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ABSTRACT

The flow of a non-Newtonian fluid between two parallel infinite planes, separated
by a distance 4, is investigated in the two specific cases: (i) one plane held at rest and
the other oscillating with a large frequency =, (ii) bath the planes oscillating with the
same frequency n and the same angular amplitude » but in the opposite sense. Two
parameter family of solutions depending on the Reynolds number R==(n72 p}¢1), and the
cross-viscosity parameter S==($3/p d2) and the visco-elastic parameter K=(32/r d:) are
obtained correct to the order of R/2. The steady component of the secondary flow is
discussed for both small and large Reynolds numbers. The breaking of the steady
component of the sccondary flow for critical values of § or X depending on R and then
its rcversal for higher values is a characteristic feature of the non-Newtonian fluids,
Finally a suggestion is made about some experiments which can enable the measurement
of the visco-elasticity or the cross-viscosity of a fluid,

1. INTRODUCTION

Recently Rosenblat! has investigated the problem of flow of a Newtonian
fluid between two parallel, infinite oscillating planes. He has pointed out the
interesting fact that the rotating planes behave like centrifugal pumps throwing
the fluid near them away from the axis of rotation and this motion in turn
induces a radial axial flow. In recent communications the present anthors™
have studied the same problem respectively for an electrically conducting
Newtonian fluid in the presence of a uniform axial magnetic ficld and for a
Reiner-Rivlin® visco-inelastic finid for which the constitutive equation is of the
following form .
T —PI+ ®A + B3 £, [1.1]
@, and @, the coeflicients of viscosity and cross-viscosity being assumed
constant and 4 being as usual the rate of strain tensor:

A=+ 14 5 [1-2}

Tn the present paper we consider the same problem for the Rivilin-Ericksen
fluid for which the constitutive equation is

Te —pl+® A+ B+Dy 4, ‘ [1.3]

m m
where By=a;;j+ @&, it Vm iV . it Va, Vi [!-4]

a bemg the acceleration.
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The fuaid [l‘l] is a particular case of this general fluid which takes account
of visco-elasticity through the @,-term. The main aim of the present discussion
is to indicate anotber interesting phenomenon, namely that when the magnitudes
of the Reynolds number R and the dimensionless parameters S and K Tepresen-
ting the effects of cross-viscosity and visco-elasticity respectively are suitably
adjusted by altering the distance between the planes and the frequency of the
oscillating planes, the radial-axial flow breaks down and then its sense is reversed.
For small values of S and K, the fluids behave like the Newtonian fluid and
possess radial-axial flows similar to the one predicted by Rosenblat. There exist
critical values of § and K depending on the Reynolds number R above which the
flow reverses in direction. In fact, for a prescribed value of S (or K) R can
always be found for which the flow field divides into sub-fields having distinct
flow characteristics. For example, in the case when only one plane oscillates,
there are two sub-fields. 1In the sub-field nearer to the oscillating plane the
fluid is drawn inwards and thrown out at some height; in the sub-field nearer
the stationary plane again the flow js drawn inwards and thrown out at the same
hieght. In the case when both the planes are oscillating with the same frequency
the flow field originally cousists of two sub-fields symmetric about the plane
y=0.5, in the scale on which the distance between the planes is 1. For a
preseribed value' of 8 (or K) we' can determine a value of R for which each of
the sub-fields are further broken into two domains. In these domains the fluid
is drawn inwards near the oscillating planes and also the planey = 0.5 and thrown
out at some height in between them.

2. EQUATIONS OF THE PROBLEM

We shall work through the cylindrical coordinates (5, 8, z) with the z-axis
being taken along the axis of vibration. We shall render the physical quantities
dimensionless according to the following scheme :

Dimensionless

Physical Quantity Standard Magnitude quantity
1. Linear distance r ,z d, distance between the planes ry
2. Time, T l/n, reciprocal of the frequency t
of vibration.
3. Radial and axial velocity d2%n, £ being the angular u,w
components U, W amplitude of the vibration of
a plane.
4. Azimuthal component dQ v

of velocity, ¥
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Setting
p=pd’Q*P, Py =nd®pRY, Dy=pdK, $y=pdZs,

the equations of the problem reduce to the following forms :

