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Abstract 

Markov decision processes provide a rigorous mathematical framework for sequential decision making under 
uncertainty. In recent years, the field has seen explosive activity because of new application areas thrown up 
by advances in technology. These have not only stretched the limits of the existing theory but have also 
brought about novel methodologies to handle problems that do not fit the existing theoretical constructs. The 
present survey gives a short tutorial introduction to Markov decision processes and briefly outlines the thrust 
areas in this field_ 
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1. Introduction 

Markov decision processes (MDPs for short) are a popular paradigm for sequential deci- 
sion making under uncertainty. An offspring of the operations research boom of the post- 
World War years, it quickly blossomed into a major subdiscipline not only of operations 
research, but also of control engineering and mathematical statistics. By seventies, it al- 
ready accounted for a vast number of articles, texts and surveys. But it did not get fossil- 
ized like some of its siblings from the boom years because of the continuous input of new 
problems thrown up by the emerging application areas. In recent years, such an impetus 
has come from the technological advances in communication networks and flexible manu- 
facturing systems. In this survey we hope to give a flavour of some of the recent devel- 
opments in MDPs, beginning with a brief tutorial introduction to the subject. At this 
juncture, we must warn the reader that this survey is by no means exhaustive, but aims to 
serve mainly as a pointer to this field. We must also admit to the unavoidable bias in fa- 
vour of topics that we ourselves have been involved with in recent years. 

The paper is organized as follows: Section 2 gives a brief account of the classical the- 
ory, most notably of dynamic programming and its consequences, and of computational 
techniques for MDPs. Even within the classical framework, many issues remain Open and 
much of the ongoing activity remains firmly within the classical fold. The first subsection 
of Section 3 gives a brief overview of some such issues. The second subsection surveys some 
'nonclassical' problems that have attracted a lot of attention lately. These include problems 
with nonclassical costs and multiobjective problems. Problems with partial information about 
the state of the process or with model uncertainty merit a separate section. Section 4 sur- 
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veys these and related issues. Section 5 briefly mentions some applications areas and the 
closely related areas of continuous time stochastic control and stochastic games. 

2. Classical theory 

2.1. Preliminaries 

An MDP is a random process {X„, n = 0, I, 2, ... } (where n is the discrete time index) 
taking values in a discrete (finite or countably infinite) state space S, with an evolution 
law we shall presently describe. Without any loss of generality, we label S as 
{0, 1, 2, ... }. If the process is at state i S at time n, it moves to j E S at time (n + 1) 
with probability p (i, j, u), where u is the 'action' or `control' parameter chosen by a con- 
troller in the background at time n. This usually takes values in a finite set or a closed 
bounded subset of an euclidean space (more generally, a compact metric space) denoted 
by U. The `transition probability function' p is taken to be continuous and clearly satis- 
fies 

p (i, j, u) € [0, 1], 	p (i, k, u) = 1, i, 	S, u E U. 

Obviously, the controller is constrained to choose a control based only upon his observa- 
tions up to that time, possibly involving some independent randomization (e.g., he may 
choose to toss a coin to decide between two alternatives), but never anticipating the future 
trajectory of the process. At each time he receives a reward or pays a cost that depends on 
the current state and his choice of control. The problem then is to maximize the overall 
reward or minimize the overall cost. The control problems are classified according to how 
the word `overall' is interpreted. We return to this classification following some illustra- 
tive examples. These are oversimplified caricatures of real-life situations, but should suf- 
fice to convey the spirit of the matter. We shall use letters f, g, h, ... to denote `some 
function of ...'. 

Example 1 (Inventory control) 

A storage facility has a stock of Xi  units of a certain good at time i, acquiring ri  additional 
units thereof and then supplying min(di  , Xi  + r i ) to the customers when confronted with a 
demand for di  units. Assuming that {di  } are independent and identically distributed 
(i.i.d.) nonnegative integer-valued random variables, {X i } is an MDP obeying the equa- 
tion 

= Xi + r,— min(d i  , X, + r i ), i O. 

The cost at time i is the sum of the acquisition cost f (ri ), the storage cost g (X, + r i ) and 
the penalty for any shortfall, given by h ((Xi  + r, d i ) ). The last-mentioned is usually 
much larger than the rest when di > Xi + r, and zero when not. 

