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ABSTRACT

The differential equation for the equivalent circuit of a double loop
coupled micro-wave cavity resonator has been determined by the appli-
cation of Lagrange’s equation. The losses on the walls and the Q of
the cavity operating in the TE,, mode have been evaluated with the
help of the field equations.

INTRODUCTION

A microwave cavity resonator represents a complicated oscillating
system having an infinite number of natural frequencies arranged in the
sequence of increasing magnitude. Microwave cavities have found wide
applications as circuit elements. In practice a microwave cavity is usually
coupled to an external system by means of a probe, loop or iris. The
behaviour of a coupled cavity can be studied by the conventional method
of circuit analysis or with the help of the field equations. The object of the
present paper is to approach the problem of a double loop coupled cavity
resonator from the energy point of view and to form the differential equa-
tion of the coupled system with the help of Lagrange’s equation. In view
of the practical importance of the method, it is worthwhile to consider first

the application of Lagrange’s equation to the analysis of an electrical network
before discussing cavity resonators.

LAGRANGE’S EQUATION AND ANALYSIS OF ELECTRICAL NETWORK

If for a holonomic system the generalised co-ordinates are represented
by ¢, g....q, and the corresponding velocities by ¢, ¢,....q, then the
Lagrangian equation of motion for the dynamical equilibrium of the system
is given by the following expression:

(g‘iéu) 3‘?& k=120 1)

where the operator p = d/dt and F, represents the dissipative forces and
any external applied forces present in the system. The symbol L represents
the Lagrangian and is a function of ¢ and g4.

* Mr. S. K. Chatterjee is a Lecturer in the Department of Electrical Communication
Engineering, Indian Institute of Science, Bangalore.
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The Lagrangian equation can be applied to find the performance of
an electrical network if suitable co-ordinates corresponding to ¢y, ¢s. .- -4,
and ¢y, ¢5.... q, can be found in the electrical system. The kinetic energy
(T) and the potential energy (V) of the system, and hence the Lagrangian
L = T — V can then be found. The value of L substituted in (1) will give the
differential equations of the network. The solution of the differential
equations describes the characteristics of the network. The charges

Qs Q,....Q, and the currents Q,, Q.. .. .Q,,_ in an electrical network can
be considered (Wells, 1938; Olson, 1944) as equivalent to ¢y, ¢s....q, and
41, Gs- - - -G, Tespectively.

Let us consider a linear electrical network composed of » independent
meshes whose elements are lumped and dissipationless. The total instanta-
neous magnetic energy (T) and electric energy (V) of the system are given

by the following relations in terms of the mesh currents [Q] and mesh
charges (Q) respectively of the network.

~ Tk
r- QLI -
v =[SO ©

where
Q)
Q.
[Q] =
“‘Qn—’

and the total and mutual elastance coefficients

r Sll Slz....sln““
821 Szz....Szﬂ

®) =

— szl S#B‘ .. .S””
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As S,,= S, the matrix (S) is symmetric. The tilde in (2) and (3) indicate
that the matrix is transposed.

If the electromotive forces (e) applied to the n meshes are given by the
following column matrix

~ el
€z
el =) - C)
= eﬂ’, )
then the Lagrangian equation
K. k=1,2....n (5)
(3Q§) Q,

can be evaluated from the equations 2, 3 and 4. The equivalent circuit of
the network is then given by the differential equation (5). If there is a
dissipative force

F,=— 2R, Q

k=1

present in the system then the differential equation describing the equivalent
circuit of the network is given by the following equation

— i P (6)
p (a Qk aQ,é # %
The dissipative force F, may be derived in terms of the Rayleigh’s dissipation
function F* (Goldstein, 1950) and is given by

By oo nit

0Q;

So the differential equation for the network is given as follows

d oL OF
(-—]-:i = 36 + — = €y (7)
0Q; £ 0Q
where R;’s represent the resistances in the different meshes of the network.
The two scalar functions L and F have to be evaluated in order to describe

the equivalent circuit of an electrical network.

* In a system where frictional forces are present, it frequently happens that the frictional
forces are proportional to the velocity of the particles. In this case, F is dcfined as
F=1%1 2 (kgqis® + ky‘fiyz + ks qis®)
1

where the summation is taken over the particles of the system. The dissipation function can
also be interpreted as one-half the rate of energy dissipation due to friction,
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As an illustration, let us find the differential equation of the following
network (Fig. 1) which finds wide applications in radio engineering.

