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Abstract 

This paper is concerned with the minimization of the hoop stress at the bore due to the combined membrane and 
bending action for a rotating hollow shallow shell. A novel iterative scheme is developed to apply the free bound- 
ary conditions at the rim and the bore. Hoop stress concentration factors are presented for 16 different combina- 
tions of shell thickness and rim radius to arrive at the optimum bore size. The results also reveal the importance of 
the shell thickness for an optimum bore size to ensure a reasonably uniform hoop stress distribution along the 
radius of the shell. 
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Notation 

E : Young's modulus of elasticity 
V : Poisson's ratio 
a : shallow shell radius 
rb  : bore radius 
rc. : maximum radial distance from axis of rotation 
co : angular velocity radian/s 
p : load intensity in normal direction = poPiela 
Pr 	load intensity in meridional direction --t-; pco 2h(l-r 21a2) 
12 : body force potential = —fp r  dr 
F : stress function 
A : d2/dr2  + (1/r)d/dr 
I : characteristic length 
x : dimensionless parameter = 
D : Eh3112(1—v 2) 
N, : membrane force in radial direction 
No 	membrane force in tangential direction 
h : thickness of the rotating shell ht = dh/dr, h" = d 2 h/dr 2  

MT  : bending moment in radial direction 
Me : bending moment in tangential direction 
p : mass density 
w : normal deflection W = dw/dr, W' = d2w/dr2 
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1. Introduction 

Design of rotating discs for turbine applications demands a thorough appreciation of 
advanced theories of elasticity. Often discs become bent due to axial deformation caused 
by differential gas pressure as well as axial loads acting on the blades. As a conse- 
quence, the discs assume the shape of a shallow shell. If the associated flexural stress 
and deflection exceed critical values the situation becomes dangerous. An earlier paper' 
analysed the stresses and displacements in a rotating shallow shell of variable thickness. 
The effect of a circular bore was not considered in the previous work. The main thrust of 
this paper is on the optimization of the bore size for a constant thickness shell. Minimiz- 
ing the hoop stress at the bore of a rotating shallow shell constitutes the theme of opti- 
mization. It is well known that the hoop stress is doubled when a small hole is drilled at 
the centre of a rotating flat disc 2 . This remarkable result continues to hold for a rotating 
shallow shell for both stress (N„) and moment (M,) resultants. Engineering design, 
however, generally requires a bore size which is a considerable fraction of the outer disc 
diameter. Earliest reference to this aspect of turbine disc design suggests a ratio of 1/5 3 . 
This suggestion has been widely followed, although there appears to be no documented 
theoretical evidence. In fact, the optimum bore size for a flat rotating disc is achieved in 
the limit the bore shrinks to a point. For a flat disc, the hoop stress concentration factor 
defined with respect to the stress at the centre of a solid disc monotonically increases 
with the bore size according to equation K n  = 2 +2(1— v)ç:/(3+v)e. As will be shown 
in this paper, the behaviour of a rotating shallow shell with regard to the hoop stress at 
the bore is interestingly different from that of a flat disc. 

The hoop stress concentration factor due to the membrane action in a rotating shal- 
low shell initially decreases with increasing bore size reaching a minimum before in- 
creasing monotonically as in the case of a flat disc. This surprising result presents a 
valuable insight for optimal design. What is more surprising is the fact that the optimum 
ratio re p; is around 1/5, or quite close to engineering practice as for as No  is concerned. 
However, the net hoop stress concentration factor (K„) comprises both membrane (K,„) 
and bending effect (Kb). The net hoop stress concentration factor is not minimized when 
re p; is around 1/5, but depends on the size and thickness of the rotating shell as ad- 
dressed in this paper. 

Results are presented for the hoop stress concentration factor normalised with respect 
to a solid shell of the same configuration. All the results have also been verified with 
FEM calculations using a commercial software, not included in this paper. Optimization 
is then discussed based on K.= arias'. Stress variation along the radius of the shell 
is also examined for the optimized cases to assess the effectiveness of optimization based 
on the bore stress. A novel iterative scheme of applying the boundary condition for rotat- 
ing hollow shells is also proposed in this paper. 

2. Optimization problem 

The design optimization is discussed with respect to Fig. 1. For given values of a, h, re, 
the problem is to determine the optimum value of the bore radius rb  that will minimize 
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FIG. I Rotating shallow disc configuration. 

the hoop stress concentration at the bore. We have to also examine how uniform the re- 
sulting hoop stress variation is along the radius from the bore to the rim of the shallow 
shell. We follow the general procedure outlined in Fliigge 4 , and Timoshenko and Woi- 
nowosky–Krieger 5  for constant thickness shells, and extended to variable thickness 
shells by the authors. 

