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Abstract 

This paper deals with the radially flowing film produced by a vertical liquid jet impinging on a horizontal surface. 
Typically, circular hydraulic jump is formed at some radius. A new integral method to calculate the film flow is 
proposed. Flow visualization pictures and film thickness measurements for a range of flow rates are presented. A 
newly discovered phenomenon of surface wave-induced transition is discussed. 

Keywords: Film flow, circular hydraulic jump, transition to turbulence, waves in film flow. 

I. Introduction 

Film flows have important applications in the industry and are also of interest from a 
fundamental viewpoint. Perhaps the simplest film flow is the one obtained by the im- 
pingement of a liquid jet on a horizontal surface —a common occurrence in the kitchen 
sink. In spite of its apparent simplicity a rich range of phenomena involving waves, hy- 
draulic jump, separation, transition and turbulence are observed. Inertia, gravity, viscos- 
ity and surface tension all play a role. There is extensive literature on this subject involv- 
ing both analysis and experiments. 

The flow configuration is shown in Fig. I. A circular liquid jet impinging vertically 
on a horizontal surface produces a radially spreading film flow. If the flow rate is 'large' 
(the meaning of large will become clear later on) the film is thin and the flow is super- 
critical a short distance away from the point of impingement; for the cases of interest in 
this paper the film thickness is typically a fraction of a millimeter. A circular hydraulic 
jump may be formed at some distance, x i. The parameters of the problem are the jet flow 

rate Q, the jet radius at the point of impingement, a, fluid kinematic viscosity, v, and 

surface tension, a, acceleration due to gravity, the plate radius Rp, and the jet velocity, 

= Qhca2. in some cases, a barrier has been used in which case the barrier height will 
be an additional parameter. We may usefully demarcate the flow into the following re- 

gions (see Fig. I): 

(I) stagnation region; 
(II) developing region where the boundary layer is below the free surface and the 

velocity above the boundary layer is approximately equal to the jet velocity; 



74 
	 JAYWANT H. ARAKERI AND K. P. ACHUTH RAO 

JET 

FIG. 1. Various regions in the radial film flow. 

(III) developed region where viseous effects are felt up to the free surface; gravity 
is not important; 

(IV) gravity effects are important and an adverse pressure gradient is present; 
(V) the hydraulic jump region including the separation eddy; 

(VI) flow downstream of the jump up to the edge of the plate x = Rp  . 

We note that viscous effects are felt up to the free surface downstream of region II. 
Upstream of the jump the flow is supercritical and sub-critical at the downstream. In 
regions IV, V and VI, the local Froude number is of order one and gravity is important. 
Not all regions may exist in a given case. If the plate radius is small enough a hydraulic 
jump will not exist; and, in some cases, region IV will not exist. The flow is essentially 
elliptic in that the edge of the plate determines the jump location and the flow down- 
stream of the jump. 

Various aspects of the flow have been studied and reported in the literature. A simi- 
larity solution of the boundary-layer equations in the developed region (III) and ap- 
proximate solutions in regions I and II were given by Watson'. He obtained reasonable 
agreement between the jump location calculated from his solutions and the measured 
jump locations from his experiments. He used a barrier in his experiments and assumed 
that the flow height downstream of the jump is equal to the barrier height. Earlier Tani i  
recognised the existence of the region of adverse pressure gradient and postulated that 
the resulting separation causes the hydraulic jump. More recently, regions both upstream 
and downstream of the jump have been solved using essentially integral methods 3.4  or 
numerical solution of the full equations 5-7 . Bohr et al.8  using novel scaling variables gave 
a relation for jump location for flows on plates of large radius. The boundary condition 
at the edge of the plate is of interest; critical flow (unity Froude number) or infinite 
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slope of the film has been used as edge condition. The jump condition due to Rayleigh 9, 
modified in various ways to account for the non-uniform velocity profiles and the finite 
jump length, has been used to patch the regions upstream and downstream of the jump. 

Craik et a/. 1°  measured film thickness using an optical technique and studied the 
structure of the jump region. They noted that the waves downstream of the jump cannot 
be standing waves as the group velocity is larger than the phase velocity. Bowles and 
Smith" solved the region close to jump and compared their calculated profile to the one 
measured by Craik et al. 1°  They showed that viscosity, gravity and surface tension are 
important in this region. 