Example 2 (Control of competing queues) 

A communication channel receives packets from two sources at different rates, which are 
either transmitted or queued up in distinct queues. The channel can transmit only one 
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packet at a time and the 'control' variable is the decision as to which queue to serve. The 
'state' now is the pair of queue lengths and the cost a function of the weighted sum 
thereof, dictated by the relative priority given to the two sources. 

Example 3 (Machine scheduling) 

A factory has M machines m i , 	, m m  of different ratings to manufacture a common per- 
ishable good. Machine m i, 1 i M, has three possible states (a e, b e, ce), where 
ai  = functional but inoperative, b e = operative, c, = malfunctioning. When in a i, the deci- 
sion is whether to switch it on incurring a `start-up cost' of CI, units and moving thereafter 
to b e  with probability 1, or to remain inoperative, i.e., in (l e  with probability 1 at zero cost. 
When in b e, the decision is whether to switch it off and move to ai  at zero cost, or to re- 
main operative incurring an `operational cost' of De  units and then moving to ci  with 
probability p, E(0, 1) or remaining in b e  with probability 1 —PI.  When in ce, the decision is 
to either try to repair the machine at 'repairing cost' R e  and then move to ai  with prob- 
ability ge  e (0, 1) or remain in ce  with probability 1 — q i , or to not repair, incurring zero 
cost and remaining in ce  with probability 1. When in b e , m e  produces re  units of the manu- 
factured goods, nil in either cle  or ci . There is a demand for d„ units at time n, where {d e } 
are i.i.d. nonnegative integer-valued random variables. Letting Xm = the output of ma- 
chine i at time n (= ri  if it is in b e , zero otherwise), one pays a wastage cost of 
f (Ill '  X ni  dn ) when Eri i 	> d„ and a shortfall cost of g(d n  —U1  X in ) when 
dn  >Ere, X, This problem can be formulated as an MDP. The important observation to 
make is that though each machine functions independently, the decision variables may 
depend on the current states of all M machines at any given time. 

Returning to the mathematical formalism, let S and U be the 'state' and `control' 
spaces as above, with p=Sx5x U 	[0, 1] the transition function. More generally (as 
suggested by the above example), one may consider a different control space Ue  for each 
i E S, with p (i, .): S x t/i  --> [0, 1]. In other words, the nature of the decision variables 
depends on the current state of the process. This can, however, be reduced to the former 
set-up by replacing each Ue  by U =FLU;  and the corresponding p (i, j, .), j e S, by their 
composition with the projection map U —> Ue . Introduce the following notation: for a 
metric space X, P(X) is the space of probability measures on X with the topology of weak 
convergence'. A (control) policy {,r= go, xi , 	) is a sequence of (measurable) 
maps 7r,, : (S x U)" x S —> T (U), n 0. Thus, 7r„ takes as its argument the state sequence 
till n 1 and the control sequence till n — I these together constituting the 'history' h„ at 
time n and yields a probability measure on U according to which one picks the control 4 
(say) at time n. That is, the conditional distribution of 4 given h„ = [X0, 4, •.., xn_1, 
4 ._ 1 , X„) is it„(12,7 ). This allows the controller full use of observations up to n as well as 
the use of an additional randomization device (such as tossing a coin) for picking the 
control. Summarizing, 

P(X 1  =jIh4, Zn) = P(Xn I j, Zn), j e St  

AO= pocn u) Nn(hn) (du), 	E S. 
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One often expects or seeks an optimal policy within certain subclasses of polices, such as 
those which depend only on the current state and time or only the former and/or do not 
require any randomization. Call a policy a Markov-randomized policy if, for 	0, 
7r„ (h,i)=v(X„, n) for some v: S X {CO, I, ... 	Pan and a Markov deterministic 

policy if in addition v (i, m) is concentrated at a single point for each i, rn. Call it a sta- 

tionary randomized policy if 7;00= v(X„), 	0, for some v : S —> P(U) and a station- 

ary policy if in addition v(i) is concentrated at a single point in U for each i E S. By 
abuse of terminology, the foregoing are sometimes identified with the function v in ques- 
tion. The implications of these definitions should be clear: all four classes do not require 
the knowledge of the history up to time n 1. The first two require an explicit time count, 
the rest do not. The first and the third require extraneous randomization, the others do 
not. Let 17 denote the set of all policies. 

