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ABSTRACT

Theoretical calculations for the radial field spread around a bare copper wire
supporting the Sommerfeld wave, as a function of the percentage of power flow
»p and, also as a function of the wavelength of excitation, for 50%, 75% and 90%
power flow, have been made. The attenuation constant of the Sommerfeld surface
wave line as a function of wire radius a for different values of wavelength has
been calculated. Calculations have also been made for the radius of different con-
stant power contours round a Harms-Goubau dielectric-coated surface wave line,
as a function of the dielectric constant, dielectric coating thickness and radins of
the supporting wire. An expression for the ratio of radii of constant power con-
tour, with and without dielectric coating, for different percentages of power flow as
a function of dielectric coating thickness has been derived. The variation of this
ratio, at-3.45 cms. wavelengths, for a dielectric constant of 2.0, shows that the
shrinkage of the radial field occurs rapidly up to a coating thickness of 0.01em. and
then slowly up to 0.03 cm. But beyond a cotaing thickness of 0.03 cm. the shrinkage
of the field is not appreciable.

INTRODUCTION

The work described here is in continuation of the work reported earlier” %
The object of the paper is to present graphically theoretical results for a bare
copper surface wave line for variations of

(i) the parameters | 5| and |£] involved in the power flow equation, with
the wavelength of excitation Ay, for different values of the radius a of the line;

(ii) the radial spread of the electric field with respect to the percentages
of power flow p, for various values of wire radius ranging from 1.57 x 1072 cm.
t0 35 x 1072 em. ;

(iii) the radius of the area Poer around the wire within which 50%, 75%
and 90% of the power is propagated, as a function of wavelength A, for different
values of a; '

(iv) the attenuation constant a, for different values of ¢ at A =4.0cm,
3.2 em. and 1.25cm.; and

(v) the axial propagation constant # for different values of a at

A=4.0cm,; ,
. 7
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The purpose of the investigation s also to present results for a dielectric-
coated copper wire surface wave line for the varistion of

(i) the function F(y'p) involved in the power flow equation as a function
of its argument, and

(u) the radius g,4 for different constant power contours, as a function of
the dle[ectrxc constant ¢, dielectric coating thickness (' —«) and wire radius
a, where &' is the radius of the dielectric-codted wire.

The object is also to derive expressions for the ratio p,ufp,. When the
argument of the function F(y'p) is small and large. The ratio indicates
directly the degree and nature of the radial féld shrinkage as affected by the
thickness of the dielectric-coating.

SOMMERFELD SURFACE WaAvVE LiNg

(i) Field Components: The field components of the Sommerfeld wave in
cylindrical co-ordirateés are as follows? :

E = d(h2)2 (5r)- exp Ljeit — h]
E, = A-Z,(yr)-exp[ jist — hz] f1]
Hy = j4-(R[wuoy)-Zs (yr)- exp [wt ~ hz)

where, Z, and Z; reéptesent cylinder functions involving the first and second
kind Bessel functions ;

y is the radial propagation constdnt,

h is the axial propdgation constatit,

A is the excitatiofi cordstant,
and y?=k?+ 1.

(ii) Radial Fiéld Sprésd: By usidg edudtion [1] with ptopet boundary
conditions, the followirg felation® is obtained :

Elnfan [2]

which reduces to the following relation, which delerininés the radial field

spread :
2=1_1_2 (| €))% xp{ <6+ﬂ>} [3]

where vy, =value of y in the region outside the wi’re,

Ea(-j0.89y3aP = | €] exp(j0) (3]
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K? i3 i .
7 =2-(0.89)* k—la exp (Ll‘_“’) = |n]exp (j—zf—) [36]

o=~ (1) b

k = the free space wave number
and ky = (wuod o) exp (~jn/4), where é, represents the conductivity of the line.

For a bare copper wire line immersed in air,

[9]=1.70 x 107% x a 2,2 [34]

Figure I shows the variation of [4!and|£| with A, for values of a=0.05,
0.10, 0.15, 0.20 and 0.25 cm. Figure II shows the variation of I f] with respect
to || for different values of m, where m represents the decade value of
In|. Figure II represents the variation of |n| with respect to 6. A plot of
the radial decay factor yo{ = 4 +jB) in the complex plane is shown in Figure IV,
where A is the attenuation constant and B, the phase constant in the radial
direction. The circles on the graph show the value of the radius of the wire
for which the real and imaginary parts of y, have been calculated.