Azuma and his coworkers in a series of papers 12-16  have documented various regimes 
of the flow upstream of the jump. (They have done both types of experiments with flow 
on the upper or the lower surface. The only essential difference is that for flow on the 
upper surface, a hydraulic jump is obtained whereas for flow on the lower surface the 
thin film falls off due to gravity at some radial distance. Upstream of the jump and up- 
stream of the `fall off' the two flows are apparently the same). At certain flow rates they 
observe concentric waves; they term these roll waves as they believe them to be analo- 
gous to the roll waves observed on free surface flows on inclined planes. At still higher 
flow rates instability waves of the Tolmein—Schlichting type are observed which break- 
down to turbulence. They show that linear stability analysis of the Watson's similarity 
profile can explain the observed instability waves and their breakdown; the critical Rey- 
nolds number of Watson's profile based on local free surface velocity and film thickness 
is about 450, lower than the critical Re for Blassius profile. From experimental data they 
obtain the critical jet Reynolds number (= Qlva) to be 7.4 x 104. The transition point 
moves upstream with an increase in jet Reynolds number. The local Reynolds number 
goes down like the inverse of radial distance and we may expect relaminarization. 
Azuma a a/o n  do observe instability waves which decay and do not breakdown. They do 
not, however, report any observation of relaminarization. 

2. Governing equations 

Invoking the boundary-layer approximation the differential equations for steady, radial, 
axisymmetric film flow are : 

d(ux) 	d(vx) 0 	 (1) _ 
d x 	d x 

and momentum, 

du du_ 	-g— 
d'u dh 

u-Tx +v-; -v wd-. 

	

x 	 (2) 

Here, x is the radial coordinate and y, the coordinate normal to the plate surface; u and v 

are radial and normal components of velocity; and h, the film thickness. The term 

-gdhldx in eqn (2) comes from the y momentum equation, assuming pressure to be hy- 

drostatic. The volume flux, Q, is constant at any section: 
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So
h 	Q uxily  = — = q . 

27r 	
(3) 

Integrating eqn (2) from y = 0 to y = h and using Leibnitz rule we get the momentum 

integral equation, 

I d f h ( 2  

x  —dx  0 
 u x)dy = _v(Lu) – dh h  

dy 	g dx  - 	 (4) 
o  

Integrating eqn (2) after multiplying by u we get the integral equation for mechanical energy. 

2 
d r(u 3x) 	r du 	dh 

di Jo 2 clY  = -vio 79)7  clY-gq  —di 	
(5) 

Two boundary conditions, the no-slip condition at the wall, and zero shear stress at 
the free surface and the one additional condition relating the second derivative of veloc- 
ity at the wall to the film slope are: 

u ( x, 0 ) = 0, 

dv 

d2 u 
v 

r 
 (x, 0) = g—

dh
. 	 (6) 

	

dy 	dr 

The last condition is from the momentum equation applied at the wall. Inlet and outlet 
conditions are also to be given. 

The equations may be nondimensionalized using the scales used by Bohr et ae. The 
length and velocity scales are : 

	

xs  = q518 v-318 g -118 , 	y,  = (7 1/4 v 114 
g

-1/4 , 

— 	3/4 1/4 	 (7) 

	

It, = q 1/8 
v

1/8 g318
, 	 Vs  = q 1/4  v g . 

Then the nondimensionai forms of eqns (1) to (5) are : 

d(ux) ±  d(vx)  = 0  
(8) 

	

dx 	dy 

du du d2u dh 
u—+v—=--- 	 (9) dx ay d y2  dx 

fo
I 
uxdy =1 (10) 
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I d n i I 
i  2  x) 

‘ 

- y dy = Lu 
(x, 0)- h —dh 

(11) x dx o 	a y 	dx 

d_____  4143  x) 	h
i

d u
t 

, dh — —dy = –xi — ay – — . 	 (12) dx o 2 	o ‘ d y ) 	dy 

The boundary conditions in nondimensional form are accordingly changed. Note that 
we have retained the same symbols for the nondimensional variables also. Of course, 
the reduction in the number of parameters is the main advantage in using nondimen- 
sional equations. In the present case, the only parameters required are the inlet and 
outlet conditions. Similar scaling factors may also be derived for certain other types of 
film flows 17 . 