2.1. Problem formulation 

The governing differential equations are 

sof 4.  Eh  
Aw – 	2 

F„ .  F2')  

	

—r r+ 	 
a 	h 	r 	r 2 ) hk. 	

r )  

h ' 
—(2(1 – v)12' + (1 – v)—f 2  ) + h"  (1– 12 ( h2  

r 	7 	v)  –) (1– v)  2  T 	1(2  h 

1 AAw e 	AF  + 311' ( 2w „ 1_ (2+ v) ,_ wn + 3h" ( „ 4.  V ,) 

aD 	h 	r w  r2  ) h Cy  r w  ) 

+ 
 6(

—h1 )2  (w" + 1-'  wl= 212  +L 	 (1) 
h 	r 	aD D .  

In the case of constant thickness shell, eqns(1) reduce to: 

Eh 	 (2) AAF 	Aw  = –(1 	&a; 
a 



62 	 K. R. Y. SIMHA fl at 

1 AAw 	AF  = p 212 
(3) 

Da 	D Da  

The integration of simultaneous equations, (2) and (3), can be carried out by multiplying 
eqn (2) by a factor –A and adding the result to eqn (3). This yields 

, 	Eh 	 p 
Ad (w – AF) A,(—) A (w + 	= A,(1– v) AS2 + +212 

	
(4) 

a 	AhDE 	 D Da 

2.2. Homogeneous solution (p = fi = 0) 

Stipulating A = –1 / Ah, DE yields 

AEh 
aaW--AW =0, 	 (5) 

a 

where W = w--AF and A=i1 Eh 2  1112(I — v 2 ) . The homogeneous solution for the above 

equation is W = + V'2 , where 

= A1  + A2  log x 

412  =- 443 (ber x+i bei x)+ A4 (kerx +i kei x). 	 (6) 

The functions ber, bei, ker and kei are Bessel's functions for imaginary arguments 6. As- 
suming Ai  = ai  +i Ili  where ai, b i  are real constants to be determined, we get 

w = + a2  logx +a3 ber x– b3 bei x + kerx–b4 kei x 

Eh 2  

F = 	(bi + b2  log x + b3 ber x+ b4  kerx +a3 bei x +a4 kei x). 
V12(1– v2 ) 

(7) 

2.3. Particular solution 

The particular integral of (5) is taken as 

tp = (Qi  AR, )r2 + (Q2  ± AR2  )1_4 
+(Q3 

 + AR3 )r6 

where 

= 	v +3 
–pw 2a (—  2h 2  2 pco 2  (1+ v)D 

2E a2 (1 + v)) 	= 
Q2  pw 2  (1+ v)  

8aE 

Q3  = pco 2  (1– v) 

48Ea 3  

Hence, the complete solution is 

(8) 
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w = + a2  log x + a3 ber x + ast  ker x b3bei x – b4 kei x + Qir2 + 	÷ zr6 

Eh  2 
F – 	(Lo t  + b2  log x +b3 ber x+ b4  kerx +a3 bei x +a4 kei 

412(1–v2 ) 

eRi r 2  R2 r4  – R3r6. 	 (9) 

Of the eight constants appearing above, b 1  can be omitted as it will not produce any 
stress, whereas constant a 2  can be omitted2  because of multivalued contribution to the 
displacement ti e ; further, b2 can be absorbed into 1,4, leaving only five constants. 

Boundary conditions Nr, Mr,  =0 @ r = rb, re and w =0 @ r = rb  determine al, a2, a3, b3, 
and b4  as follows 

where 

K11 =1 K12  = ber xb  K1 3 = ker xb  

= 0 K22 = —
bei xb 

K23 = —
keit  xb 
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( 	
bei' xb   ) 	 kerx ) 

K M = — her' x b  +v 	K45 = keittb  + v --t 
xi, 	 xb 

1054  -- — (bei" 
bei t  x, 

ze  4- v 	 
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K55  
kei t  x, ) 

x, + v 	 
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and 

C 1 = — Q b 1 r 2  — Q2 r 4b  — Q34 

fil  (2R1 + 4R2r1 + 6Rt,3r —12) 

C3 =— —ja i  (2R/  -I- 4R2 r,2  + 6R3 r„4  —12) 

C4 = — (2Q1(1 + V) + 4Q2(3 + V)rb 2  +6Q3(5 + V)r,,4 )1 2  

C5  = — (2Qi(1 + V) + 4Q2(3 + V)l -c2  + 6Q3(5 + V)r c4 )1 2  . 

