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The flow o f =  non-Newtonian fluid between two parallel iniinite plancs, sqparatcd 
by u distanced, is investigated in the two specific caqri: (i) on? plant hcld at rest and 
the other oscillating with a large frequency n, (ii)  bath thc plancs oscillating wi!h the 
same frequency n and the same angular arnpl~tudc p but in the opposite scnre. Tivo 
parameter family of solutions depending on the Kcynolds number R=(mf2 P ! + L ) ,  and the 
cross-5iscority pararnetcr S=lHnl~ and the visco-elastic parameter K=IPdp d?) arr 
oblained coirect to thc order of Q/n. The steady componenl OF the secondary Bow- is 
discussed for both sniall and large Reynolds numbers. The breaking of thertrady 
~oniponcnt uFthc sccarldary flow for critical values of So r  1: depending o n  R and then 
its reversal for higher valurs i. a characterzstic feature of the non-Newtonian Ouida. 
Finally a suggrst~un is made nhor~t somr expertmcms which can enable ihe rneunxcmcnt 
of the visco-elasticity or the cross-vircoslty of a fluid. 

Recently Rosenblat' has investigated the problem of flow of a Newtonian 
fluid between two parallel, infinite oscillating planes. He has pointed out the 
interesting fact that  the rotating planes behave like centrifugal pumps rhrowing 
the fluid near them away from the axis of rolation and this motion in torn 
induces a radial axial flow. In recent communications the present authors2.' 
have studied the  same ~ r o b l e m  respcctivcly for an electrically conducting 
Newtonian fluid in the presence of a uniform axial magnetic field and for a 
~ e i n e r - ~ i v l i n '  visco-inelastic fluid for which the constitutive equation is of  the 
following form 

T =  - P I +  O , A + Q ~ A ~ ,  [I.(] 

0, and @,, the coefficients of viscosity and cross-viscosity being assumed 
constant and A being as usr~al the rate of strain tensor : 

Au = u,,, + u,, <. tl.21 

i n  the present paper we consider the same problem for the Rivilin-Ericksen 
fluid for which the constitutive equatiorl is 

T -  - p I + @ A  - I - O ~ B + O ~ A ~ ~  El-31 

where Bo =af,  -1- a,, 1 t v ,,,. j v ' " , ~  -+ v,,>, 1 lrT; [! .4] 

a hcmg the  acceleration. 
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The fluid [] . I ]  is a particulnr case of this general fluid which takes account 
of visco-elast~city through the @!-term. The  main aim of the present discussion 
is t o  indicateanother interesting phenomenon, namely that  when the  magnitudes 
of the  Reynolds number R and the dimerisionless parameters S and K represen. 
ting the  eRects of cross-viscosity and visco-eklsticity respectively are suitably 
adjusted by altering the distance between the  planes and the  frequency of the 
oscillating planes, the radial-axial flow breaks down and then its sense is reversed. 
For  small values of S and K, the fluids behave like the  Newtonian fluid alld 
possess radial-axial flows similar t o  the  one  predicted by Rosenb!at. There exist 
critical values of S and K depending o n  the  Reynolds number Rabove  which the 
flow reverses in direction. In fact, for a prescribed value of S (or K) I< can 
always be found for which the flour field divides into sub-fields having distinct 
flow characteristics. For example, in the  case when only one  plane oscillates, 
there are two sub-fields. I n  the sub-field nearer t o  t h e  oscillating plane the 
fluid is drawn inwards and thrown out  a t  some height;  in the sub-field nearer 
the  stationary plane again the  flow is drawn inwards and thrown out  a t  the same 
hieght. In the case when both the planes a re  oscillating with the same frequency 
the flow field originally consists of two sub-fields symmetric about the plane 
y =0.5, in the scale o n  which the  distance between the  planes is 1. For a 
prescribed value ' of S (or K )  we' can determine a value of R for which each of 
t h e  sub-fields are further broken into two domains. In these domains the fluid 
is drawn inwards near t h e  oscillating planes and also the planey - 0.5 and thrown 
out  a t  some height in between them. 

2.  EQUATIONS OF T H E  PRORLEM 

W e  shall work through the cylindrical coordinates (;, B,z) with the  z-axis 
being taken along the axis of vibration. We shall render the physical quantities 
dimensionless according t o  the following scheme : 

Physical Quantity Standard Magnitude 
Dimensionless 

quantity 

1. Linear distance ;,z d,  distance between t h e  planes r, Y 

2. Time, T 11% reciprocal of the frequency t 
of vibration. 

3. Radial and axial velocity dPz/n, SZ being t h e  angular u, W 
components U, W amplitude of the  vibration of 

a plane. 