Continuity equation:
__1_._%(’11) +2M_/.—_(),
roor ey

Momentum equations :

- (Qfn) [uw, + wu,] - v¥r
o =+ (R A w—ulr] + (KK + 58) + (@ (KK + 55(),
v+ 2/ uv, +wr, +uv/r]
= (UR[A v~v)r]+ KK + (2} [KK +5 5.1,
and
w, +(2/n P [uw, + ww,]
= =P, +(1/R) Aw + KK + SS:]+ (@) KK + 553,

where

~2 1 62
K <(Au— u/rz),—Z(go;i +Tl-3—r~2+%—2) G*fr)

ar

+2 (i + —L> v+ 2 (e = (2fF) ¥,
r

+ 1&2) Gy +wuy) = 2/

aff  r oar 1 2y ’ v *

+2 (i + -1«) G2+ w2) + (uw, + ww ) + 20t + W Wy )
or r

K= (Av—-v/rz),,

a1 3 1 a’)
K= (S S 5 ) (e £ wwy +uvfr)
2 (312 r ar ” Byz ’ '

e 2( 20 L) 60 i) =) G )
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Kg:(Aw),—( o +l~i)(f—) +2 (;7 +,—') Gevd+200n  [2100

orsy rod, r

2 ¥ 1.3 a2
K - R S (et wi) + {5 + =+ 25 ) (- )
dy ar” oy

aray r roor
d 1 2 2
+2 <~ +—) Gty +wowy) +2 (15 +wh),, [2.11]
or r T
<] d 2
8 = [ 2 (Vr - v/r)—‘ + Y+ Vy_v] [vr - v/’] - (1/1’) Vi [2'12]
or ay

S; =4 u, vy + (uy -+ Wr) (”U + Wrr) - (“/"‘) Wry —~ (u/') Uy

+(1/2r) (w%.~u§;)+(2/r) 12— (Z/rg) o, [2.13]
' aQ v D V.
S; = [2 Vi Yy + (v, - ~)~— + —v] (u,+w,)
ar rfay r|
+2 [ w),—s; — Wy~ 72— wy] [v, - »-‘;—] 2 Uy ¥y 28y Vs [2.14]
Sz=v, (2"yy ) v (n— v[n), [2.15]

S; =4 Wy Wyy — (u/ r ) Uy + (uy + Wr)< (”yy =+ Wl:v)

-—(u/r) Wy — (l/r) U,y — (l/r) U, Wy, [2.16]
where a suffix £ denotes partial differentiation with respect to £ and

L

- BN

artroar sy

We choose the following expressions for the velocity and pressure so that
the continuity equation is automatically satisfied and the momentum equations
are reduced to the forms in which the radial distance » does not occur :

w=rF,(y,1)
ve=RI[r e G(y)] -
w= —2F(y,1)
and P=(r2) 5 (y,0) +2¢(y, ). [2.17]
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Even with this assumption the resultant equations are too complicated to
yield to an analytical treatment and hence following Rosenbiat {loc. cit] we
assume that the frequency of the vibration of the planes is so large that we can
neglect terms of the order of (Q/n)%. With this assumption the equations
reduce to

Fou—Gexp. ity = =5 +{1/R) Fyyy + K Fyppe— S GLexp. (21 1), [2.18]

iG:(l/R) Gy + 1K Gy, {2v]9}
Fo= gy (R) Fyy + K Fype [2.20]
and Py = 42K +5)G, G,y exp. 211). [2.21]

It is clear from [2.19] that cross-viscosity does not affect the azimuthal
velocity to the present approximation.

Boundary Conditions :—We have the following boundary conditions in terms
of the physical variables:
U=W=0, V=RI{r2"T)atz=0
and at z =d, U=W=0;
7 =0, when the upper plane is fixed [Case (i)]
=RI(QF ¢"7T), when the upper plane is vibrating in the opposite
sense [Case (ii)].