R2 L3 Ry
— N
q) T Q; @3 ar G‘ fe
L L
2 ]
F1c. 1

In the above network Q;, Q,....Q, are charges and Ql. ...Q, are currents.
The kinetic and the potential energies and the dissipative forces for the above
network can be written as follows:—

T = 3 LyQs? + 3 L,Qx%+ L3sQsQ:

Voo BQ+ @590, Q0

F=— R1Q1_ R2Q4 (8)
In the above equations — E,Q, indicates energy extracted from the source.
Hence the Lagrangian is given by the following expression:

L = } LQs>+ § LoQo*+ LuQ,Q,+ EiQ

(Q:1—Qy?* _ (Qu— Qy)?
2 2¢, ©)

So the differential equations of the network can be written from 7, 8 and 9
as follows:

_ta .t
Ei= J44 P + Ry

__a 1 ;
0= e, + ‘2( Lop + pq) + Laspis

1 Ly
0= prologt+ ¢ (PL3+ Ecg) ~ ey
T B, 5 1
0= e, + ¢4 (pc2 -+ Rz) (10)

where ; = Ql: lg= Qaa 3= Qs, L= Q4 and p = d/dt.
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The equations (10) can be solved for steady or transient currents for any
applied voltage E. The coefficients of the currents can be directly written
by the inspection of the network in Fig. 1. (Stigant, 1947) as follows:

_ = 1
e | Rt - e
= }J_l& L.p + plcl Losp .
) Lysp SN T | L
pcs PCs
. 3% metR i

This agrees with the results that can be derived from (10).
SOME FUNDAMENTAL RELATIONS IN A MICROWAVE CAVITY RESONATOR

The properties of microwave cavities of simple geometry, and oscillating
in normal modes have been studied by Borgnis (1939), Hansen and Richtmyer
(1939), Condon (1942) and Slater (1942, 1946) using Maxwell’s equations
of the electromagnetic field which for a source-free cavity are given in
m.k.s. units as follows:

v XE=—B
vxH=—D
v -B=0
v -D=0

where, B=pH, D= ¢E, p=ypk, and e= ¢k, -k, and k, are
respectively the magnetic and the electric specific inductive capacities of
vacuum and p, and ¢, are the magnetic and the electric inductive capacities
of vacuum. The normal mode fields for a microwave cavity can be expressed
in terms of a pair of vector functions E, and H, associated with the ath mode.
The mode vectors satisfy the following equations:

v 2Ea A KazEa =0
v 2Ha + KazHa‘: 0

V'Ea
V- H,

430

=0
=0
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The wave equations have an infinite sets of solutions, each set being charac-
terised by the particular wave number K, given by K, 2= w,?ue and subject
to the following boundary conditions

nxE, =0
n.H, =10

where n represents the outward normal unit vector. It can be shown that
the mode vectors form orthogonal sets and are normalised in such a way

that
0 a==b
fE" » Esdv ={

] a =b

0 a=+=b
) a=2>,

EQUIVALENT CIrcUIT OF A DOUBLE Loop CouprLED CAVITY

and

The problem of a single loop coupled cavity has been studied by Hansen
(1938), Condon (1941), Slater (1946), Crout (1944, 1948) and Banos (1944).
In the present paper the case of a double loop coupled cavity is treated with
the help of Lagrange’s equation and the Maxwellian field equations.

The energy stored in the magnetic field of the cavity is equivaleat to
the kinetic energy (T) of the mechanical system and is given as follows:

T = %pf H2de (11)

The energy stored in the electric field of the cavity is equivalent to ths
potential energy (V) of the mechanical system and is given by

V= 5 fE-’*dv (12)

where H and E represent the field inside the cavity and can be expressed in
tetms of solenoidal and irrotational fields as follows:—

E=2ZekE, +2f,E,

H=2ZmH,+ 2 H,
] g
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The vector functions E, and H, satisfy the conditions ¥ -E, =0 and
V'H, = 0. Inside the empty cavity v ‘E, = 0; and so there is only the
solenoidal part of E. And as H has no irrotational part

E=2¢,E, and H=2m,H,.

Multiplying the above expressions by E, and H, respectively and integrat-
ing over the volume v of the cavity the following expressions for the coeffi-
cients e, and m, are obtained due to the Fourier nature of the expansions
and the properties of orthogonality.

