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This paper presents a simple graphical method of determining the-critical 
clearing angle making use of the fundamental stability theorems of Lagrange and 
Liapounoff for a conservative system. A graphical construcfion is also given to 
find the data for the swing curve without numerical computation. The methods 
proposed are illustrated by two typical examples and the results obtained are 
compared with those of the existing methods. 

The  differential equation characterising the dynamic behaviour of a 
synchronous machine, known as the swing equation, is 3.' 

under the usual assumptions of constant input, n o  damping and constant 
voltage behind transient reactance, where , 

M -  inertia constant 

Pi = shaft power input corrected for rotational losses 

P, - P, sin 8 - electrical power output corrected for electrical losses 

P, = amplitude of t h e  power anglecurve 

S - rotor angle with respect to  a synchronously rotating reference. 
9 1 
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By introducing a new variable, modified time T defined by the equation 

T- r 2 / [ ( ~ / 1 8 0 ) ( & / ~ ) ]  

equation 1 reduces to  

d2S/d7" - P-  sin S 

where 8  is in radians and P-SIP,,,. I n  the following analysis, the swing 
equation will be made use of in t he  form of equation 2 only. 

Let the swing equation during fault and that after the fault is cleared be 
respectively 

d 2 8 / d ~ :  - P, - sin F 131 

where TI = r d[(n / 180)(~,, / M ) ] ,  TI = t 1/[h / 180) (P,, / M ) ] ,  PI - E lPm1 and 
P2- E~P",,, P,,,, and P,, being respectively the  amplitudes of the power angle 
curve during the  fault and after clearing. The post fault swing equation 4 
describes the motions of an autonomous conservative system with a nonlinear 
restoring force ~ ( 6 )  - s in6 - P2 Setting d ~ / d ~ ~  - w,,  equation 4 becomes 

with the initial conditions, S - So, wl = ojl0 a t  T2 = 0. Separating variables and 
integrating, equation 5 becomes 

3 

where E ir the total energy of the syarem. The quantity ~ ( 8 )  - / ~ ( 6 )  6 6  re- 

presents the work done by ~ ( 6 )  and so it is the potential energy. w:/2 represents 
the kinetic energy. In  other words, equation 6 means : kinetic energy + Potential 
energy -constant, thus expressing the law of conservation of energy. For a 
conservative system there are two fundamental stability theorems2 : the theorem 
of Lagrange which states. " If the potential energy is a minimum a t  the state of 
equilibrium, the equilibrium is stable", and the converse theorem of Liapounoff, 
"If the potential energy is not a minimum at the state of equilibrium, then the 
equilibrium is unstable ". For 0 < S < n, the potential energy v(S) is a 
minimum at S - sin-' pz and a maximum a t  8 - .rr -sin-' p2. The first equili- 
brium point of equation 5 is located at 6 - sin-' P2 and the second equilibrium 
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point at 6 = n -sin-'&. Hence by virtue of the theorems stated above, the first 
equlibrium point is a stable one known as a vortex and the second an unstable 
one known as a saddle. Solving equation 6 for wl we get 

In the (6,wl) plane, called the phase plane, equation 7 specifies a definite phase 
trajectory for a definite value of the total energy E. For E= V,,,(S), 
equation 7 describes the particular phase trajectory, known as the separatrix, 
passing through the unstable equilibrium point. The critical clearing point is 
located on the separatrix, its co-ordinates being fixed by initial conditions. 
The initial conditions are given by the velocity versus displacement curve of the 
sustained fault swing equation with proper adjustment of time scale. Setting 
w - dS/dTI in equation 3 and integrating there results 

where 6 (0) is the rotor angle at the instant of fault inception. The locus of 
initial conditions is given by 

where K-  d T , / ~ T ~ .  The critical clearing angle can be obtained by superposing 
the w,,, Vs6 curve on the phase portrait for the post fault swing equation, the 
point of its intersection with the separatrix giving the critical clearing angle. 
The following alternative procedure results in a simple and elegant graphical 
construction. The equation of the separatrix curve is 

Equating (9) and (10) a transcendental equation of the type f (6 )  = A6 + B +cos 8 
= O  results. The solution of this equation can be effected graphically by 

plotting the straight line ( - A 8 - B )  and the cos 6 curve, the intersection 
between the two giving the critical clearing angle 8,. A refined value 8,, of 6, 
can be obtained by means of the Newton-Raphson formula 

To summarise, the procedure for finding the critical clearing angle by the 
methods discussed above involves the following steps. 
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Method I 
(a) The separatrix curvegiven by equation 10 is sketched in the (6, w , )  plane. 

(6) The locus of initial conditions given by equation 9 is also drawn on 
the same graph sheet. The abscissa of the intersection point between the two 
curves gives the critical clearing angle. 