In terms of our new variables these conditions reduce 1o :

at y=0, FaF,=0, G=1
and at y~=1, F=F,=0,
and G=0(Casei) G= -1 (Caseii). [2.22]

3. SOLUTION OF THE EQUATIONS

The solution of [2.19] for a visco-elastic fluid is given by

60 = shé(i—-y) (Casei) [3.11"
sh &
_shg(-y)—shéy (Casei)  [32)
sh&

*ch f—=cosh 8 ; sh 8=sinh§.
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where
_RRE+1)

2 PR
¢ RPK* 41

{3.3]

For a visco-inelastic Reiner-Rivlin fluid the azimuthal velocity G () is the same
as for the Newtonian fluid, namely that given by {3.1] and [3.2] with

F=Ri. [3.4)

Consequently, it is advisable at this stage to separate the considerations of visco-
inelastic and visco-elastic fluids. From the form of G (») it is clear that we

must take
F(r,8) = F(3) + 1y} exp. (2i1)

(3.0 =g () +a(y) exp. 20 1) [3.5]
(a) Visco-Inelastic fluids :=—In the case (i) the transverse component of the
velocity and the function f(y) and 2 (y) determining the radial-axial flow are:
y=rlch Ay —cos A [{cos ($ X1 ¥) eh (32 (2 -3))
—ch (3 A1¥) cos (32, (2—3))} cost+ {sin (1 A p)sh (1A, (2 ~y))
—sin (321 (2-»)) sh(FXi) § sind, [3.6]
and
FO) =% [ehdy = cos A [{(1/A) (sh Qi (1~ 3)) +sin (4 (1 - 2)))
+3 (1 =) (ch ;4 cos Ar) — (1/A) (1 =3 ¥ +25%) (sh A, +5in},)
=22 (L= )} +(352){(25° ~ 35" +1) (shA —sin )
= sh Q{1 =p)) —sin (L= 23]~ (EsA) » (1~ 3),  [37]
with % (y) as given in Ref. 3 [equation 2.30],
and A=2R [3.8]

The stream function for the secondary flow is given by

$=rf(). [3.9]

In the case (i) the corresponding solutions are :
ver[eh A —cos M7 (feb [ (2= )] cos (A, 3)
' —ch (3 A3) cos[F A (2— )]+ ch [£ A, (1= y)] cos [L A (L + 3]
~ch [ M{1+ )] cos[E A (1 = y) P cos £+ {sh[d A (2 — »)]sin 2 (A, )
~sh (A ) sin [E0 (2~ 3]+ sh [EA (0 = )] sin [2 A (1 + y)]
~sh[22 (1 + p)]sialL A (1 - »)]} sin e, [3.10]
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70) =~ EERE N O Y2

ch Ay —cos Aq {
{2/0)sbid; — chdhd -+ (1/0) shda; (1= 29) 4 ch I — (174,) sh 4]
+IESA2) + D {(cos 425 — (212 sin L 1) (3 5% - 25%) = peos L,

—(1/A;) sin £ 2, (I~2y)+(1/k1)sm1PnL s [3.11]

with k(y) as given in Ref. 3 [equation 3.11].
Here again ), is given by [3.8] and the stream function by [3.9] with 7(3)
as defined in [3.11}.

(b) Visco-elastic fluids :—We note below the corresponding sofutions for a
visco-elastic fluid in the two cases.
Case (i)
v=r[ch (Aycos u) — cos (g sin w)] 7' ch (22, (2~ y)eos u) x
cos (3253 sin u) — ch {£ X, psin ) cos [L Ay (2 - ¥} sin uJ} cosz
— {sh (3 Az pcos ) sin [42,(2— ¥) sin u]
—sh[£2,(2 = ) cos w]sin (3 Ao sin )} sint), 3.12]

(2/R) [ch (A cos i) — cos (Aq sin )] £ (3)

. cos()\z smu) 2 Cho\:ﬂl{Q
~ 0274 ek S s o) LA

qh()n cos u) (k1) ikt

sh (}\2 sin /u)]

+(2y—3y +1)[(?\2 K-1) 3sin’ u

+ (y=1) [sz 1) (3K 1

A sin® u A cos ,U.J

Y !
T Nsidu A3 cos’

" [(A%K%— y s [2:(] sh [Az(l——y) sin u] _ix-1) R0 sha{1—-p )cos,u.]] [3.13]
and

B () = (fm) [4e™ ~ Be ™+ Lip[(20) + M
A2 Kezi,u+1 w  sh[n(~ y)"y] [3.14]

T 4ilch ()m e"‘ ]—#4-1_ X leh ey —1] 7
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where A4, B, L; and M are given by the equations :