3. Watson's solution 

In the special case when the gravity term in the momentum equation, (2), is neglected 
Watson' obtained a similarity solution in the fully developed region of the flow (region 
III). He obtained approximate solutions in regions I and II. In the stagnation region (I) 
the boundary-layer thickness is of 0(valtlj  ) 1r2 . In the developing region (II) the bound- 
ary layer changed from the Blassius profile to the similarity profile. Watson, however, 
on the basis that the two profiles are not very different assumed the velocity profile to be 
the similarity profile for the full length of region II and used the Karman–Pohlhausen 
method to get the boundary-layer thickness, 

5= 4.58afx- 
Q 

From continuity the film thickness, 

h= c1.--
2 

+6= 1j-
2 

+1.762ar—. 
2x 	2x 	Q 

(13)  

(14)  

The distance, xo , at which the boundary layer touches the free surface is then given by, 

xo  = 0.315a fe n 	 (15) 

where R = Wva is the jet Reynolds number, and the film thickness and the free surface 

velocity at this point are given by 

It (x0) = 2.577a R-413 	 (16) 

and 

U (x0) = Ut 
	 (17) 

Instead of Watson's similarity profile if we use the Blassius profile, eqns (13) to (16) are 

replaced by the following equations 
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8= 5.64ar- 

, 	a2 a
2 

e 	 n A 17=—+0= 	1.Y14 la 
__ 

2x 	2x 	VQ 

xo  = 0.263 a R1/3  

h (xo) = 2.89 a R-1/3. 

There is some difference between the two sets of relations. We will, however, use the 
relations given by Watson in the rest of the paper. 

In region (III), Watson assumed a velocity profile of the form WU =f(yliz), where 11 
is the free surface velocity and obtained the similarity solution. The nondimensional 
velocity profile can be obtained analytically and expressed in Jacobian elliptic functions. 

From the solution we get the relations to calculate the film thickness and the free 
surface velocity : 

2"-N = 	x s3 + 0.1823) 	 (18) 
a 

U s  =  U0.068  
(Qqa2 ) –  0.l823+ x3 	

(19) 

The nondimensional distance is given by x* = (xla) R -113. Expressing the film thickness 
and the free-surface velocity in the above nondimensional form seems to be natural, and 
is also used by Azuma et al13. 

The initial conditions given by (15)–(17) have been used to calculate the integration 
constants to obtain (18) and (19). 

We, again, remark that Watson's solution is invalid in regions IV, V and VI, where 
gravity cannot be neglected. As with any similarity solution, Watson's solution is very 
useful; we can calculate quantities like Reynold's number and Froude number easily for 
any given set of parameters. It may be noted that no similarity solution is possible when 
the gravity term is included. 

4. Integral methods 

A simple albeit approximate solution of the film flow with the gravity term included can 
be obtained from solving the integral equations (3) and (4) or (10) and (11). Methods 
based on the Karman momentum integral have been usefully applied to boundary layers 
(see, for example, Schlichting 18 ). To extend the methods to film flows two important 
differences between film flows and boundary layers should be noted. One difference is 
due to the gravity terms in the momentum equation. The other difference comes from the 
fact that volume flux is constant in film flows but continuously increases in the stream 
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direction because of entrainment in boundary layers (see Arakeri l7  for a fuller discus- 
sion). We need to assume a velocity profile; the simplest is a third-order polynomial, 

u „ 
—u  f kip= an+ ble +of (20) 

where n = ylh. The nonslip boundary condition is already satisfied by (20). From the 
other two conditions in (6) and from f (1) = 1 we get 

h 2 dh b= 	g 	 (21) 
2vu dr 

In the Polhausen method applied to boundary layers a fourth-order polynomial is used 
because of the additional condition d2u/dy2  =0 at the edge of the boundary layer. 
Equation (20) is rewritten as 

n3 

f (n)=-311--113 b(-1 + n 2  -a 
2
-) 	

