have the equation determining the
induced magnetic field :

3hfat = Hyywlaz — Hodiv v. [1.15]

Perfgrming curl operations on (1-8) and (1'15), we have equations for
vorticity w and current J :

awfat = (uHg/po) 23/3z , [1.16]
and, 33[at = (Hofan)3w/oz — H/4mpy x grad (2pf31), 117)

on using (1.7).

From (1.13) and (1.14) we can show that in the absence of free charge
w,=0. [1.18]

Since the second term on the right hand side of (1.17) is a vector in (x, y)
plane and w, =0,

J,=0. [1.19]

However, if we allow the separation of charges due to the propagation of
disturbance we use (1.55), namely

div E = (47¢/K )e. [1.20]
Then from (1.14) and (1.20), we get
we = (— 4x/K)e/Hy. [1.21]
Taking the z components of (1.16) and (1.17), we get
dwy _uHy oF, 3 Ho aw [1.22]
ot po 3z ’ ot dx bz
2 2 2 2
So that, 2w _pwe ) gL [1-23, 1-24]
ar >2* D¢ 3z

where, a = [(uH3) /(47 py)]?, the Alfven wave volocity.

Thus we see that, if there is no free charge in the medium the components
of vorticity and current in the direction of the primitive magnetic field vanishes ;
it is only when we allow the separation of charges due to the propagation of
disturbance, that the vorticity and current components parallel to the primitive
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magnetic field are propagated with the Alfven wave velocity J-a in the direction of
the field. 1t will be interesting to compare the above statement with that .of

Carstoit’.
The following equations determine the components of vorticity and current
perpendicular to Hy:

FPwe_p & T [1.25]
af d7* po  dtdYdz ’
»? 5 3w, N
e R sl [1.26]
31 &z po dldxaz
A R H @
T —d = et [1.27]
%3 3z dacpy D7Dy
2 2 53
_a_'!i’._gz oy = _ A o_p [1.28]

G 3z dmpy 283x

We note that whether we allow for the separation of charge or not, the
equations determining the components of vorticity and current perpendicular
to the primitive magnetic field are the same.

Performing the divergence operation on (1.8) and using (1.9)-(1.11), we get

22p 3, >,
L Aptut|{ 2 - 2 1.29
= Pt uth ( 5y 5 ) [1.29]
If we assume now that the disturbance is propagated adiabatically, we have

p=cp, [1.30]

where ¢ =yp/po is the velocity of sound in the undisturbed medium and in
the absence of magnetic field.

Eliminating p, J, and J, between (1.27)-(1.30), we get the equation deter-
mining the propagation of density disturbance, namely,

32 , 3\/ a? . o f 3 32 52}’
— =@ — | = —-cA = — = =, 1.31
(azz az?J\ar? u ax®  ay) art [131]

where A is the Laplacian operator.

2. PROPAGATION OF PLANE WAVES

We now assume that the perturbed quantities are proportional to
exp. [t{we +X-r)].  From {1.31), we get two modes of propagation with wave-
velacities,

Vi= 3@ + ) # {(@ 4 P — a2} 7], [2.1]
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where (1, m, n) are the direction cosines of k. The wave-velocities depend on
the inclination of the direction of propagation to the primitive magnetic field.
The wave-velocity of the fast wave wa{ > ¢), is maximum when the propagation
is perpendicular to Hy, while the wave-velocity of the slow wave, ¥,,,(<¢), is
maximam when the propagation is along Hy. If g =¢, the two wave-velocities
for the propagation in the direction of Hy are equal. We can easily show that
Vs> a and that ¥, <<a always. When ¢ and ¢ are unequal, there is no pro-
pagation with velocity lying between aand c.