4. Azimuthal component dQ 
of velocity, V 
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Setting 

p = p ~ ' Q ' P ,  0, = n d Z p  R-', Q2 - p d2K,  - p d ' ~ ,  I?. 11 
the equations of t h e  problem reduce to the following forms: 

Continuity equation : 

- I .-- " r u ) t ~ = 0 .  
r  ar BY I 2 . 4  

Momentum equations : 

V, + ( P / n ) 2  [u v, 4- w I,, + u vlr] 

- (I/R)[A Y - v/r2] + KKz t (S,)/u)Z [KK;  + S 

and 

w, + ( ~ / n ) ~  [tt w, + IV w , ]  

= -P,+(I /R)  A ~ + [ K K , + S S , ] + ( S Z / ~ ) ~ [ K K ; + S S ; ] ,  

where 

+ 2  - + - (1 l r )  (u v, - v u,) - ( 2 / r )  ( v  us - u v&,, i,f : j  
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where a suffix f denotes partial differentiation with respect to 5 and 

We choose the following expressions for the velocity and pressure so that 
the continuity equation is auton~atically satisfied and the momentum equations 
are reduced to  the forms in which the radial dislarlce r does not occur : 

and 
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Even with this assumption the resultant equations are too ~0mplic:rted to  
yield t o  an analytical treatment and hence following Rosenblnt Doc. cit] we 
assome that the frequency of the vibration of the planes is so hige tliat we cnn 
neglect terms of the order of (Qln)'. With this assumption the eqnatioss 
reduce to  

and > v = 4 ( 2 ~ + ~ ) ~ y ~ , , e x p . ( 2 i t ) .  [2.21] 

I t  is clear from [2.19] that cross-viscosity does not affect the azimuthal 
velocity to  the present approximation. 

Boundary Condilroiw :-We have the following boundary conditions i n  terms 
of the physical variables: 

V =  0, when the upper plane is fixed [case (i)] 

= R Z ( Q ; ~ - ' "  3, when the upper plane is vibrating in the opposite 
sense [Case (ii)]. 

In terms of our new variables these conditions reduce to : 

a t  y = 0, F - F , - 0 ,  G = 1  

and a t  y =  I ,  F=F,-0,  

and G = 0 (case i) G - - I (case ii). 

3. SOLWON OF THE EQUATIONS 

The solution of [2.19] for a visco-elastic fluid i s  given by 

s h f ( 1 - Y )  G ( y )  = (case i )  
sh 5 

- - s h E ( l - y ) - s h ~ ~  (Case ii) 
sh 5 
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For a visco-inelastic Reiner-Rivlin fluid the azimuthal velocity G(J, )  is the same 
as for the Newtonian fluid, namely that given by [3.1] and [3 .2]  with 

f 2 = ~ i .  L3.41 

Consequently, it is advisableat this stage t o  separate the considerations of visco- 
inelastic and visco-elastic fluids. From the form of G (Y) it is clear that we 
must take 

~ ( y ,  t )  = f ( y )  + h (y )  exp. (2 i t )  

(a) Visco-fi~elasticfluRuids :-In the case (i) the  transverse component of the 
velocity and the function f (Y) and h (y) determining the radial-axial flow are: 

v ==r[ch hl - cos A,]-' [ j cos  ( + A l  J) ch ($ hl (2 - y) ) 

-ch(+hI  y) cos(-;-h1(2-y)): cos r + {sin(; X l  y )sh  ($h1(2-y) )  

-sin (2- h1 (2 - y)) sh (2 A ]  y) 1 sin i], L3.61 
and 

f (y) -+ [chhl - cos XI.]-' [ { ( ~ / A I )  (sh (h (1 -?)I +sin 01 (1 - Y ) ) )  
+ y  (1 -y)' (ch A t  I- cos hl) - ( l lh l )  (1 - 3.v2 + 2y3) (sh h l  I- sinh,) 

- 2 y V l - y ) )  + c ~ ~ h 1 ) { ( 2 ? 3 - 3 y 2 + 1 ) ( s h h l - s i n X 1 )  

- {sh (hl (I - y)) - sin (.A1 (1 - y))))] - ( - 2 - ~ h ? )  y (I - Y ) ~ ,  [3.7] 

with h(y) as given in Ref. 3 [equation 2.301, 

and X : = ~ R .  13.81 

T h e  stream function for the  secondary flow is given by 

$ -rVr(.13. l3.91 

I n  the case (ii) t h e  corresponding solutions are : 

Y - I [ch A, - cos ~ ~ 1 - l  ({ch [ti1 (2 - Y)] cos ( + A ,  ?) 