(22) 
2 	2 	2  

where b is given by (21). The coefficient is similar to the pressure gradient parameter in 
boundary layers. Some profiles of interest are: b= 0 (dhldx= 0), b= 3 (separating profile) 
and b= —1 (parabolic). Note that b varies with x and is related to the film thickness and free 
stream velocity through (21). Integral methods have been applied to film flows in the past, but 
all have assumed profiles with two constant coefficients satisfying the first two conditions in 
(6); the third condition has been ignored. The momentum integral equation (4) can be rewrit- 
ten as 

1 d 	2 	 dh 
--kxu hr2 

W =--f'(0)-gh- 
x dr 	 dr 

or using (3) as 

	

d (L112 	vf'(0)  g dh 	 (23) 
dr 	 I 1 h2  Ull  di 

Here In  = Po  rdn and I n = Jo' (fi)" dri and are functions of b. Values of the relevant inte- 

grals, for various values of b, are listed in Table I. 

Table 1 

Values of constants for various velocity profiles 

b 	11 	12 i; 	1) 12111 Velocity Profile — 

—1.0 0.67 • 0.53 1.13 0.45 0.79 Parabolic 

0.0 0.625 0.49 1.2 0.4 0.78 Zero pressure gradient 

1.0 0.58 0.44 1.13 0.37 0.76 Adverse ptessure gradient 

2.0 0.54 0.405 1.13 0.335 0.75 Adverse pressure gradient 

3.0 0.50 0.37 1.2 0.3 0.74 Separating 
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Note that the quantities involving integrals do not vary much but the quantity f•(0) = 
a = 312 — b12 varies between 2 and 0 for the values of b given in the table. Using (22) we 

gal "(0) = 312 — 1/4 h i  NUR d/z/d.v. Substituting for f -(0) in (23) we get 

d 111,j_ 3 3 g dh 
(24) 

dx 	2 4 U1, dx • 

varying functions. 
mass conservation 
but can be solved 

Now, all the quantities related to h (i.e., /2 // 1  and / 1 ) arc slowly 
We have unknowns h. U and h and three equations: momentum (24), 

(3) and the boundary condition (21). These equations are nonlinear 

iteratively. 

The energy integral equation can be written as 

d 
dr 	

u2 1; 	dh 
2 xhil = —vx•-- 

 

h 	— dr 

or 

d [U 2  I 3 ]_ 	U 	dh 
dx 2 7: 	h 2 mg  dr 

(25) 

Equation (25) is like the Bernoulli equation with the first term on the right-hand side 
representing frictional loss. 	 • 

It is useful to assume the integrals, 1,, arc constants and write the equations as a sin- 
gle equation 

( 7I(0)1v li- x+ h 

dh _ 	q 	12 	x 
dr  — 	...L id.) ,2 

.% _5: 11 I I_ _ 1 
qf /1  

or substituting for f '(0) as before we get 

3 , h 
dh = Meh l, .r 
dx _ 3 

4I2  Frh  

(26) 

2 where Re,,= Wily = q/v x hand Frh  = U2/gh = q2/gh3  x 

We should remember the two important assumptions in arriving at (26): the velocity 
profile is cubic and thus 7(0) = 3/2 — 1/4 h 2  Iv Ug d dh/dx and / 1  and 11 are constants. 
We gain further insight, however, by studying (26) rather than the earlier more exact 
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equations. The gravity term is represented by the second term in the denominator; ne- 
glecting this term is Watson's approximation and we can solve (26) exactly to recover 
(18) and (19) but with different values of the constants. Equation (7) tells us that gravity 
can be neglected (Watson's solution is valid) as long as 1112  Frh  c< 1, i.e., large local 
Froude numbers. 

In open channel hydraulics, an equation similar to (26) is obtained except for the 
term (h/x) in the numerator which is due to radial flow. Depending on the signs of the 
denominator and numerator dhldx may be positive or negative. Near Froude number 
unity we have a singularity. We note in the inviscid limit, Re h  —> 00, the film thickness 
increases with x for Froude number less than unity and vice versa. 