From (1.25) — (1.28), we get

. v .
wom (i e e () B 2
Pa Ve—an £o Vy —anm

PR 2 : 2
and JX=<’L)‘3 Lumk g i Mo Vule a4 2]

ey Jy =
po /4w Vi —an’ po  4x |

We notice that the vorticity vector

. 2
- ip \a Von
= - = —— k % H, 2.6
Y (Pu)Ho I [2.]

is perpendicular to the primitive magnetic field and to the direction of wave
propagation. Similarly the current vector

. 2 .
I= (’—’i) L e xxm, [27]
po) 4 V5 —a'n
is also normal to the plane containing the primitive magnetic field and the
direction of propagation. The expressions for w as well as J contain a factor
(i p/po) showing that the propagation of these vectors is always out of phase
by /2 from the propagation of density disturbance,
To complete the solution we note below the expressions for velocity,
induced magnetic field and electric field :

P k dp__n
= Ay = 2 ——=k x {(k x Ho){ , [2.8]
v ”[k Ho Viodd ¢ 0)]

Po
he £ Vi Kx(kxH) [2.9]
oo Vi -t K2
2
and Bl % [1 + -;;'i“ ’?nz] (% x Hy). [2.10]
Po w

We may note that the present investigation is more general than that of
Carstoiu® in as much as his discussion is based on the relations [(20) —(22)

of his paper]
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Jy= + (Hof2ma) we+ F (3, 2, 1),
Jy = & (Ho2ma) w,+ G {x, z, 1),

which are only the particular cases of the more general solution
J = & (Hof2wa) w+ curl A,

where {curl A), =0 if we allow the separation of charge. If there is no sepa-
ration of charge, then w.=J, =0 and there is no interlocking between his
equations (17) and (18). This particular choice of F and G results in reducing
the order of density equation by two.

To conclude this section we note that the dispersion relation (2-1), which
we have obtained through the equation determining the density fluctuation is a
particular case of the general dispersion relation obtained by Van de Hulst?
directly dealing with the scalar equations determining the physical quantities.
We have obtained the equations in the present form in order to study in the
following sections, the propagation of a small disturbance produced by a sudden
density fluctuation and similar initial value problems.

3. PROPAGATION OF SMALL DISTURBANCES ARISING DUE TO A SUDDEN
DEensiTY FLUCTUATION IN THE MEDIUM

Let us assume that a density fluctnation is produced at ¢ =0 at the origin
(0,0, 0) which can be represented by

p=75(r) at £=0, [3.1]

where 5(r) =35 (x) 5(») 3 (z), the three dimensional Dirac delta function.

We take the Fourier transform of {1.31) under the conditions that p and
its derivatives up to third order with respect to space corodinates tend to zero
as r rends to infinity ; then,

[2*/at* + (P + Ao + P F L Hp =0, [3.2]
- 1 s
where P =GR Jp (e, p,z, ) exp. ilEx + yy + L2) dxdy dz,
and P=£4 g 2

In what follows, the bar over any perturbed quantity would be taken to
mean its Fourier Transform.
From (3.1), at £=0

(F)a o= 'r/(27r)3'2, [3.3]

where the suffix 0 denotes the value of the quantity at time ¢ =0. In addition.
we assume that
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ar ot of
The solution of (3.2) satisfying the above initial conditions is

- T 1

p i el M2)[ml cos Myt — m3 cos my 1),

where my =tk [/ (& + 2ac cos 0 + ¢®) + 4/ (a® ~ 2ac cos B + c’)],

and cos @ = {[k.

[3.4]

[3.5]

[3.6]
[3.7]

We shall now determine the equations and the iritial conditions satisfied by
the Fourier transforms of other physical quantities. From (1.7), (1.8) and

(1.11), we get
3pfat =ipoky,
polav [a1) = i pk + uT x Hy,
kb =0,
and F<(-ifan)kxh.