Method 2 

( a )  Equating ( 9 )  and (10) a transcendental equation of the form 
A; + B + cos 6 r; 0 is found. If the approximate solution of this equation found 
graphically is S,, a better approximation a,,, can be obtained by using equation I I. 

Time corresponding to the critical cleaaring angle. Let the ru Vs S curve 
given by (8) of the sustained fault swing equation 3 be drawn. The increment 
in T, needed to traverse the  increment AS isL5 

where w,, - ( w ,  + u2)/2. w1 and w2 being the values of w a t  the beginning and 
and at the end of the  increment AS. If ATl is small, i t  is nearly true that 

w,, - w (0) + A w/2 [I31 

where w ( 0 )  is the value of w at the beginning of the increment A TI and A w  
is the change in w during this increment. A combination of the equations 12 
and 13 gives 

A w -  ( ~ / A T , ) A ~ - ~ u ( o ) .  [14] 

'AXES FOR AS, Am 

FIG. I 
Graphical Construction for finding time 
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If a fixed value of A TI is chosen, equation 14 represents a straight line of slope 
 AT,) and A w  intercept of-2w(0) where A w  and A 6  are measured 
from o (0) and 6 (0) existing a t  the beginning of the  increment. The intersection 
of this line with the w Vs 6 curve locates the point satisfying simultaneously 
the original differential equation 3 and also equatiou 14. The process of 
finding time can be mechanized as shown in Fig. I. The point [8(0), w(O)] a t  
TI - TI (0) is first located. A protractor is then pz t  at the point [8(0), - w(0)] 
with its horizontal and vertical lines aligned with the coordinate axes. The 
intersection between the w Vs 6 curve and the line with the slope ( 2 1 8  3,) 
locates the point T,(o) + A TI. The process can be repeated locating rather 
quickly a series of points equally spaced in time. The methods presented 
above will now be illustrated by two examples. 

Example I. 

A 25 MVA, 60 cycle water wheel generator delivers 20 MW over a double 
circuit transmission line to a large metropolitan system which may be regarded 
as an  infinite bus. A 3-phase fault occurs a t  the middle of one of the trans- 
mission lines which is subsequently cleared. Find the critical clearing angle and 
t i n ~ e . ~  

DATA : 
Initial angle, 8(0) = 18.1' 

Input power, Pi = 0.8 P.u. 

Inertial constant, M =  2.56 x 1 0 ' ~ p u  

Prefault power angle equation - 2.58 sin 6 

Power angle equation during fault - 0.936 sin 8 

Post fault power angle equation = 2 06 sin S 

TI = St, T2- 11.4t, K- 0.702 

Method I 

T h e  potential energy ~ ( 6 )  for the post fault swing equation is 

v (6) = (sin S -0.388) d 6  - 1 -cos 6 -0.388 6. j 
The maximum value of ~ ( 6 ) ,  V,,(6) - 0.86 and it occurs at 6 - 157.2'. The 
equation for the separatrix curve is 

a, c. J{z  [0.86 - ~(6)]:. 
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E =  l 

FIG. I1 
Phase Trajectories for the post fault swing equation of example 
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Fn;. III 
Finding Critical Clearing Angle 
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The locus of initial conditions is given by 

wlo - 0.702 OJ 

where w = d(1.71 5 + 2  cos S - 2.44). [IS] 

The intersection of the separatrix curve and the locus of initial conditions occurs 
a t  Fj - 138', which i c  the critical clearing angle. The details of the procedure 
are shown in Fig. 2. 

Method 2 

Equating the  expressions for w ,  a?d wlo we get 

0.063 6 - 0.905 - cos S. 

The solution of this equation obtained graphically in Fig. I11 is 8, = 138". 
A better value S,, is obtained using equation 11. 

S,, - 2.41 +0.01/0.7321 - 2.4237 radians or 138.9'. 

This value of critical clearing angle compares favourably with 139' obtained by 
the equal area method. 

The graphical construction for finding time from the w VsS curve given 
by equation 15 is clearly illustrated in Fig. IV. The increment A T, is chosen 
as 0.4 sec. corresponding to  a value for At equal to 0.05 sec. Thus the angle 
to be used in the graphical construction is 

In using the graphical construction indicated in this paper either same 
scale is to be used on  both the 6 and w axes or ,  if the scales on the two axes 
are different, i ts effect on the angle tan-'(2/ATl) must be properly taken care 
of as follows : 

Let 1 unit of 6 be represented by 6, mnz 

Let 1 unit of w be represented by w ,  nzm 

Let AT, = h secs. 

Then theangle to beused in the graphicalcons~ruction is tan- '  [(2/h)(~,/w,)l. 
In Fig. IV the scales on both the axes are chosen equal. The times corresponding 
to  various angles are shown across the positive half of the w Vs 5 curve. The 
first point corresponding to 0.11 sec. (28') is located using the formula given by 
equation 12, for it  is very diflicul~ to locate intersection point between the line 
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Frc. l'i 
Time scale on the Vsa curve 

with the slope 5 and the initial portion of the 10 Vs6 curve. Thereafter 
graph~cal construction is used to  find time. By interpelat~on, the time 
correspond~ng to  the angle of 139' is found as 0.62 see, which is the critical 
clearing time. The critical clearing time ohtained by step-by-step m e t h o d ~ i " ~  
is 0.61 sec. The swing curves obtained by the two methods are shown in 
Fig. V. 