5. Jump and edge conditions 

If a hydraulic jump occurs then we need two more conditions to solve the problem: the 
jump condition and the condition at the edge of the plate (x = Re). 

The jump condition is easily derived by applying the continuity and momentum 
equation across the hydraulic jump. The condition for uniform upstream and down- 
stream flows and without friction at the wall was derived by Lord Rayleigh and is given 
in standard fluid-mechanics textbooks. For nonuniform velocity profiles and a finite 
jump extent in the flow direction we get 19 , 

1 
H 3  -H (2Fr 12  +1+ D)=2Fr 12

/2 	
= 0 	 (27) 

 11  

where Fr = U2  lgh, H = hilh and D = 2 tbs, r(pgh 2). 

The primed quantities refer to downstream of the jump and nonprimed quantities to 

upstream of the jump. sun, is the wall shear stress and X, the length of the jump. The ef- 

fect of nonuniform velocity profiles enters through the integrals 11 .  12, etc. We recover 

Rayleigh's result if the integrals are unity and D = 0. For D = 0, we may solve (27) to get 

the height ratio 

h' 1 	8 Fr12 	 (28) H =7-z  =i 1± e  • 
Note that a separation bubble in the jump region would imply that > 0. 

In hydraulics the edge condition is assumed to correspond to minimum energy (which 
corresponds to unity Froude number). This condition also implies that no waves propa- 
gate upstream from downstream of the edge. We follow the same principle. The energy 

equation is 

d [U 2  (1 3 )] .._ 	U 
I  fop 

dY 	
(29) 

dx 2 /1 	h2 	q odx 	. 
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Consider the edge to be of varying slope with the surface making an angle a with the 
horizontal and with the local radius of curvature given by R. Surface tension and cen- 
trifugal forces are important if the radius of curvature is small. The pressure obtained by 
integrating the y momentum equation is 

y n 112 

	

P(X,y) = Pa  spgcosay II 	dy. 	 (30) 
hitisy 

The first term is pressure due to surface tension and is approximately given by 

P 	a 
R+h 	

(31) 
• 

The simple addition of h to R to get the free surface radius of curvature is the approxi- 
mation. The second term is the hydrostatic term; the third is due to centrifugal accelera- 
tion where it is assumed that the streamlines are parallel to the surface. 

Substituting for dpIdx using (31) in (30) and neglecting the centrifugal term we get 

dxl_ 	
neosa hi- 

d 1u2 13 	 U a 	2 
 1
771- gSirla. 	 (32) 

2 I p(R+ 	n 21  

The term within the brackets on the left-hand side is like the specific energy used in 
open channel hydraulics and is to be minimized to get the critical condition. Assuming 
hIR c< 1, the critical height becomes 

h = 	
Q(2/3)(13/4)1/3  

„ 	 (33) 
(gcosa- (al pR2 )) 113  

For a = 0 (33) corresponds to the well-known unity Froude number condition. We see 
that for convex surfaces the effect of surface tension is to increase the critical height. 
The definition of edge becomes unclear when the plate has a smoothly varying curve 
near the end of the plate. Recently, Higuera 2°  has derived the structure of the flow near 
the edge of the plate. 

6. Results from the integral method 

Now we have all the equations and boundary conditions to solve the radially spreading 
thin film flow. We present results for a specific case of a water jet with Q = 3 1pm, a = 
0.5 cm and plate radius RI, = 20 cm. Values of the corresponding nondimensional pa- 
rameters are R = 10,000 and Fr = 18 Ig a = 8.27. Film height at the edge of the plate is 
obtained from (32) with surface tension neglected. The supercritical region of the flow is 
obtained by marching downstream from the jet impingement point. The subcritical re- 
gion is obtained by marching upstream from the edge of the plate. The two solutions can 
be connected by fitting a hydraulic jump. 
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FIG. 2. Computed film thickness nondimensionalized by 
jet radius versus radius Q = 3 lpm, jet radius = 0.5 cm. 

The film thickness initially decreases and then increases in the supercritical region; 
in the subcritical region, the film thickness continuously decreases (Fig. 2). The initial 
decrease can be explained from (27) as due to the 4 axisymmetric term' (For plane flows 
this term is absent and thickness increases downstream for supercritical flows.). 