- ch (;-Aly) cos[i-XI (2 - y ) ]  + c h  [i X I  (1 - y ) ]  cos [-$A, ( I  -t y)]  

- ch If h,(l  + y ) ]  cos[$ hl ( I  - v)]]cos t + {s11[4 h1(2 - y)]sin $(A, ?) 

- sh (4 hI y) sin [%XI (2 - . vJ ]  + sh [$A, (1 - y)] sin [-i- A, (1 -t Y)] 

- sh [*Al (1 + y)] sin [g hl (1 - y)]] sin f), [3.10] 
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and 

with h ( y )  as given in Ref. 3 [equation 3-11]. 

Here again A1 i s  given hy [3.8] and the stream function by [3.9] with f ( ~ )  
as defined in [%I 11. 

( b )  Visco-elastic,fluids :-We note below the corresponding solutions for a 
visco-elastic fluid in the iwo cases. 

Case (i) 

v - r [ch (h2 cos ,u) - cos (Al s i n  ,u)]-'<{ch (+A2 (2 - y)cos ,u) x 

cos (2- h2 y sin p) - ch (+A2 y sin p) cos [+ X2 (2 -y) sin p]) cost 

- jsh (4 Az ycos ,u) sin [t h2 (2 - Y )  sin ,u] 

- sh  [$h2(2- y)cos,u]sin ( $ ~ ~ ~ s i n p ) )  sin(), f3.121 

and 

h (y) = ( l / m )  [ A  e'"' - ~ e - ~ " ]  + L, ?/(2 I) + M 

A:Ke2"+l W s h [ h z ( l - y ) e " ]  I ~ , ~ ~ I  - 
4 I [ch (A2e1') - I] 41 A? e"[ch (A2 e") - I] ' 
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where A, B, L, and M are given by the equations : 

2A [ ch (A2 r") - I ]  = - ( ~ , / 2 i  + n M )  [ch (A2 e") - l ]  

2 3  [ch (A2 eir) - I ]  = ( - &/2i + mM) [ch (A2 e") - 11 

[ch (A2 e i U )  - I]  [2 - 2 ch m + m sh m] L,  

m W s h m  
x [l + ch (A2erp) ] - - . sh (A2 dP),  

2 h; e" [3.17] 

and 

[ c h ( A z e i " ) - 1 ] [ 2 - 2 c h m + m s h m ] m ~ i  

- ( ~ / 4 ) c h ( A ~ e " )  [shm-mchm] - ( ~ / 4 )  ( shm-m)  

with 

and 

Case (ii) 

Y = r (ch [A2 cos p] - cos [Az sin PI)-' ({ch [$A, (2 - y )  cos p] x 

x cos [+A,, y  sin p] - ch [+Az y  cos p]  cos [+A2 (2 - y )  sin p] 

- ch [+AZ (1 + y )  cos p] cos [*A2 (1 - y )  sin p] + ch [+A2 (1 - Y )  cos PI x 

x cos [+Az (1 + y )  sin p]) cos t - {sh [$.A2 y cos p)  sin[@2 ( 2  - y) sin p] 

- sh [$A2 (2 - y )  cos p] sin [+A2 y  sin p(II - sh [+A2 (I - Y )  cos p] x 

x sin[$h2(l + y )  sinp] -sh[&(l + y )  cosp] x 

x sin[& (1 - y )  sinp)) sin t ), [3.20] 



ch  (Az e"') - 1 -- 
ch (f A* eiv)  + 1 

( Y )  

] i 

+ M -  [1~ / (2 iA~e ' " ) ] . sh  [-i-A2(1 - 2 ~ )  r'#], [3.22] 

where A, B,L, and M a r e  given by the  following relations : 

L, ch  (& e") - l 2 * C h ( X Z e " )  -I _mM+ - 
ch(+A2ei") + 1 -( 2 i ch(+ A2e") t 1 

m W  A: Ke2" -t 1 --CI~(--  W ! h 2 e i y )  + - sh [$ Al e"). 13.231 
2 i 2 i  - 2 I A2e'? 