(iii) Percentage of Power Flow: By using Poynting vector and the proper
field components {equation [1]), Goubau* has derived the following relation for
the percentage of powar flow within a certain radial distance p from the surface
wave line :

Ny oy 2n(pla) [4

N= 22}
where N, = power contained in the area beyond the radial distance p,

. = Re [zﬁJr E, Hf-d:]

P

N = total power contained within the area around the surface wave line,

= Re [ZTYJ rkE, H:-dr]

a

The above equation [4] has been derived by assuming |yp [<C0.3 and hence
using the small argument representation for the Hankel functions appearing in
the expressions for N, and N. An accurate calculation of NP/N requires
evaluation of the Hankel functions of complex argument. However, the small
argument approximations are satisfied on the ground, that [ypl << 0.3 covers
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an area round the wire which contains the major portion of the energy
transmitted along the surface wave line, It has also been assumed in the
above derivation that

§cot B m/4,

The values of | »| and | £] are obtained, for values of the wire radii ranging
from 35 x 1072 to 1.57 x 10" cm., from equation [3@] and Figure Il respectively,
at 3.2cm. wavelength., Substituting this in equation [4], the values of radial
distance p as a function of the percentage of power flow [100(N,/N)], for
different wire radii are obtained. The results are plotted in Figures V and VI.
The radius of the area within which 50%, 75% and 90 % of the power is
propagated is obtained in a similar way, for wavelengths ranging from 1.0 cm.
to 4.0 cms, and for different wire radii and the results are plotted in Figure VII.
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(iv) Attenuation Conmstant: The axial propagation constant of the
Sommerfeld surface wave is determined from the relation
P y% -k
which yields A== jk ~jy§/2/c, neglecting higher order terms other than those of
second order involving y3/k%, as v3/K* < < 1. .
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Radiat decay factor 7. plotted in the complex plane.
The circles on the graph show the value of the radius of the wire in cms. Ao=3.20 cmus.
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But z=a +fB. Hence the attenuation constant o and the phase constant B
are given by the following expressions:
_0.63'§]smé? _ — 871l sind
kd at

dbfmetre {6}

where Aq and a are in cms,
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0.63 ] £|cos @ -1
= |k 4 ——————"| cm 7
B [ P 7]
The phase velocity is given by the following expression :
& (]
vy = C{l — O—g—{l;[:—&ﬂ} metres/sec. [8]
k* a

It may be mentioned that, [¢| being very small, the second term in
equation [8] contributes very little to the magnitude of v,. Hence, the phase
velocity of the wave on the Sommerfeld line differs very little from the free space
velocity C.  This is the reason why a large field spread is associated with the
Sommerfeld line.  On the other hand, a small valve of | & | makes « very small.
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Frc. IX
Axial propagation constant % plotted in the complex plane. The circles
on the graph represent different wire radii.
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For instance, for a wire of radius 0.13 cm., excited at 3.2 cms. wavelength,
o (Sommerfeld line) = 0.04 db/metre, which is almost balf of the value for a
X-band rectangular waveguide supporting the dominant mode. The attenuation
constants for wires of different radii have been calculated for different wave-
lengths and some of the results are shown in Figure VIII. Figure IX shows a
plot of & in the complex plane for values of a varying from 1.57 x 1072 cm. to
35 % 1072 cm., at Ag=3.2 cms. The circles on the graph represents the values
of a for which the real and imaginary parts of 4 have been calculated.

HarMS-GOUBAU SURFACE WAVE LiNg
(i) Field Components: The field components of the Harms-Goubau wave
in cylindrical co-ordinates are
E, = A(hly). Zi (yr) exp. (joot — hz)
Er= A2 (yr) exp. (jor —hz) [
Hy = A (K[wuoy) Z, (yr) exp. (ot — h2).
where, the cylinder functions Z; and Z; are given by the following relations :
Zo (yr) = S (yr) + b Mo (7r)
Zy (yr) = I (yr) + b Ni (yr)

and the value of b as obtained from the boundary conditions on the surface
wave line is
b — Jo (‘/da)
Nolyqa)

where y, refers to the value of v inside the dielectric layer.

(ii) Radial Field Spread: The radial field spread in a Sommerfeld line is
teduced by coating the line with a dielectric®*. By using the field components
(equation in 9), imposing proper boundary conditions and matching the transverse
wave impedance (E./H,) at the surface (r=a') of the dielectric coated wire,
the following equation for the radial field spread in a Harms-Goubau line is

obtained : 2
I3 r ]
[y'Z 1n0.895'a’ _L[ni] - (} - 1)(7;71) ne-. [10]
€ a € Ao a

where y' represents the radial decay factor of the surface wave, e represents the
dielectric constant of the coating material and @’ is the radius of the dielectric
coated wire. The above equation [10] has been derived on the assumption that
(a —a) <<<1; 1ie., the thickness of the dielectric coating is very small com~
pared to the wire radius a.
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(iti) Percentage of Power Flow: The power transmitted outside a cylinder
of radius p round the dielectric coated wire is*

° [ 112 h.k r
Ap=2rAd (—) = F(y'p) [11]
Mo Y
where F(y'p)
= (' o L= 2y o) s HYG/ Y- HY (5 0) = [H Py )P = [HPG o)} 12]

If y'p<<0.1, by using small argument approximations for the Hankel functions
HY and H< the above expression [12] is simplified to

F(y'p)=(8/x) [ ~ 1n(0.895'p) — 0.5]. [13]
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If 'p > > 0.1, the following asymptotic representation of the Hankel functions
can be used in equation [12] :