The surface velocity nondimensionalized by the jet velocity is shown in Fig. 3. The 
local Reynolds number continuously decreases with distance (Fig. 4), by a factor of al- 
most ten over the radius of the plate. There is a large reduction in the Froude number in 
the supercritical region of the flow (Fig. 5a ). Note the rapid approach to unity Froude 
number near the edge of the plate (Fig. 5b). 

a. 
FIG. .3. Computed surface velocity hondimensionalized by jet velocity versus radius. Conditions are the same as 

in Fig. 2; a) upstream and b) downstream of the jump. 
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a. 	 b. 
FIG. 4. Computed Reynolds number versus radius. Conditions are the same as in Fig. 2; a) upstream and b) 
downstream of the jump. 

The rapid increase of film thickness near rla = 17 is due to the combined effect of 
viscosity and the adverse pressure gradient term —g dhldx. This point corresponds 
to where Fr is 0 W I  i.e., at the point where gravity becomes important. We may thus 
expect Watson's solution to deviate from our solution at rla 17 which indeed is the 
case (Fig. 6). The variation of the coefficient la (see eqn 21) is interesting (Fig. 7). In the 
region where Fr >> 1 (rla < 16) b 0 (zero pressure gradient flow). The separation 
point (b = 3 is predicted at rla = 18). The relationship between separation and the hy- 
draulic jump, if any, is hard to tell. Clearly we can have flows with a hydraulic jump 
upstream of the separation point, for example, by having a barrier at the edge of the 
plate. It is not, however, clear whether a separation bubble can be obtained without a 
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FIG. 5. Computed Froude number versus radius. Conditions are the same as in Fig. 2; a) upstream and b) down- 
stream of the jump. 
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FIG. 6. Figure showing difference between the inte- 	FIG. 7. Variation upstream of the jump of the coeffi- 
gral method calculation (full line) and Watson's solu- 	cient b in the polynominal for the velocity profile. 
tion (dash-dotted line). 

hydraulic jump. Finally, we note that prediction of the separation point using integral 
methods is possible only by the method we have proposed, i.e., by allowing the shape of 
the velocity profile to change, i.e., by having the coefficient b as variable. 

7. Experimental results 

In this section, we briefly present some experimental results. The setup consists of a 
nozzle with exit radius a = 0.5 cm, an overhead tank, 1/4 hp centrifugal pump and a 
rotameter. The plates on which the jet impinged were either made of aluminium or glass 
and were of various diameters. The flow rate was varied between 1 and 15 1pm. Details 
are available in Achuth Rao 19 . 

7.1. Film thickness measurements 

Film thickness was measured using a simple conductivity probe: a sewing needle trav- 
ersed vertically indicated contact with water by a sudden drop in electrical resistance 
between the needle and the aluminium plate and contact with the plate by another drop 
In resistance. The difference in the heights of the two drops in resistance gives the film 
thickeness. Figure 8 shows the film thickness variations for a flow rate of 2 1pm for 20- 
and 30-cm diameter plates. Solution using the integral method compares well upstream 
of the jump but downstream the difference between the computed and the measured val- 
ues is as much as 50%. We presume that this error is because the edge condition used to 
calculate the results of Fig. 8 is wrong. The edge of the plate used in the experiments is 
curved and this has not been accounted for in the edge height calculation; also surface 
tension has been neglected, inclusion of which would increase the critical height (see 

ecin 33), though, marginally in the present case. 
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FIG. 8. Comparison of measured and computed film 
thickness up and downstream of the jump. Q = 2 lpm, 
nozzle height = 15 cm, a = 0.5 cm A plate diameter 
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FIG. 9. Measured hydraulic jump radius versus flow 
rate. Diameter of the glass plate = 61 cm. 