From the above equations, we can show that

R ¢l - 9t

S S 30 S R LI 2

* §2+1)2 z 4 §2 2
- i ,,kz - - i fk -
To= — B S %
x 47( §2+')3 iz ¥ 47‘_ §2+1)2 zy

ap 2,2 oo
L o - BT,
3 P™ gm

and ﬂ,_czkzi_ﬂkzia’_
a8 at 4w at

In view of (3.3), (3.4), (3.14) and (3.15), we obtain

- 4 - Bh,)
B o= ———-(p) and (—=) =0.
(7)o u.Ho( o ( 3t Jy

[3.8]
[3.9]
[3.10]

[3.11]

[3.12]
[3.13]
[3.14]

[3.15]

[3.16]

The initial values of h and J can easily be written from (3.12), (3.13) and first

condition in (3.16). Using the second condition of (3.16) we find that

eh (?_3_) -0
ot Jo ot /o

[3.171
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We also note that

V- };Z[aa—';—% %”;] [3.18]
and Ee —uv xH [3.19])
Hence (v)o =(E)o =0.
But from (3.9), (3.13) and (3.16) we have
(), Grk s 2w fix [3.20]
dtfo  po 4 pg

giving non-zero initial values of the time derivative of v.

We consider below the two special cases: (i) ¢ >> a and (ii) ¢ <<,
as the inversion in these cases in less complicated than in the general case,
Case (). When ¢ >>> a, we neglect quantities of the order of (afc)>. We have,

m=ck, my>al,
5o that, P cosal t. 322
P =Gy (3.22)

On inverting this we have
p=2r5(x)5(3) [6(z+an) +5(z—at)]. [3.23])
Thus the density disturbance travels with Alfven wave velocity in the direction
parallel and anti-parallel to the primitive magnetic field and at time t the
density fluctuation exists only at the points (0, 0, + ar).
We may easily deduce from (1.25) and (1.26) that v, v,, v, are deter-
mined by .

>? azaz) 1 (a’p af 3 A
S AV - — V() £ 2 ApYz, 324
(at2 >2" Po Y po\dtdz P)E L

where % is the unit vector along z direction.

The Fourier transform of (3.24), under the assumption that the velocity
and its first order derivatives with respect to space coardinates tend to zero as?
tends to infinity, yields

32 - ; 3~ i 2 =\ .
(__2+a2g2v=,_i_li. ¥p (2t 2 (3.29)
at pok* ot po Bt
where 2 is the unit vector along { direction in wave vector space.

Using (3.22) and integrating (3.25) under the initial conditions determined
already, we have
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- -7 alk . irt 2 Pk
= s e S0 8§ f b e - — cosa {1
VT G R 2p, (2)"% 1

A iar sinalz it 2L
+£Lm@ﬂ” 7 uﬂ%wZITwwgq (3.26)

The inversion then gives
T af1 1 Tt A
PR v =Y L. +—————V—(——+——
Y T T6mpe az(R R'> T67po 3P\R T K
: 2
a1 ar_(»g'_iJran_ B L+L,
16mpy \R' R/ 16mps 2z \R R/ ].

where R and R’ are the distances of {x,y,z) from (0, 0, as) and (0,0, - ar)
respectively.

Proceeding similarly, we can see that

apo(27) £+ g 2 po (2
to our approximation. Their inverses are zero at all points except at
(0, 0, + ar) where they are highly singular, the natore of the singularity being
given by

—_ 2 2 2
W:[ ¢ k—zsinaé't a7t §cosaZthx2, [3.27]

- 2 A
We — T2 )2 [5(R) 4+ 5(R)]
47 po dz
The transforms of current densities are

= iTe? K irtH . 5
Fo |l I8 o F  cosalt+- 0 _alsinalt|kx{ [328
[MI{Q(ZW)s‘z Eq? 8 7 po(2 )" ¢ [323]

50 that I —T-z—}-l-“—(zA x V) —a«[S (R) +8(R")].
167 pyp 3t

Also to this approximation %, =k, =0 except at (0,0, at) where they are
undefined, and
he= — (2 uH) 8 (%) 8 () [6 (z+ ar) + 5 (z ~ a?)] [3.20]
Thus the magnetic disturbance also travels with Alfven velocity along the
primitive magnetic field. From the knowledge of the velocity field, using (1.14)
the electric field can immediately be obtained.