24[ch(Ae™) = 1] = — (L/2i + mM) [eh Az ™) — 1]

mW sh (?\qe") )\%_K_gﬁ” +1
47 s

——hA )
c(e) )\-,e Py

28[ch (A, €*) — 1] = ( = L;/21 + mM) [eh (A, &) ~ 1]

W

— Y ch (A€ :

4 ¢ (ae et 4
[ch (A,e™) —1][2 - 2chm + mshm] L,

2 20 5

=£Z—I—<—%——t} [2—2chm +mshm] - J;—V(l—chm)

mW shm

x[14+ch(e*)]—- N sh (A, ™),
1€

and
[ch (Ae®)~1]1[2 - 2chm+ mshm]mMi
=(w[48) ch (Az6™) [shm — mchm] — (W/4) (shm — m)

— (mw[4) [chm~1—mshm] > sh ()\:ep) ’

with
4R - " 2R(ARK+1)
X e g =t tan N 1/RK), m? e SN2
p e et R ARKTA
and
Wel+ 2(2iRE~1) M .
SKZRZEZ:F . (1 +K2R2)112(i+2KR)+2621’M
Case (i5)

v r {ch [A; cos u] ~ cos [Az sin w]> ™! ({ch[4A; @ —p) cos u] x
x cos [44; y sin u] — ch [FA2 y cos w] cos [2A; (2 ~ ») sin ]

wy . MW sh(ae) | AKe™ +1
4i ’

[3.15]

[3.16]

[3.17]

{3.18]

[319]

— ch [$A2 (1 + ¥) cos u] cos [3x, (1 = ») sin u] + ch [22, (1 = y) cos u] x
x o8 [Fa (1 + ) sin u]}cos t — {sh [LA, y cos u) sin[L2, (2 — p) sin u]

~sh[£x; (2 - ) cos u] sin [£A; y sin u] — sh [32; (1 — ) cos u] x

x sin[IA,(1 + ) sinw] —sh{2A(1 + ») cosp] x
x sin[LA, (1 — p) sing)} sint ),

[3.20]
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Asin®y

() = (45% — 632 + 1) [(A% I)Sh( T cos M) e ”sh( /\75!!32_)_]
S

LA,sin .
+ @30 O s %zim ) _ i = S Ghscos)
A3 B ;\ COs™ 1

= [(?\3 I)Qh[ Pa(1-2 V) cos u] (M ) h [, 1—-23)smp]}
) Az cos’ A sin® y [ |
321

]

and

ch(hze )“1
ch( A2 e“‘) h( )

fu 2 2i)
=(I/m)[Ae’"J'—-Be‘”"']+’L_‘[Ch(A3€ ) -1 } _MKS 41 y

27 {ch(Lae) =1 2i

+ M- [W2i2e*)sh it (1 ~25) %], [3.22]
where A, B,L; and M are given by the following relations :

h (Qpe%) ~1 ch{d,e*) —
24522 —(mmsl
YT W (m Y] b (@ Aze*“)-fl

MES vl W, m W
e o —CN (I A0e™) + -
+ 2i 21 (‘ ) 21"

in
QB_ch()\ze -1 (Mm 2I>ch(Aae “) -

ch (Fhae™) +1 ch( A e )+ 1

sh (42 6% ), [3.23]

——— sh (} 2. ¢*)

w s : mw
— —ch ';/\1 ¥
2ic (' ) = 21)\_

+(120) (3K +1), [3.24]

chye®) -1 [2~2¢hm+mshm) Ly[2
ch{Zne*) +1

=1k  +1)(2~2chm+mshm)
— weh (E e ) (L - chm) = [m W/(ae™ )] shmsh (32a6™), [3.25]
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and

ch{X, e’-’_‘) -1

ch{tAre™) +1
=AW m (1 —chm) (chk Az ™) + [P /(2 2y € )] sh m sh (32, ¢, [3.26]

[2—2chm4+-mshm)Mmi

with the same definitions for Az, u, mand W as in [3.19].