7.2. Jump location 

The hydraulic jump location is plotted versus flow rate in Fig. 9 for the jet impinging on 
the 61-cm-diameter glass plate. The jump location continuously moves downstream with 
flow rate with an apparent change in slope at. around Q = 5 lpm. This was also the flow 
rate at which transition to turbulence was observed. Bohr et al.8 's prediction of jump 
location for large plates agrees well for the lower flow rates. Interestingly, calculating 
the position of breakdown of Watson's solution say at Fr = 10, we obtain the same scal- 
ing as that of Bohr et al.8  

Breakdown of Watson's solution also indicates the point at which gravity becomes 
important and just downstream separation is to be expected. Thus it appears that the 
jump location for flows without a barrier is very close to the separation point. 

7.3. Flow visualization 

Figure 10 shows a series of photographs visualizing the flow at flow rates from 2 to 
15 1pm due to jet impingement on the 61-cm glass plate. The photographs show shadow 
pictures on a white sheet of paper stuck to the bottom surface of the glass plate with 
lighting from a 1000 W halogen lamp placed about 30 0  to the horizontal and the camera 
looking vertically down. The height of the nozzle was 15 cm from the glass plate (Fig. 
11). 

7.3.1. Waves downstream of the jump 

At flow rates less than about 4 1pm waves the flow is laminar. The jump location is 
steady at very low flow rates (<1 1pm) but unsteady at the higher flow rates. We observe 
axisymmetric waves downstream of the jump (Fig. 10a—b); they are more prominent at 
higher flow rates. They do not seem to be periodic but seem to come in packets. Calcu- 
lation shows that the group velocity is greater than the phase velocity for the conditions 
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FIG. 1 0. Shadowgraph pictures of the film for several flow rates. The left-hand set of pictures are for x = 0-16 cm 
and the right-hand set are for x = 16 to 29 cm. The hydraulic jump location is marked by the dark triangles. a) 

Q = 2, b) Q = 4, c) = 6, d) Q = 10, e) Q = 15 Ipm. 

obtained in our experiments. We thus would expect these waves to be dispersive and, as 

pointed out by Craik et al." ) , they cannot be stationary. (To get standing waves the phase 

velocity should be greater than the phase velocity as in the cnoidal waves downstream of 

a hydraulic jump in not-thin-film flows 21 .) The waves, therefore, must be produced by an 

unsteady source presumably at the jump. Our attempts to measure the phase speed of the 
wave and the frequency of excitation of this unsteady source by the needle method were 
inconclusive. At the higher flow rates, the waves are no longer axisymmetric but this 
could be due to the 'source' at the jump itself becoming non-axisymmetric because in- 

stability of the flow at the jump. 
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7.3.2. Waves upstream of the jump 

For flow rates greater than about 4 Ipm, we observe concentric waves upstream of the 
jump. They seem to appear suddenly at some radial distance, at least, at lower flow rates. 
These waves, we believe, have their origin in the Rayleigh instability of the liquid jet 
before it impinges on the plate. The 15-cm nozzle height allows the instability to grow 
and manifest itself as undulations propagating at u c on the film surface; here c is the 
wave phase speed. If the undulations are large enough they can grow and break. This, 
presumably, is the reason for the fairly 'sudden' appearance of the waves: the undula- 
tions though present right from the point of impingement appear in the shadow pictures 
only after they have grown to sufficient magnitude. The distance between the waves is 
equal to the propagation velocity (at u + c) multiplied by the time period of the waves on 
the jet and thus it reduces with downstream distance as clearly seen in Fig. 10c. 

The relationship between the upstream waves and the waves on the jet needs to be conclu- 
sively established. That the jet does indeed have undulations is clearly seen in Fig. 11. We 
are, however, still not certain whether the origin of the waves is in the jet or in an instability 
of the film flow itself. Azuma et al. 12  observed similar waves even though in their case the 
nozzle was very close to the plate surface. They call these waves roll waves in analogy to the 
ones found on inclined plane film flows. When we reduced the distance of the nozzle from the 
plate to 1 cm the waves (upstream of the jump) appeared further downstream but were not 
completely eliminated at the higher flow rates (compare Figs 10 and 12). 