Case (ii): When ¢ < < g, neglecting quantities of order (c/a)® we get as
before



188 C. DEVANATHAN AND P. L. BHATNAGAR

_ my == ak, my=cl, [3.30}
nd 7 = [ef(am)] cosel, Ba1)
so that p=378(x)3() [z +er) +8(z~cr)]. 3.32]

Here the density disturbance travels with velocity of sound in the medium
along the primitive magnetic field and at time 7, the density fluctuation exists

only at (0, 0, 4 c1).
Same procedure as above yields,

;o ¢r absinabr -7 absinalr
TR eyt g T 7 dp2m)? Fagt
and Vo= lice/[po (27)¥*]} sincly,

sothat  ve=v,=0; v,=(c7/2p0) 5 (x) (1) [6(z—cr) =8 (z + er)] [3.33]

Also the nature of the singularity of vorticity and current are given by

WPy = (2 x V) [8(R) -5 (R)]. [3.34]
nily 2py
The magnetic field is given by
2 2
T a1 1 27 T n1 2
he —— V| —+—}+ S(R)+8 R')] z. 3.35
el A R JOREILD [3.35]

In this case, the electric field vanishes entirely to our approxi-
mation.

4. In the previous section we have discussed the fluctuation in density
created by sudden spherical condensation or expansion at a point in the medivm.
Here we shall study the fluctuations produced by mieans of inhomogeneous
condensation or expansion, so that, the element of fluid at the origin has
imposed velocities also. But we can show that any imposed transverse velocity
involves charge separation and hence we must take into consideration (1.53),
(1.23) and (1.24). Rest of the basic equations remain the same. We again
adopt the procedure of Fourier Transforms and take the following initial con-
ditions for the Fourier transforms of the perturbed quantities :

o= — (Ej)ﬂw, (4.1,42)

(2n)27 \ 2t

and S G 4.3]

(p) G [
Initial conditions on other quantities can be obtained from (3.8) — (3.20). For
simplicity, we shall restrict the discussion to the limiting case ¢ >> a.
The limiting case ¢ <<<C a follows exactly on the same lines.
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Particular Case :
¢>>>a: Under the initial conditions mentioned above,

- T sin ckt
pP= (2’N)ah cos ckt +( )3/9 k- V— ‘k [44]

The first term arises due to spherical part of the condensation and the second
due to the imposed initial velocity. Inversion of (4.4) gives

p:(ijjJJ'JCOSCICteXp'[_i(&”—ny+ L)ldedydl

+(ip137JJJ V[(sincke)/ck] exp. [ - i(Ex + gy + L)) dEdydl.

LYY 7 B
SRy Q) ol

x JJJ[(cosckr)/kzl exp.[ —i(éx + 9y +Zz)]d§dq at [4.5]

—

Consider [ = J‘” [(cos ck)[K* exp. [ — iléx + ny + E)]dEdy di [4.6]

— o

2
= J [ [cos(ck t + kR cos Beos 8) + cos{c ke t — kR cos B cos6)] x
-

0
% J(kR sin Bsin @) sin 0 46 dk,

=k + L (say),

on putting
£~ksinfcosp, n=ksinfsing, L=kcosd,
x=RsinBcosa, y=Rsinfsinx, z=Rcosf,

and integrating with respect to ¢.

Now cos ax Jo(bx)dx = 1/v/ (5 ~ d°) if 8> d,

Ry |

=0 if B <dh
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Hence in evaluating these integrals with respect to k, we have to discuss the
following three cases:

(@ R<c, (b)) ct<R<WV2et, (c) V2ca<R

(@) When R<ct,

@

I'= Jcos(c th + kR cos B cos 0) (kR sinf sin 0)dk = 0
0
so that L =0.