In both these cases the stream fanction is given by [3.9] with the proper FG).
We may note that in deriving the above solutions we have made no assumptions
about the magnitudes of R and § (or K) and they are, therefore, exact except
that we have neglected the terms of the order of (£2/n)%

4. DiIsCUSSION OF THE RESULTS

In the case when R is small, we give below the simplified expressions for
the velocity components which we need for discussing the secondary flows :
We have checked that the values given by these formulae differ insignificantly
from the exact values for R =5 or so.

(a) Visco-inelastic fluids :—

Case (1)

p=r(1=p) [{1 = (R*/360) y (8 + 8y~ 122 +3 %)} cost
+(R/6)y(2—p)sint] +0(RY, [4.1]

and

70) =R (1 -3 [(1/120) 3 = 3) - (8/101) B (21 + 133 y — 175 *
+105y° =355 +55°) —(6/7) R* S (10 — 10y + 5% — »¥)]

+0(R%. [4.2]
Case (if)
v=r(1-291{1 - (#360) y(1 = ») (1 + 3y =33} cost

+(1/6) Ry (1= p)sin1] + 0 (&Y, i [4.3]

and
70 =(1/60) RY* (1 - »)* (1 - 23) {1 - [R¥/(71-3)] (3 + 20y — 40 *
+405° - 20"~ (1/28) R3S (3~ 4y + 437)} + 0(R%). [4.4]



Secondary Flows between two Oscillating Planes 229
(b) Visco-elastic fluids 1
Case (i)
v=r(1-3) [{1-(R/360) y (2~ ) (4 +6y—3y* 1+ 60K)}cost
+ (R/6) ¥(2— ) {1 = (1/90) B = (1/30) R* K (30K + 16 - 6y + 3)} sin 1
+0(Rr%), [4.5]
and F
1) =(R/120) y* (1 - p)* [(3 = ) = (R¥/3780) (21 + 133 y — 175 }* + 105 7
~35+65°) - (RKJ21) {41 =27y + 1052~ 2 + 84K (3 - )} ]
+0(E). l4.¢]
Case (i)
y=r(1=2p) [{1 ~ (R/360) y (1 ~y) (1 +3 =35> +60 K )} cos 1
+(R/6) p(1 =) {1+ B/90 + (R*K[30) (19 = 3p + 332 — 30 K)}sin ¢]

+0(RY), {4.7]
and
F(3) = (R[60) ¥ (1= pP (1 -2y) [1 - (&(71.3)) (3 + 20y~ 40 ?
+409°~205") —(R*K/84) (13 -8y +8 y* +336 K)] + O (R°). [4.8]

(a) Visco-inelastic fluids:—For the visco-inelastic finid the transverse velocity
is the same as for the Newtonian fluids. The graphs for |v| have been drawn
by Rosenblat'. The typical streamlines for the steady part of the secondary
motion and the steady radial volocity have been plotted in Ref. 3. These
graps show that for small values of S, the flow resembles that for the Newtonian
fluids, but when S is large the sense of the flow is reversed. We have examined
the flow characteristics for the intermediate values of .S in the present paper.

From [4.2], we find that the axial velocity satisfying the no slip conditions
at the planes y=0 and y=1, vanishes at some height y=y; 0 <y <1
provided R and S are chosen according to the following relation :

2 3780 (3 - yo) f4.9]
(21 + 13330 — 17573 + 1053 — 3575 + 5 &) + 5405(10 — 10y, + 535 — ¥3)

The dashed lines is Fig. I represent the relation between R and S for y = 0.1, 0.5
and 09. We have retained only those parts of the curve for which both R and §
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are small in view of our approximation. For large values of R we have to
consider the exact solution [3.7}. Fig. 1Y shows that for R = 50, the reversal of
the flow takes place between S=0 and §=0.1. To examine what happens
at the critical values of § and R, we have taken a typical pair of values of
Rand S, R=35, $=0.12 and drawn the typical streamline ¢ ~ 0.005 in Fig. IIf,
with the help of the exact formula {3.7]. We find that the flow breaks at '
y05=0.38.  The fluid is-drawn inwards near the planes more or less parallel to
them ar large distances from the axis and thrown away approximately at some
height y ==0.38. Complete reversal of the flow takes place for §=0.15 as
shown in Fig. ITl. 4

T caselii)