7.4. Transition and turbulence 

There are two important aspects to transition to turbulence of radially spreading film 
flows. One is that the Reynolds number is maximum at the point at which the boundary 
layer touches the free surface (end of region II in Fig. 1) and goes down like the inverse 
of radial distance (see Fig. 4). The other aspect is related to the fact that in region IV 
(where the pressure gradient is adverse) and in the hydraulic jump region the velocity 
profiles have inflection points; such profiles are very unstable. Thus, transition may oc- 
cur due to the instability of the Watson profile in region III or due to the instability of 
the inflection-point profiles in regions IV and V. 

FIG. 11. Photograph showing the surface waves on the 	FIG. 12. Transition in the absence of surface waves. 
impinging jet. 	 Q = 15 lpm. 
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Azuma et a/. 16  have observed and studied the transition in region III, i.e., instability 
of the Watson profile. Using Watson's solution, we get the local Reynolds number 

uh 
Reh=—= 0.258—

R2/3  
(34) r* 

which is maximum at x0  and is 

Rehm., = 0.819R2/3. 	 (35) 

The critical Reynolds 
Azuma et al. found that 
7.4 x 104 . The transition 
like R -213  with increase in 
number (Reh ) at the transi 
ity and transition is in the 

number for Watson's profile is Reh„= 450. Experimentally, 
transition occurred for the jet Reynolds number exceeding 

point was at r* = 0.65 at R = 7.4 x 104  and moved upstream 
the jet Reynolds number. At R = 7.4 x 104  the local Reynolds 
tion point was 470. We note that for all the cases the instabil- 
region where Watson's solution is valid. 

In the presence of surface waves, as in our case, the transition process gets altered 
dramatically. We observe transition to turbulence first at a flow rate of about 5 1pm 
(R = 1.7 x 104). The breakdown occurs at about the same location as the hydraulic jump 
5 1pm (Fig. 10). The local Reynolds number is about 210 at this location, much lower 
than the critical Reynolds number of Watson's profile. Clearly the transition is due to 
the instability of the inflection point profiles at the jump. 

At 10 1pm transition occurs at about 11 cm, where the local Reynolds number is 
about 390. The maximum Reynolds number is calculated to be 870 at r = 5 cm. We do 
not, however, observe transition at the maximum Reynolds number location but do so 
further downstream. The reason for this is probably that waves have to grow (which they 
do as they travel downstream) to a certain amplitude before they cause transition. The 
jump occurs at 16 cm and it is interesting to note the clear change of scale in the turbu- 
lence across the jump. 

At the highest flow rate we have studied 15 lpm, (R = 5 x 104 ) the transition is again 

wave induced and occurs at about 10 cm, where Reh= 645. Note again that there is no 

sign of breakdown at the maximum Re h location which in this case is at r = 5.8 cm. An- 

other curious fact is the existence of waves till the hydraulic jump at around 20 cm even 
after the breakdown to turbulence. The change in scale of the turbulence across the jump 
is again observed. 

The surface wave-induced transition needs further discussion. The wave seems to 
modify the local velocity profile sufficiently so that transition is triggered. The transition 
is initiated in the form of longitudinal streaks scaling probably with the local thickness 
(see Fig. 10). The propagation velocity (U c) of the wave is greater than the fluid ve- 

locity; thus, the wave triggers transition and leaves the turbulence behind (An analogous 

situation is a shock wave-induced transition in gas-flow boundary layers.). If the local 
Reynolds number is high enough (close to the critical value) then turbulence should be 
sustained at least for some distance. We may expect relaminarization but do not know 
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whether it has set in the flows we have studied. For example, in the 10 1pm flow the 
Reynolds number at the jump is about 280 which is lower than the critical value. 

To visualize transition in the absence of waves, we reduced the nozzle distance to 
1 cm (Fig. 12 ). The waves are of much lower amplitude and the transition mechanism 
seems to be similar to that observed by Azuma et al. 

8. Conclusion 

In this paper, we have looked at a radially spreading film flow at high Reynolds num- 
bers. This flow has many interesting features related to wave phenomenon, hydraulic 
jumps, free surface flows and transition. We have discussed the new integral method 
(with variable coefficients) applicable to film flows. We find that capillary waves in- 
duced in the impinging jet amplify in the film flow. These waves can induce transition 
to turbulence. The dynamics of these waves need further study. 
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