[4.7]
(b)) When cr<< R << 4/2ct, the integral can have non-zero value only if
w—0p—B<O0<m+6—pf, where cos@y=ct/R so that 0 < 0, << x/4,
When this condition is satisfied
7' = R7'[sin?B sin?6g — (cos @ +cos By cos S}~ 12
Now, as 3 varies from 0 to 4, we can verify that
L=0 it 0<pg<<m/2—48,,
1 -1 ctz .
= ——C0§ | ——— e if /2~ 600<B-<<ax/2+0,,
R [w«/(RZ— & zz)] f2-bo<p<nl2+6
=% if w248 <8< -0,

1 1 Rietz .
_-—— -8 ——— [ if w-Oy< <. 4.8
R[ w«/(ltz——c‘tl)] ! h<p=mw [15]

(¢) When R > /(2) e1, so that /4 << 0y << x/2, I’ is given by the same
formulae and we have

5L=0 if 0< 8 << x/2~ 6o,
EECOS_I[;TR:%] if w20 <B<m—b
- % [cos”l !27(7;:1??) — cos™! ;7121%1;75] if 7w — 00 < §<m[2+0s
= E[W - COS“Iw—f(ZRiZ—C:;—tZ‘)] if Lov 4+ Bp<p<w. [4.9]

We shall now evaluate 7,. Let

@

I'"= [cos (cik —k R cos B cos 0) Jy (k R sin fsin6) dk. [4.10]

o
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(a) When R <<et, I" =0, and therefore
L=0. f4.11)

(b) When ¢t << R << A/2-ct,

"

o1
R[sin® 6y sin® B ~ (cos 8 —W s

provided §—~8o<<0 << B+8,. When this condition is satisfied,

1 - R~ctz
L= — 1'____.__‘_~_ .
2= [w ©0s w&/(Rz—cztz)]' o< B<6y
7T .
- if < g <m[2~6,
1 - -tz .
=7€[cos lmz-—czt—i)} I mf2-0<B< w244
=0 if dwv + €< p<n [4.17]

(c) f R> v 2ect,

1 - —~ ¢tz N
2= R_["‘“’s ;7(}:7“)] Ho<p<nh-ty
1 a —ctz o Rz .
-——]cO — f 2- <
R[c s VR~ ) cos w«{(Rz—c;tz)l w2 < B < by
1 - —clz .
“”R‘[“’s lwA/(R2—-czt25] Hho=p=nate
-0 if3av + Bo<f<m. [4.13]

where  w®=x*+ )%

Thus we see that the whole region is divided broadly into three parts by
the spherical wave fronts R =ct and RV 2ct. Then again, the region outside
the wave fronts and the annular region between them are divided into four parts
by certain cones. In each of these regions, appropriate values have to be
associated. Tn what follows in this section, we shall limit the discussion by
exhibiting the various quantities explicitly in terms of the integral I, whose
exhaustive treatment we have just now given. Proceeding as before, we get

- V. £keV
Vg ((2w_)3“ '—(2—7‘_7’7—27(5) cos a{t
ig[ A sinckt _ipok.V coscke 414
o [(21:)3’2 o G R [4.14]
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Changing the respective variable cyclically we obtain v, and 7, the extra term
in the latter being neglected since it is of the order a”/cz. Inverting, we have

v =V, 8 (x)8(») [3(z + ar) + 8z~ ar]]

V-V oa/1 1 T 2 V-V )
Y A e e L 4,
Y ax( R R') [pg(?_vv)a ax3t (2w)® ox [4.15]

v.and v, are obtained cyclically changing the appropriate variables. We
note, that, apart from travelling with the Alfven wave velocity 3-a along the
primitive magnetic ficld, due to the effect of interaction between compressibility
and magnetic field, the last two distributions in (4.15) are created. The vorticity
components are of the order of (a/c)* except at the singularities (0, 0, - at) and
their nature at the singularities are of the following forms:

W=k (Vx V)5 (R) +5(R)] + (ar/2p0) (2 x V) [8(R') =& (R)]. [4.16]

As is expected, we note that the density fluctuation docs not affect the vorticity
in the direction of the primitive magnetic ficld. From Maxwell’s equations,
(1.27), (1.28) and (1.24) we get the following equations for the components of
perturbed magntic field :

32 2 3 35\ &
lz—az—a—z An-Heog —6—”5 T QNS Ay [4.17]
ar az Po dz Ot Po ar”

whose transforms are
2 B 2= 7=
(Eﬁ_a%z h=_f_{_°;_;‘§_f’7+];’9 igg_ [4.18]
ar po K ar*  py ot
Using the appropriate initial conditions and [4.4], we see that

Hyr  3? N Hy Vs .
- —— (1/R +1 LRl — —8{z-trat
P e (/R +1[R) o S(x)8 ) {5(z - @) — 8(z + a)}

by

2 . 32
T V-V(l/R'—l/R)—[ Hor 8" _HV-V Jdt][.