T | Visco-inetastic

SITEIISrmo o) Ceseld
________ Vigco~inelogtic

g:::((:;)} Visco -elustic
° L 1 L ] 1 1. J
o1 a2 0.3 0.4 0.5 0.6 07

Fic. 1

The relation between R and K (or §) for which the breaking of flow takes place at y=xo;
the value of ve {s indicated on each curve

In the case (ii), when both the planes are vibrating the dot-dash curves in
Fig. I, represent the relation between R and S for which the flow breaks at
heights 3y =0.1 and 0.4, which are drawn with the help of the following
equation obtained from [4.4]:

R 15120 . {a.10]
(3+ 205 — 40 35 + 4033 — 20y3) + 5408 (3 +4 yo + 4 ¥3)




o6

0.4

9.2

e ViSCO - elastie
- menn VISCO - insiastic

S:R0

0.8

82

A
1 2 3 4 5 & 7

Fic. 11
One dige oscillating: For R=50 from the exact expressions

g
P T s = T
o

i L ) L L : )
2 3 4 H F g r}

Fig. II
A typical streamline of the steady part of the flow for small Reynolds number 5,
calculated from the exact expressions
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Y
0.8~
o6
05
T T
- -
0.4 e - -
/ ///
/ i
{ !
02 f { ........ Visco - inelastic
\ \ e e — ViSCO - elastic
N N S=K=0
- ~ —
Keas > $:01 I
- rmm T - L L . !
] 1 z b 4 S 4 7 8

Fic. IV
Two discs oscillating : R=98; ffam the exact expression

The flow between y=0.5 and y =1.0 can be jnferred from the flow between
y =0 and ¥y =0.5 from the considerations of symmetry. The Fig. IV gives the
typical streamlines for R = 98 and 8 =0 and § = 0.1 which are drawn with the
help of the exact solution [3.11}. From the figure it is clear that the reversal
of the secondary flow takes place between $=0 and S=0.1. Once again we
have shown in Fig. V the typical streamlines for R = 10, § =0.12. We find that
the flow field between y =0 and y =0.5 is broken into two parts. The fluid
near the planes y =0 and y = 0.5 is drawn inwards nearly parallel to the planes
at large distances from the axis and thrown away at the height y==0.25.
Correspondingly the flow berween the planes y = 0.5 and y=1.0 breaks at
y6=<0.75. The total reversal of the flow takes place for §=0.15, R=10
between y=0 and y=0.5 and symmetrically between y =0.5 and y=1.0 as
shown by the Fig. V.

(b) Visco-elastic fluids :—The Fig. VI plots the modulus of the transverse
velocity for K= 0.1 and K = — 0.1 to assess the effect of visco-elasticity on the
azimuthal velocity component of the flow in comparison with the corresponding
curve for the Newtonian fluids (K =0) for R =5 for the cases (i) and (ii).
The Fig. VII gives the steady part of the radial velocity for R =5 and K- 0.04
and 0.05 for the case (i) and for K = 0.04 and 0.1 for the case (ii) to show the
reversal of the flow in these cases. For comparison we have drawn the
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1.0
( YT S—
y ,,” ’_—____4_ ..... —
0.8
0.6
0.4
0.2
L Mad ! I 1 3
o i 2 3 &, 5 &
—h
Fic. V

Two Discs Oscillating
Visco-inelastic [Approximate Expression] R=10 showing the flow reversal (1#=..0.001)

corresponding curves for the Newtonian fluid (K¥=0)., We have represented
the typical streamline for large Reynolds number (R = 50) for case (i) in Fig. 1
from the exact solution [3.13], showing the reversal of the flow. Similarly for
the case (ii) we have drawn in Fig. IV the typical streamline for large Reynolds
number (R =98) from the exact solution [3.21] to show the reversal of
the flow.

The Pig. VIII gives the typical streamlines in the case (i) for R=35 and
K =0.045, 0.0457,0.046, and 0.047. We find that the flow for 0.045 is similar
to that for Newtonian fluids, while for 0.047 the sense of the flow is reversed.
We have drawn the streamlines for the remaining three values of X to show
how the height at which the flow breaks shifts upwards as X increases. From
the approximate expression [4.6] we find that R, X and yo, the height at which
the flow breaks are connected by the following relation :
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Amplitude of the transverse component of the veloeity

R =3780 (3 — yo) D%,
where D (21 4+ 1333 — 17558 + 105 33— 354 + 5 y3) + 180 K (41 — 27 yo
+102 233 — 15120 K2 (3 — ), [4.11]
which is graphically represented in Fig. I, for y, =0.1.