Example 2 
A generator supplies power through parallel high voltage transmission 

lines to  a large metropolitian system considered as a infinite bus. A 3-phase 
fault occurs on one of the transmission lines which is subsequently cleared. 
Find the critical clearing angle and time.4 

DATA : 
lni tial angle, 6 (0) - 35.2' 

Input power, Pi. - 1p.u 
Inertial constant, M - 2.78 x p.u 
Prefault power angle equation = 1.735 sin 6 
Power angle equation during fault - 0.42 sin 6 

Post fault power angle equation - 1.25sinS 

T, - 5 15 1, T? = 8.86 t ,  K = d  T,/dTz -0.582 
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FIG. V 
Swing Curve for Example 1 with Sustained Fault 

The potential energe V ( S )  for the  post fault swing equation is 

Y (8) - S - 0.8) d8 = l - cos 8 - 0.8 S. 

0 

The maximum value o f  v(S), v,,(s) = - 0.17 and i t  occurs S - 126.8'. The 
equation for the separatrix curve is  

w ,  - d{2[ -0 .17  - v ~ E ) ] ]  
and that for the locus OF initial conditions is 

wlo -0.582 w where w - d(4.76 6 + 2 cos S - 4 55) .  
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The intersection of the separatrix curve and the locus of initial conditions 
occurs a t  6 = 52', which is the critical clearing angle. The details of the 
procedure are shown in Fig. VI. 

Phase portrait for thepost fault swing Equation of Example 2 
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Method 2 

Equating the  expressions for wl and u11o we get 

cos 6 - 0.0075 6 + 0.604. 

The solution of this equation obtained graphically in Fig. 111 is 8, -50". A 
better value of 8, is obtained using equation 11 as 6,, = 52", which compares 
favourably with the value of 51.6" obtained by the equal area method. Using 
the  graphical construction illustrated clearly in the previous problem, the time 
corresponding to  t he  critical clearing angle of 52' is found as 0.11 sec. Step- 
by-step method I1 also gives 0.11 sec. 

DISCUSSION 

The method presented in this paper identifies the critical switching angle 
as a point on the separatrix curve, whicb separates the region of stable motions 
from that of unstable motions. I n  addition, the method described in the paper 
introduces the  analysis of the potential energy, stored in the generator rotor, 
as a tool in the determination of the critical switching angle. This interpreta- 
tion is made possible by the  fundamental stability theorems of Lagrange and 
Liapounoff for a conservative system. The fundamental difference between the 
topological method presented here and the conventional equal area method is 
that  the former is based on  the concept of energy, while the latter is based 
on the concept of power ; in the former, t he  critical clearing angle is obtained 
by equalising the maximum value of the potenlial energy with the total initial 
energy and in the latter by equalising the area representing acceleration power 
with that representing deceleration power. While, in the phase plane method, 
it is clearly shown that the various possible motions of the system take place 
along paths of constant energy, this is not placed in evidence in the equal area 
method. Nevertheless, the  two methods complement each other bringing out 
the important fact that the  stability of a nonlinear system, for a given type of 
excitation, is dependent on the initial conditions unlike a linear system which is 
either stable or unstable, the driving function and initial conditions having no 
effect on stability. 

The graphical construction given in this paper finds time increments by 
assuming a constant average velocity during a small angular increment As, 
while the point-by-point method 1 1 ~ , ~  finds the  incremental angles during a small 
time interval At, assuming the  velocity t o  be  constant at the value computed 
a t  the middle of At : the former method finds time increments from angular 
increments whereas the latter method finds angular increments from time 
increments. There is good agreement between the results obtained by the two 
methods eventhough they proceed on different lines. If an analytical solution 
is t o  be found for the swing equation, i t  is necessary first of all to approximate 
sin 6 by a polynomial i n  6. Reference 1 approximates sin 6 by a 8 + b s3 such 
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that the integral square error is a minimum. Minimization of the integral 
square error essentially means that emphasis is placed on the errors according 
to the square of the error magnitude. In other urords, the approximation 
resultingfrom the minimization of the integral square error attempts to cut down 
Iarge errors a t  the cost of many small errors. Other types of error criteria 
may be chosen, but their mathematical treatment becomes very difficult, if not 
impossible. Therefore, analytical solutions are of little value. 

The  authors believe that the cosine 6 curve method, based on the energy 
concept, for finding the critical clearing angle in conjunction with the step-by-step 
graphical metthod for finding time form a good combination for the solution of 
the transient stability problem. 
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