- K c h  (+ ;I2 P) - - '" 
ski (+Ale") 

2 i 2 i A2 rSii 

+(1/2i )  (A:Ke2" +I!, 

c h  (AZ ei') - 1 ---------- [2 - 2 cli m + m sh nt] ~ ! / 2  
ch (3 Az el") + 1 

- ~ ( A j ; ~ e " ' + l ) ( 2 - 2 c h r n + m s h n z )  

- Wch ({- h2ei') (1 - ch m) 7 [ m  ?V/(A>ei')] sh msh (+A::ei"), [3.25] 
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and 

=+Wm (1 - c h n ~ )  ( c ~ Q A ~ c " )  + [rn2~/(2X2eiU)]sh msh (f h2er'), [3 261 

with the same definitions for h2, w,  m and W a s  in [3.19]. 

In both these cases the stream function is given by [3.9] with the proper f (y). 
We may note that in deriving the above solutions we have made no assumptions 
about the magnitudes of R aud S (or K )  and they are, therefore, exact except 
that we have neglected the terms of the order of (52/?1)~.  

4. Drscussro~ OF THE RESULTS 

In the case when R is small, we give below the simplified expressiom for 
the velocity components which we need for discussing the secondary flows : 
We have checked that the values given by these formulae differ insignificantly 
from the exact values for R - 5 or so. 

(a) Visco-inelastic fluids :- 

Case (i) 

~ ~ r ( l - y ) [ { l - ( ~ ~ / 3 6 0 ) y ( 8 + 8 y - l 2 ~ ~ + 3 y ~ ) ~ c o s t  

+ ( ~ 1 6 )  y (2 - y )  sin t 1 + 0 (R4), 

and 

f (y)-Ry2(1 -Y)Z[(l/120)(3-y)-(8/10!) ~ ' ( 2 1  + 133y- 175yZ 

+ 1 0 5 ~ ~ - 3 5 ~ ~ + 5 ~ ~ ) - ( 6 / 7 1 ) ~ ~ ~ ( l 0 -  1 0 ~ + 5 ~ ' - ~ ~ ) ]  

+ 0 (R~). 

Case (ii) 

~ = r ( l - 2 y ) [ { l  - - ( ~ ~ / 3 6 0 ) y ( l - y ) ( 1  + 3 y - 3 3 ) )  cost 

+ (116) R y (1 - y) sit, I] + 0 (R4), L4.31 

and 

f ( y )  - (1160) R yZ( l  - y)' (1 - 2 y) 41 - [R2/(71.3)] (3 i- 20 y - 40 y2 

+ 40 y3 -- 2oy4) - (1128) R's(~  - 4 y + 4 y2)] + 0 (R5). [4.41 
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(6)  Visco-elastic fluids :- 

Case ( i )  

v = r ( l  - y )  [{l - ( ~ ~ / 3 6 0 ) y ( 2 - y ) ( 4 + 6 y - 3 y ~ + 6 0 ~ j } c o s f  

+ ( ~ 1 6 )  y(2 - y) {l  - (1190) R2 - (1130) R2K(30K+ 16 - 6 y  .t 31'3; sin I] 

+ 0 (R4), b.51 

and r 

Case (ii) 

~ = r ( 1 - 2 ~ ) [ { l - ( ~ ~ / 3 6 0 ) y ( l - y ) ( 1 + 3 y - 3 y ~ + 6 0 K ) ] c o s t  

+(R/6) Y ( 1  -y){l + R2/90 + (R2K/30)(19 - 3 y  + 3 y Z - 3 0 ~ ) ] s i n f ]  

+ 0 (R4), b.71 

and 

(0)  Visco-inelasticfluids-For the visco-inelastic fluid the transversevelocity 
is the same as for the Newtonian fluids. The graphs for Ivl have been drawn 
by ~osenblat ' .  The typical streamlines for the steady part of the secondary 
motion and the steady radial volocity have been plotted in Ref. 3. These 
graps show that for small valuesof S, theflow resembles that for the Newtonian 
fluids, but when S is large the sense of the flow is reversed. We haveexamined 
the flow characteristics for the intermediate values of S in the present paper. 