1
v

.
E-E,dv

m,= = ((H-H,db

o
v

As the mode vector functions E, and H, have zero divergence, they can be
expressed as the curl of another vector. Let it be assumed that the follow-
ing relations hold good

v XE, =K, H,
\v/ XHa=KaEa

The vector fields E and H can be expanded in the following form (Crout,
1944)

E= %ZKaEQaEa

H= ZK,QH, (13)

where Q, and Q, are the normal coordinates of the system. So the energy
expressions can be written as follows from 11, 12 and 13:

T=13}p f ZK,%Q,2 H, v

=ip ZK,2Q
and
V= 5 j 5 K,*Q, %, 2

1
== i_e z; Kd‘QazU
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The differentials of the Lagrangian are then given as follows:

p 2 —wEK2Q
L 1
oL _lygagp:
DQ@, 55 K(Z Q(s v

The differential equation of a dissipationless cavity is then given by

#ZKazQav+ le ZK:;QGU:O

or

LaQa + Q,/c, =0 (14)

where
L,=p2 K, and ¢, =KW

The dimensions of L, and ¢, are [ML?Q~%] and [M'L-2T?Q?] respectively
and so L, and ¢, may be defined as the equivalent inductance and capacitance
respectively of the cavity. So equation (14) represents the equivalent circuit

of a dissipationless microwave cavity as a parallel resonant circuit composed
of L, and c,.

Let the cavity be excited in the ath mode by two identical loops and
carrying equal currents I,. In deriving the differential equation for the
€quivalent circuit let us make the assumptions (a) that the dimensions of
both the loops and the holes are so small compared to the size of the reso-
nator and the wavelength that the normal mode fields inside the unperturbed
cavity remain unaltered by the introduction of the loops through the holes
made through the walls of the cavity; and (b) that there is coupling only

between each loop and the cavity but no coupling between the loops them-
selves.

It is clear that there is no mutual coupling between the different modes
of the cavity in consequence of the orthogonality relations

f E, Eydv =0 a=b
of the vector functions.

The voltage induced by each loop is M,I,, where the mutual inductance
M, between the loop and the cavity is given by (Condon, 1941)

M, = j H,dS (15)
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The integration is performed over the surface of the loop and H, represents the
vector sum of the components of the magnetic field for the ath oscillation
mode. So the mutual inductance between the loop and the cavity will differ
for different modes present in the cavity.

A portion of the power coupled into the cavity from the loops will be
lost if the boundary walls of the cavity have finite conductivity. The loss
of power in the resonator walls per unit length is given by

S $ Hus, (16)

where the integration is extended around the periphery of the cross-sections
of the resonator and H, is the amplitude of H at the surface of the cavity
for the particular mode. R is the surface resistance of the resonator walls
and is given by R = y/uw/20, where o is the conductivity of the walls in mhos
per metre, u is the permeability and w is the angular frequency of the mode.
The loss of power in each loop due to its resistance R, is R;[,2.  So the total
power lost in the two loop coupled cavity is given by

FéQa: 2R11—32 '|‘ %‘ ¢ H02 dS-

So, the differential equation for the double loop coupled cavity is given by
the following expression

IR0 + L T KAQ, v + R L+ % & Hy%dS = Myl + My 1,
B a a s

where M;, and M,, refer to the two loops. The above equation can also be

written in the following form to represent the equivalent circuit shown in
Fig. 2.

Laia+ '[%gf + 2R;1, + 2%: ¢ Hy?dS = Mlaiﬂ o0 M2ai"’

where ¢, represents the instantaneous value of I,.

. R - Mia R

R La Ci——

Fig. 2
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Power LosT ON THE WALLS oF THE CAvity (TE,,, MODE)

Let it be assumed that the two loops are excited in proper phase and
are so displaced spatially inside a cylindrical cavity that the cavity is excited
in the TE,;,, mode. The H-components of the TE,;,, mode for the cylindrical
cavity can be deduced from the field components of the TE,,,, mode (Kinzer,
1943) as follows:

H; = Si’- J," (Kyr) cos 6 cos K,Z

Hy= — Jllgfi D sin 0 cos KZ ) =0 (17)
m>0
H.= Lo J; (Ky7) cos 0 sin K;Z
where, K ;= x,,/d d = radius of the cavity.
Kg= nn/L L = length of the cavity
K?2= K,2+ K;? K = 27/A

X;,= lIst root of J," (x) =
I, m, n have their usual meanings.
The power lost on the walls of the cavity can then be determined from (17)

as follows:
2w d
FH,dS— j f (H,? + Hy? + H,?) rdodr
’ f=0 r=0
d 2m

f j' H,*rdrdd = = 5335 cost KoZ [g @ (3,2 (xy) + Jo2 (¥}

d 254
+ K,¥ 5s - 2{"71 "2}]
where

_E (=12 +29)
M= S 2 + 5! [ + 912

(=11 4+ 29)!
™= 2% g (1 F o)

K2 i
ff Hg%dS == K2 cos?K,3Z 5 25 1 2 2

and

j.jﬂzzds =1 I§_1: sin?K;Z 3d* [ {3y (x)}? + (1 _ LK“;IW) {Jl(xu)}’]
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So, loss per unit length of the cavity wall is given by