647 apy N2ipy ox vz 32xY adz Jo

Changing the variable from x to y, we obtain 4,

H 32 2
he= 22 i E’i -1“‘”-]7
64w py \OX" Yy R R

+-}§(VX§’; + Vyi—)ﬁ dr [8(x) 8(y) {8(z + ar) + 5 (z - a)} ]

Hy a2 P J‘ 1 1
+——5 VoV { =+ — )| dtf —+—
647° (bf a*/Je \ R * R
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Hyr “_ Ei _Eﬁ,z 5
[327‘ po(ax * a_v’) 3254 ( syZ) Jd’] L [419]

These clearly show that (0, 0, + af) are the singular points for the
magnetic field. The nature of each term in itself shows the order of the

singularity.
Similarly, the singular current density is obtained from,

Ty BT 2 [5(x)5(r) 8z + ar) + 8z - ar)}]
Tpy OY

__Ho_( _._V_) [5(:)50) {8z — ar) — (= + a)}]

8xa 3y
Ho 52 H‘T 53
= VoV o = 2 I 4.20
[327:%2 aypt  327pel dYIL [4.20]

Changing x to y, we obtain J,.

e =I&(V 2 V~:—y> 5 () 5 (») $5(z — at) — 5 (z + an)} ).

8ma\ ~ ax

5. PROPAGATION OF RING DISTURBANCES : (WALEN'S PROBLEM)

In this section we reconsider the Walen’s problem namely the propagation
of disturbance in the form of a ring in the plans perpendicular to the initial
magnetic field in an incompressible fluid. We note that the disturbance being
transverse to the direction of propagation, the compressibilty does not play any
part. Thus the present section may be tegarded as supplementary to Walen’s
work in as much as it provides the complete solution of his problem in mathe-
matical form when electrical conductivity is infinite,

Let the initial disturbance be

2, =025(z) 5(w—ex) at =0, [5.1]
£ being angnlar velocity of the element of fluid. Hence, at =0, we have
Ve — Q—J—; 8(z) 8(w — wo)s W= ‘Qii 8(z) 8{cw — ), %:=0, [5.2]
wp wo
and Wy = Wy = 0 ; WZSQ;st(z) B(w—wb)~ [53]
Wy

Thus from (5.3), we have (o)
- 20 Jolwop S B [5.4}
o = 25 L =gt .
(w:)o e (2m)™ 4 7

In addition we assume that _
(__EWZ) =0. : [5.5]
o

ot
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Taking Fourier transform of (1.23), we get

3? 2 ‘
atz-l-[l 20w, =0, [5.6]
whose solution under the above initial conditions is
-~ 20 ‘
We= e i cosalr. 5.7
2r) P a, o{eop) {571

On inversion, we obtain

fJJcosaCtJo wop) exp, [ —i(év+ gy + L2)] deédydi

We (2/7:)2 wp
- (2'72;322«»0 J cosaltexp [—ilz]al _IJO (wp) exp[ — i (£x + ny)}dE dy.
Since fcos alt exp[— ilz] dl == [5 (z+ ar) + 8 (z —ar)] [5.5]
HJO wo p) exp.[ — i (§x+ )] dé dy
- 27 ®
<[ [0 p) expd=tp cos (6 -] oo
° 0
= 27:[]0 (ewp) Jo rug p) pdp =27 8 ( — eno) [5.9]
we get w, ={(Q/wo) [ (z+0a1) + 8 (z— a1)] 5 (@ — o). [s.lof

Thus, the ring of initial disturbance travels with the Alfven wave vclocitys
in the positive and negative directions of the primitive magnetic field, the plane
of the ring always keeping parallel to itself.
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