2.4. Stress-doubling effect of small hole 

For a solid shallow disc s , only three constants a l , a2  and b3  are involved as follows 

[ K11 K12 K14 at. 	cl 

K3 1  K32 K34  a3  = q 
K51 K52 K54  bw3i 	C5 

. 	Solving (10) and (11) shows that both N. and M, are doubled when a small hole is made 
in a rotating solid shallow shell. 

2.5. Iterative solution 

A novel iterative solution is explained in this section to extract the constants a l  to Ils by 
taking advantage of the values of a l , a3  and b3  for a solid disc. It is observed that the 
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values of constants al, a3 and b3 for the hollow rotating shell are quite close to the corre- 
sponding values for a solid shell. The solid shell values can therefore be used for the 
hollow shell problem in the first iteration to deterime a 4  and b4. The new values of a4 
and b4 are used in the second iteration to determine a l , a 3  and b3 . This process is contin- 
ued until the results converge. Figure 2 shows the flowchart. The main advantage of us- 
ing this iterative scheme lies in solving sets of (3 x 3) and (2 x 2) linear equations in- 
stead of the more complicated (5 x 5) linear equation (10). Rapid convergence is noted 
for all the cases investigated. A typical convergence history of the constants al,. be t  is 
shown in Fig. 3 for the case of rb = 50 mm, re  = 200 mm, h = 10 mm, a = 1000 mm. To 
highlight the concept of the approach, this iterative scheme is demonstrated for the sim- 
ple case of a flat rotating disc of inner radius rb and outer radius re. The radial stress is 

C2 3+v 
pw 2 r 2 . 	 (12) 

r 	8 

Denoting (3+ v)pco 2  /8= K, for a solid disc Cr) = 0 and Crn  = Kr: and using the above 

value of Cr in eqn (12) and applying the free boundary condition at the inner boundary, 

we get 

r[1] [ 1  .( rb) 2 1 
'2  

rc  

Repeating this process on the outer boundary, we get 
- 2 

	Lb) ] 1 	rb  + re 	I. 
rb  + re  re  _ 

The corresponding value of C2 using the inner boundary is 

C[21  — —Kr 2r2 [1 Till 

	

2 — 	b c 	r c 

Using C2121  and the outer boundary, we complete the second iteration 

2 

CP]  = K(r2  + 2 ) r 1 	b (rb) 4 ] 
b _ . c  . _ — — r 	. -- - 
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Continuing this process, after n iterations, we get 
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CH — 	2  r 2  1--(—rb  
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FIG. 2. Flow chart for iterative solution. 
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[ 

	

CV )  = lqr: + r 2 ) 1 	
ris 	rb  n+2 

2 	2 	. 
rb + rt. re  

Since rb  Ire  <1, the solution converges to the exact result 

C 1  = K(ri; + re2 ), 

C, = 	e . 

This proves the validity of the iterative procedure. 

3. Results 

Calculations are performed for four different rim radii rt. = 180, 200, 220 and 240 mm, and 
for four different shell thicknesses h = 8, 10, 11 and 12 mm. In all the cases, the sagitta is 
held constant at 20 mm. The specific gravity and rotational speed of the shell are taken as 
7.85 and 17,000 rpm, respectively. All the stresses are normalized with respect to the hoop 
stress at the centre of the corresponding solid shallow shell. These stresses are calculated as 

p
2 h 2 

	

Ea3 	co 
= 	+ 	(membrane) 

in 	2a 	- v) 

3E(1+ v)h3  pw 2 ah   2h 2  i
v +3 CY I) g) 

112(1 - v 2 )a 	- v) 	a2(1+v)

) 
(bendin 

 

where a 3  and b3  are evaluated using (II). The values of the hoop stress at the centre of a 
rotating solid shell are given in Table I for reference. 

Results are presented in the following sequence. Firstly, we plot the stress concentra- 
tion factor Km . Kb and K„ as a function of the normalized bore radius rblr e. Secondly, we 
present the hoop stress distribution along the radius for the optimal bore size. Finally, a 

Table I 
Hoop stress at the centre of a rotating solid shell 

Shell thickness 	Rim Radius r, (nun) 
h (mm) 

180.0 200.0 220.0 240.0 

ab, 4:ib Crie  0i, a„, crb an, ab 
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

8 49.5 390.5 60.2 482.5 72.0 584.2 85.0 695.6 
10 79.3 441.5 97.1 546.2 116.6 661.9 138.1 788.7 
11 94.1 458.3 115.3 567.3 138.8 687.7 164.4 819.6 
12 108.4 470.3 133.0 582.3 160.2 706.2 190.0 841.8 



18 

16 

1 4 

12 

10 

B 

6 

4. 