R R K, dzre
3 6 Hods— ‘i & c0s' Koz [ 0-219402 + K, oy 2m — 73} ]
+ 5 o R sin®KsZ 12 { 0. 3386 (1 — K112 7))

as J, () =0, J; (%) =0:5819 and J,(x;,) = 0-3167.
MuTtuAL INDUCTANCE BETWEEN THE LOOP AND THE CAVITY

The mutual inductance M, = f H,dS for the TE,, mode can be

evaluated from the field components (17) in a similar way as above. Let
it be assumed that the loops are placed symmetrically about the axis.

f H,dS — ,\/[ p EKS; cos? K,Z + 23——_14_—2 K, ¥ {(r + a)*+2— (r—a)**2}

2
X {2771 — Ty + 73'3} "I- m % Sin2 K3Z 4_}_41-‘2‘51 K12+2’7Tl {(I‘-}-a)“'zg-— (r_"a)Hzr}]
where,

(=17 9!
=%, ey

and a = radius of the loop.

When the loops are placed at either end of the cavity the expression above
for mutual inductance reduces to the following:

f Hds = [ [ 75 Ke¥ g 0™ — (=03 m—rytm) |

as sin Ky7Z=0at Z=0and Z=1L.

It will be observed from the above relation that as the loops shrink in size,
a —0, r —d and so M, — 0.

Q oF THE Caviry (TE,;, MODE)

If the medium inside the cavity has conductivity o, and dielectric con-
stant ¢, then the total loss inside the cavity will be due to the loss in the
dielectric and the loss due to the finite conductivity of the cavity wall. The
Q (Q) of the cavity is then given by the following well-known relation:

1 .1 1
Qe Tq 18)
wall

dielectric
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It can be shown from the field equations that

o 2/// Hatde (19)

The numerator in (19) can be evaluated from (17) and is given by the follow-
ing expression:

2 2512
v (cavity)
Ll K,2 ) 1
ty e & [ 0-3386 (1~ K__lzda)] (20}

as 5 ()= 0.
Similarly, f H,2dS can be evaluated from (17) and hence Q can be calcu-

wall

lated from (19). The value of Q is given by the following well-known
dielectric
relation :
= £ 21
dielectric ¥1 ( )

where w, is the angular frequency of the ath mode. So, the Q of the cavity
operating in the TE,;,, mode can be evaluated from (13) to (21) and the value
of [ H,S.

' INPUT IMPEDANCE OF THE CAVITY

The equivalent circuit (Fig. 2) can be generalised into an oscillating
system having an infinite number of natural frequencies w;, w;....w,.
The natural frequency  of the loops will be affected by the presence of the
cavity and vice versa. When the loops are very small, the current distribu-
tions along the loops may be considered to be uniform. In this case the
input impedance of the cavity across the terminals of each loop is given by
(Schelkunoff, 1944) the following impedance function

oo 2
Zin ijL _|_ DY h TR

This is the expression for the impedance looking into the cavity through ths
loop and consists of a sum of resonant terms. It is also seen that Z;, —>co
when the frequency tends to equal the resonant frequency of any one of the
modes. In the above expression L, is the inductance of the cavity at the
nth mode and can be evaluated from

L,=pr { H,-H, *d&

v (cavity)

n
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and the H-components for the nth mode of oscillation. L,,, is the mutual
inductance between the loop and the cavity and can be evaluated from the
field equations (17) and relation similar to equation (15). L is the inductance
of the loop.

If the cavity oscillates in the ath mode and has slight dissipation, then
the above impedance function needs modification and is given by

jwstla
— w? 4 jé,w,w)’

a-a

Zu=R +joL + 5

where 8, is the reciprocal of the Q in the ath mode (Q,) and can be found
from (15) and the field equations.

If one of the loops is used for exciting the cavity and other loop for
taking output from the cavity, then the system behaves as a two pair tsrminal
network. In this case the transfer impedance Z,, across the cavity is given
(Schelkunoff, 1944) by the following expression:

4 0 > Jo®Ly,Ls,

Zy, = jo Ly + ‘18[_’” (w,2— w® F j§,0,w)
where L%, represents the low frequency mutual inductance between the
loops in the cavity. L,,, L,, represent the mutual inductances between
the cavity and the first loop and the cavity and the second loop respectively.
The values of L;, and L,, can be found from the field components as above.
So, Z,, can be determined. The above expression for the impedance con-
sists of two terms, the first term varying slowly with frequency and the other
is the summation of the resonant term. The latter term shows the effect of
Q, the losses in the walls on the impedance. The above relation holds good
so long as the cavity operates in a non-degenerate mode. If the two resonant
modes are close together, so that the two resonant peaks overlap, then the
Q of the cavity and the losses will be different and the expressions for Z,,
and Z;,, will not hold good. In the case of degeneracy, more eclaborate
methods will be necessary.
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