The Fig, IX gives the typical streamlines for R =5 and K =0.083, 0.084
and 0.085 in the case (ii). We find that for K = 0.083, the flow resembles that
for the Newtonian fluids (K =0), while X =0.085 the sense of the flow is com-
pletely reversed. For K = 0.084, the flow breaks at y9=<0.3 and symmetrically
at yo=x0.7. In the present case the relation between R, Kand y; is given by

2 15120
(34203~ 40 % + 40 y — 20 y8) + 180 K (13 — 8 yo + 8 y3) + 60480K 2

which once again is represented graphically in Fig. L

[4.12]
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5. STRESSES ON THE PLANES

In this section we shall calculate the torque on the planes y=0 and y=1
in both the cases (i) and (ii). We can easily show that the T}; component of
the stress on the planes is given by the following:

(a) Visco-inelastic fluids :
Tylymo=(—1) D, r 2 RI[V(R1). " cot b/ (R1)], (casei) [51]
=(~1D) 0, r 2 R{V(RE). tcoth[L (R}, (caseif) [5.2]
which are the same as for a Newtonian fluid. Neglecting the edge effects the

frictional torque M on the wet side of the plane of radius 4 will be

4
- 4;[";; ?\?-ip-‘c_%?\i {[sh Ay +sin Ay] cos ¢ — [sh Ay — sin A,] sin 7}, (casei) [5.3]
e TARIN

2d[ch 1Ay ~ cos $A,]

{[sbLA) +sindrJcos 2 — [shix; ~ sindt)]sin 1},

(caseii) [5.4]
where N <=2R.
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() Visco-elastic fluids :—
Tolpmo=( =1} Dy r QRI[ERK +1)e" £ coth €], (casei) [5.5]
= (= D@ r QR RK +1) " & coth (§/2)], (caseii) [5.6]

where ¢ is given by [3.3].

We can easily caleulate the torque M, on a plane of radius 4, neglecting
the edge effects.

Mo D QAN
4d[ch (A, cosu) — cos (X sin )]

{leos w sh (% cos u)
+sin g sin Q4 sin w)] {cos ¢+ R K sin e}
— [sing sh(d; cosu) — cospsin(Aysing Y] [sing -+ RK cost]},  (casei) [5.7]

TH A,

M= { Th
2d [ch (1 A, c08 w) — cosi{LA; sin u)] {leos ush (G Do cos )

+ sin w sia (4 Ay sin )] feos £+ RK sin £}

— [sin sh (42; cosy) — cos w sin (£2g sinw)] [R K cos 7 +sin 2]} {case i3), [5.8]

where u==>tan (/R K),
2R REK
Meogt = 1+ -
2 M (R2K2+1)”2[ (R2K2+I)”2 ’
and
2. 2R RK
Asin® p = ol - =)
2 “ R+ 1)1/2{ (K< l)m}

We notice that unlike the visco-inelastic fluid, the torque in the case of a visco-
elastic fluid, is affected by the vxsi@ﬂaﬁx@;ﬁﬁ

6. CONCLUSION

We have noticed above that the breaking and the reversal of the flow are
the characteristic features of the class of non-Newtonian flulds which we have
considered in the present note and that these features, along with others, provide
a basis for distinguishing them from the Newtonian fluids.

Let us first consider a visco-elastic fluid and subject it to plane viscometer.
We know that® the skin friction is not affected by the visco-elasticity and thus
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the experiment will help us in measuring the co-efficient @;. The formula [5,7]
for torque deduced in the present paper will then enable us to determine K and
hence @,. In fact to find an experimental set up for the determination of @,
was one of the motives in taking up this problem.

Let us now consider a visco-inelastic fluid. Once again the coefficient &,
can be determined by the ordinary plane viscometer as the skin friction in the
rectilinear laminar flow is not affected by the cross-viscosity. The torque
formula for a visco-inelastic fluid is independent of cross-viscosity and hence
the measurement of torque does not provide us with a means to measure S and
hence ¢;. However, the point at which the reversal of the flow takes place
helps us in measuring S, according to the formulae deduced above.
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