From [4.2], we find that the axial velocity satisfying the no  slip conditions 
a t  the planes y = 0 and y = 1, vanishes at some height y - yo. 0 <yo < 1 
provided R and S are chosen according to the following relation: 

The dashed lines is Fig. I represent the relation between R and Sfor  yo = 0.1, 0.5 
and 0 9. We have retained only those parts of the curve for which both R and S 
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are small in view of our approximation. For large values of R we have to 
consider the exact solution [3.7]. Fig. I1 Shows that for R - SO, the reversal 
the flow takes place between S- 0 and S- 0.1. TO examine what happens 
a t  the critical values of S and R, we have taken a typical pair of values of 
R and S, R - 5, S-0.12 and drawn the typical streamline $ - 0.005 in Fig. 111, 
with the help of the exact formula f3.71. We find that the flow breaks at 
y@0.38.  The fluid is drawn inwards near the planes more o r  less parallel to 
them at large distances from the axis and thrown away approximately a t  some 
height y -0.38. Complete reversal of the flow takes place for S- 0.15 as 
shown in Fig. 111. -@ 

- S ( O T ) O  

FIG. I 

The relation between R and K(or S) for which the breaking of now takes place at Ysi 'o ; 
the value of .m is indicated on each curve 

In the case (ii), when both the planes are vibrating the dot-dash curves in 
Fig. I, represent the relation between R and S for which the flow breaks at 
heights yo -0.1 and 0.4, which are drawn with the  help of the following 
equation obtained from [4.4] : 
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: O r  

FIG. I1 
One disc oscillating: For R-50 from the exact expressions 

5 - 0 1 2  ----------- 
5~012, 

_,--.*-- 

0 I 3 L 5 6 
----'.L 

FIG. 111 
A typical streamhe of the steady part of the flow for small Kwnolds number 5. 

caIculatcd from the exact CXprcsslons 
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FIG. IV 
Two discs oscillating: R-98 ; from the exact expression 

The flow between y = 0.5 and y - 1.0 can be inferred from the flow between 
y = 0 and y = 0.5 from the considerations of symmetry. The Fig. IV gives the 
typical streamlines for R = 98 and S = 0 and S - 0.1 which are drawn with the 
help of the exact solution [3.11]. From the figure it is clear that the reversal 
of the secondary flow takes place between S = 0 and S = 0.1. Once again we 
have shown in Fig. V the typical streamlines for R = 10, S = 0.12. We find that 
the flow field between y = O  and y -0 .5  is broken into two parts. The fluid 
near the planes y = 0 and y - 0.5  is drawn inwards nearly parallel to the planes 
at large distances from the axis and thrown away a t  the height yo20.25. 
Correspondingly the flow between the planes y -. 0.5 and y = 1.0 breaks a t  
y0"0.75. The total reversal of the flow takes place for S - 0.15, R - 10 
between y - 0 and y = 0.5 and symmetrically between y - 0.5 and y = 1.0 as 
shown by the Fig. V. 

(b)  Visco-dusiicfluids:-The Fig. VI plots the modulus of the transverse 
velocity for K =  0.1 and K - - 0.1 to assess the effect of visco-elasticity on the 
azimuthal velocity component of the flow in comparison with the corresponding 
curve for the Newtonian fluids (K = 0 )  for R - 5 for the cases (i) and (ii). 
The Fig. VII gives the steady part of the radial velocity for R - 5 and K- 0.04 
and 0.05 for the case (i) and for K =  0.04 and 0.1 for the case (ii) to show the 
reversal of the flow in these cases. For comparison we have drawn the 
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Fro. V 
Two Discs Oscillating: 

Visco-inelaslic [Approximate Expression] R-10 showing the Row reversal (P,,0.001) 

corresponding curves for the Newtonian fluid ( K -  0). We have represented 
the  typical streamline for large Reynolds number (R - 50) for case (i) in Fig. 11 
from the exact solution [3.13], showing the reversal of the flow. Similarly for 
the case (ii) we have drawn in Fig. 1V the typical srreamline for large Reynolds 
number (R=98) from the exact solution [3.21] to  show the reversat of 
the flow. 

The Fig. VIII gives the typical streamlines in the case (i) for R - 5 and 
K -  0.045,0.0457,0.046, and 0.047. We find that the flow for 0.045 is similar 
t o  that for Newtonian fluids, while for 0.047 the sense of the flow is reversed. 
We have drawn the streamlines for the remaining three values of K to show 
how the height a t  which t6e flow breaks shifts upwards as K increases. From 
the approximate expression [4.6] we find that R, K and yo, the height at which 
the  flow breaks are connected by the following relation : 
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FIG. VI 
Amplitude of the transverse component of the velocity 

where D-  (31 + 133 yo - 1 7 5 ~ 2  + 105 y i -  3 s y ;  + 5 y;) + 180 ~ ( 4 1  - 2 7 ~ 0  
+ 1 0 y ; - 2 $ ) -  1 5 1 2 0 ~ ~ ( 3 - ~ ) ,  [4.1 I] 

which is graphically represented in Fig. I, for yo = 0.1. 