HY (3y'p) = ¥/ (2fjmy' p)-exp. [~ (v'p +j=/4)]

HY(G7'0) = (2fjmy’p)exp. [ - (7'p +37/4)] [14]
Hence equation [12] reduces to

F(y'p) = (4/x)-exp. (=29 p) for y’ p>> 0.1, [15]

The total power transmitted along the line, obtained by putting p =4 in
equation [}, is
2
N,,:af-zﬁA.A".(fﬂ) (”k) F(y'd) [16]
Mo Y

So, the circle of radius p,,; within which a certain percentage p of the total
power of the surface wave travels can be found from the following expression

E(y' ppa)
pzl—- F(ylal) [17]

which is obtained from equations [11] and [16]. The nature of variation of
the function F(y' p) with respect to (y'p) as given by the equation [12] is
shown graphically in Figure X. The variation of F(y'p) with respect to (3 p)
as given by the small argument approximation {equation [13]) is shown in Fig.
XI. The variation of the radius of the area (p,s) around the wire within which
90 per cent of the power is propagated as a function of the dielectric constant
of the coating for different values of wire radii as obtained from equation [17]
is shown in Figure XII. The variation of p,; for 90 per cent, 75 per cent and
50 per cent power flow with thickness of dielectric coating, for ¢=2.0 and
e=4.0 and a=02cm is shown in Figure XII. Figure XIV is given for
comparison of p, for the same percentages of power flow and ~2 0 and
€ = 4.0, but with a much thinner wire of radius a = 0. 05 cm.

Rap1us OF CONSTANT PERCENTAGE OF POWER CONTOUR

A comparison of the two lines as regards the field spread can be made
from the ratio of the radius of the area around the line containing a certain
percentage of power. The above discussion gives no doubt a comparative
value of the field shrinkage achieved by dielectric coating. It is however
considered worthwhile to derive an expression for the ratio of the two radii for
a constant percentage of power flow, which will enable a direct evaluation of
the field shrinkage as a function of the dielectric coating.
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(i) Sommerfeld Line: For a bare copper wire line, the radius p,, within
which a certain percentage p of the total power is contained is given from
equation [4] as

N, 21n {ppefa)
PN T T hGalE) R
which yields poe=af[(2.2)" (1€])"7] (19}

where |£] is found from [3a] and [3¢] as follows:
¢l exp. {089 + I 320 j3nfs — 3] £ (8w DLV (4 5) W=} ]

where  r=+(x*+ %) [204]
x={(16-9%%) + 64 (In0.89 + Invy, a)

+ 64{(1n0.89)* 4 (Iny, a)* + 2In 0.89 In y, a} [208]

and y=487% (11 0.89 + In v,a) + 40x. [20¢]

So, p,c obtained from equations [19] and [20] are given by the following relation
pre=a+(2.2)"* {exp {In0.89 y;a ~j3n[8 —1
(VY [VE+x)—iv -0} [2]

(i) Harms-Goubau Line: In the case of a dislectric coated wire, the
radius within which a certain percentage p of the total power is contained is
given by the relation [17].

Case I: v’ 4’ << 0.1; Equation [17] reduces to

F(y' 1n0.894" .
1-pEG poa) _1n0.89y ppy+0.5 [22)
F(y'a') n0.8y a +0.5

which yields poa=d [[exp (1n0.89 ' a'). exp (p/2)] C [

Case II': y'a'>>0.1

1—p= o202y ) [24]
exp. (Z'y’pl,d)
which yields pra=a — In(1-p) [23]

24
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(ili) Comparison of the Sommerfeld and Harms-Goubau Line: The extent
of the field reduction by coating the Sommerfeld line with a dielectric cap be
judged from the following ratio of the radii of constant power flow ;

Case I: y'd' <01
Podl pae = (a'[20[(2.2)"2(¥ )7"?[a) \ [26]
where
X =exp (/n0.89 v' a')? exp (p/2)
Y = exp {n0.89 y,a —j3n/8 — L £ (1/8V2) [V (r +x) — ¥/ (r - x)]}

Case IT: v'a' >>0.1

poa_ (2.2)"*Cexp {110.89y5a —j3m/8 — 3 + (1/8VDV (r +x) - V(r — )]}
Prc ala' —in(1-~p)l27]

[

Figure XV shows a plot of p,fp, for ¢ =20, a=0.10cm, Ao=3.45cm,
with respect to the thickness of the dielectric coating for different values of p
varying from 10 per cent to 90 per cent. It is observed that the radius of the
area containing 25 per cent to 90 per cent of the power flow decreases rapidly
up to a dielectric coating thickness of 0.01cm. and comparatively slowly till
(a' —~a) =0.25cm. Thereafter, the rate of decrease is not significant. In the
case of p=10 per cent curve, the rate of decrease is not as fast as the other
curves and the rising nature of the curve with increasing {4’ — a) afier 0.008 cm.
still remains to be explained.
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