2 

0 

2 - 

1.5 

1 

•Nr 

0.5 - 

0 - 

—0.5 - 
0 

BORE OPTIMIZATION FOR ROTATING HOLLOW SHALLOW SHELL 

a. Membrane 

0.2 	 0.4 	 0.8 	 0.8 	 1 

rb/rc 

b. Bending 

rc 1 a 0 rri rrs 
re =a 200 rn m 
re •••22Orrtm • 
re-240mrri 

0.2 	 0.4 	 0.8 	 0.8 	 1 

rb/rc 

e. Net  

69 

2 

1.9 

1 .8 

1.7 

1.6 

• .5 

di .4 

1 .3 

I••• 	

0.2 	• 0.4 	0.8 	 - 

rb/re 

FIG. 4. variation of stress concentration factor for 8 nun thick shell having sagitta 20 mm. 



70 	 K. R. Y. SIMHA et at 

composite plot for the hoop stress distribution along the radius for the 11-mm thick shell 
is presented to demonstrate the uniformity of the hoop stress. This particular thickness 
of h = 11 mm represents the optimum design for the cases considered in this investiga- 
tion. Further, nondimensional plots supplied here provide useful design guidelines for 
rotating hollow shallow shells. 

Figure 4 shows the stress concentration factor for a shell of thickness 8 mm. The 
membrane effect is shown in Fig. 4a. The stress concentration factor K m  is 2 for a van- 
ishingly small bore and decreases with the bore size initially before increasing again. 
The minimum value of Km  is registered approximately at a value of tsar(  = 1/5. Figure 4b 

shows the decreasing trend of Kb with bore radius. The net stress concentration factor K„ is 
shown in Fig. 4c. It is clear from this figure that the optimum bore size is rare = 0.37. 

Similar trends are observed for shell thickness of 10, 11 and 12 mm. In all the cases 
K m  attains its minimum around the same value of rb/r, = 1/5, but the minimum value of 
K, is registered at increasing value of rare . Thus, K„ is minimum at rh irt . = 0.42 when 
h = 10 mm; rar e  = 0.44 for h = 11 mm; and rare  = 0.47 when h = 12 mm. It is also in- 
teresting to note that the minimum values of Km  and K„ remain approximately the same 
at 1.5 and 1.25, respectively, for all the cases studied here. 

We now pursue the question of uniformity in the net hoop stress distribution along the ra- 
dius of the optimized shell configurations. These configurations correspond to four different 
values of rare  for four different shell thicknesses considered in this study. The normalized 
values of the net hoop stress along the shell radius are shown in Fig 5 for different values of 
rim radii r, = 180, 200, 220 and 240 mm. These plots reveal that when the shell thickness is 8 
or 10 mm, the net hoop stress increases towards the rim. On the other hand, an opposite trend 
is noted for 12-mm thick shells. However, when the shell thickness is 11 mm there is little 
variation in the net hoop stress from the bore to the rim. This thickness, therefore, represents 
an optimum design. A composite plot of the net hoop stress distribution for h = 11 -mm thick- 
ness shell for different rim radii is given in Fig. 6. 

The results from this investigation demonstrate that the design of rotating shallow 
shell of constant thickness requires a careful study of the four geometrical parameters 
viz., bore size fro, rim radius (r1.), thickness (h) and radius of the curvature of the shell 
(a). The shell height (sagitta) will be automatically fixed for a given combination of r e  
and a. In the present study, the sagitta has been held constant at 20 mm, but a similar 
design procedure as outlined in this paper can be applied for other values of sagitta. 

4. Conclusion 

• 	 This investigation brings out the importance of an optimum bore size in the design of a 
rotating shallow shell. The design of high-speed rotating components such as turbine 
and compressor discs requires a careful selection of geometric parameters, viz., thick- . 
ness, rim radius and sagitta. The bending action significantly changes the optimization 
procedure based on minimizing the hoop stress at the bore. Discarding the bending ef- 
fect suggests an optimum bore size of about 20% rim radius. Bending action makes it 
necessary to increase the bore size to as high as 50% of the rim radius. This may seem 
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FIG. 5. Variation of the normalise values of the net hoop stress along the shell radius. 

too large for practical implementation, and therefore it may become necessary to explore 
design optimization by using variable thickness shells to reduce the bore size. This as- 
pect will be addressed to in a separate paper using the variable density approach devel- 
oped by the authors. The new iteration scheme developed here can be rapidly imple- 
mented for design optimization prior to FEM validation of the prototype. 
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