The Fig. IX gives the typical streamlines for R - 5 and K= 0.083, 0.084 
and 0.085 in the case (ii). We find that for K -  0.083, the flow resembles that 
for the Newtonian fluids (K - O), while K -  0 085 the sense of the flow is com- 
pletely reversed. For K-. 0.084, the flow breaks at ~ ~ ~ 0 . 3  and symmetrically 
at ya=0.7. In the present case the relation between R, Kand yo is given by 

which once again is  represented graphically in Fig. I. 
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FIG. VII 
Steady component of the radial velocity 

FIG. VJIT 
Onr disc oscillating 

Typical .treamlinr (4  F & O.nO1) of the ~ t r a i i y  cnrnponcnt of the Row in the  critical l ~ g i o n  d K  
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FIG. IX 
Two discs Oscillating : 

Typical Streamline (p=i-0.001) of the steady component of the flow in the 
critical region of K 

In this section we shall calculate t h e  torque o n  the planes y - 0 and y = 1 
in bo th  the cases (i) and (ii). We can easily show that  the TYS component of 
the stress on  the planes is given by the following : 

(a) Visco-inelastic puids : 

T ~ ~ ] ~ = ~  - ( - I )  r Q  RI[V'(R i). eifcot h J(R i)], (case i) [S 11 

= ( - l ) @ , r S Z R l { . \ / ( ~ i ) .  e i t c o t h [ + d ( ~ i ) ] j ,  (case ii) [5.2] 

which are the same a s  for  a Newtonian fluid. Neglecting the edge effects the 
frictional torque M on t h e  wet side of the  plane of radius A will be 

M=---.--.- * A4Q@1 {[sh hl  +sin hl] cos t - [sh hl - sin hl] sin t i ,  (case i) [5.3] 
4d[ch A,  - cosX1] 

=- * A4Q@' -- " {[sh$Al + sin:Xl]cos i - [sh+hl - sinjhl]sin t ) ,  
2d[ch$h1 - cos +Al ]  

(case ii) [5.4] 
where h : = 2 ~ .  
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(b)  Vkco-elartic fluids :- 

7;&4 = ( - 1) Dl r Q Rl [ ( i ~  K -f I )  eir t cot h f ] ,  (cnsc i) [5.5] 

- ( - I )@,  ~ Q R ~ [ ( ~ R K +  l )r i1f  coth &/2)], (caseii) [5.6] 

where ( is given by 13.31. 

W e  can easily calculate the torque M, on a plane of radius A,  neglecting 
the edge effects. 

T ~ O I S Z A ~ X Z  
M - {[cos p sh (Az  cos M )  

4 d [ch (A2 C O S ~ )  - cos (AZ sin p)] 

+sin & sin (Az sin p)] [cos t + R Ksin t] 

- [sinw sh(h2cosp) -cosp~sin(h2~inp)] [sint -t RKcost]], (casei) [5.7] 

+ sm p sin ({-X,.sin p)] [COS t f RKsin t] 

- [sinp sh (fh,cosr) - cos p sin ($A2 sin&)] [ R  Kcos t +sin t ] ]  (caseii), [5.8] 

We notice that unlike the visco-inelastic fluid, the torque in the case of a visco- 
elastic fluid, is affected by the vis 

We have noticed above that the breaking and the reversal of the flow are 
the characterirtic Ceatnres of the class of non-Newtonian fiuids which we have 
considered in the present note and that these features, along with others, provide 
a basis for distinguishing them from the Newtonian fluids. 

Let us first consider a visco-elastic fluid' and subject it to plane viscometer. 
We know that6 the skin friction is not affected by Ihe visco-elasticity and thus 



the experiment will help us in measuring the co-efficient@. The formula [5.7] 
for torque deduced in the present paper will then enable us to determine K and 
hence In fact to find an experimental set up for the determination of @, 

was one of the motives in taking up this problem. 
Let us now consider a visco-inelastic fluid. Once again the coeficient @, 

can be determined by the ordinary plane viscometer as the  skin friction in the 
rectilinear laminar flow is not affected by the cross-viscosity. The torque 
formula for a visco-inelastic fluid is independent of cross-viscosity and hence 
t h e  measurement of torque does not provide us with a means to measure S and 
hence G3. However, the point at which t he  reversal of the flow takes place 
helps us in measuring S, according to the formulae deduced above. 

One of us G .  K. R is grateful to the University Grants Comn~ission for 
the award of a research fellowship. 
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