Note that maximizing a reward is the same as minimizing a cost set equal to its nega- 
tive. Thus, we shall consider only the minimization problems henceforth. Let 
c : S x 	R be a bounded continuous `running cost' function, i.e., c (X„, 4) is the cost 

paid at time n, n >. 0. Let p E P(S) be the distribution of X0 and it the policy in use. Let 
N 	0 E (0, 1). Some standard ways of defining the `overall' cost are: 

Finite horizon cost 

Nei 

JNOI, g, = E [lc( X„, 
n=0 

Discounted cost 

p(p, re, c)= E[l i finc(X„, X 4 )]. 
n=0 

Total (undiscounted) cost 

7(p, x, c)= E[ia  c(X,,,Z, i )] 
n=0 

(possibly ± 00 or undefined). 

Average (or `ergodic') cost 

Nel 

J(p,r,c)= limsup-
1 
 E[Ec(X,,,Z„)]. 

Na)" N 	simo 

In each case, et e His said to be optimal if it attains the minimum of the cost over 17 for 
a prescribed p, and E-optimal if it is within E thereof for a prescribed s> 0. The main 
aims of Markov decision theory are to establish the existence of an optimal (or failing 
that, an &optimal) control in a prescribed class, to characterize it via accessible necessary 
and sufficient conditions and to develop computational schemes for computing it. In the 
next subsection, we study the powerful dynamic programming heuristic initiated by 
Bellman and others, which is the principal tool in accomplishing this programme. 
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3. Dynamic programming 

Dynamic programming is an ideal tool for sequential decision problems that are made up 
of several stages (which is always so, by definition) with the total cost being a composite 
of per stage 'running cost'. Crudely put, the dynamic programming principle says that the 
minimum cost to go from a stage on is the minimum of the sum of the cost at that stage 
and the minimum cost to go from the next stage on. The important point to note is the 
'backward recursion' implicit in this statement. We illustrate its use in case of the finite 
horizon problem. For 0 n < N and i S. define 

N-1 

V (i, n)= inf E[Ic(X ,„, 2.,„) 1 X „ 
m=n 

where the infimum is over all admissible choices of {Z„, 	, 4_ ). Thus, V(i, n) is the 
`minimum cost to go' at time n if you are at state i. Clearly, V (i, N) = 0 for all i. The dy- 
namic programming principle now leads to 

[ = min c(i, u) + 
U 

p(i, j, u)V (j, fl +l)] n < N , (t) 

V(i , 	 = 0. 

It is not difficult to prove this rigorously. One can solve this system of equations back- 
wards in time to find its unique solution V (called the 'value function'). What is more, for 
a chain {Zs } controlled by (Z ,I, we have 

V (X,, , n) c(X„, Z n) + E[V 	, n+ 1)IXn  , Zn ], n O. 

Iterating, taking expectations and using the definition of V one sees that {I} is optimal if 
and only if the above equality is an equality with probability 1 for each n. It follows that 
if u = v(i, n) attains the infimum on the right-hand side of (t), then the Markov determi- 
nistic policy Z,, = v(X„, n), n 0, is optimal regardless of the initial law. For the dis- 
counted problem, one similarly has 

V(i) = inf E [Ifin c( X., Zn )/ X 0 	i € S, 

(Zn ) 	n=0 

satisfying 

V(i) = inf [c(i, u) 	p(i, j, u)V ( 	i e S. 

Furthermore, if u = v(i) attains the infimum on the right, the stationary deterministic pol- 
icy 4 = v(X„), n > 0, is optimal for any initial law. The solution V( . ) of this system of 



I0 
	 V. S. BORKAR AND M. K. GHOSH 

equations is unique for bounded c(. , .) (This follows easily from the 'contraction map- 

ping principle'.) 

The total and ergodic cost criteria are much more difficult to handle. In the former 
case, the cost can be infinite or undefined. When the minimum cost is finite, the existence 
of an optimal stationary deterministic policy was proved by Ornstein 2. The dynamicpro- 

gramming equation, when justified, corresponds to p = I in the above. In the caseof the 
ergodic control problem, the difficulty arises because the cost suppresses all effects of 
finite time behaviour and depends only on long-run averages. Hence, the dynamic pro- 
gramming heuristic cannot be directly applied. In a major breakthrough, Howard 3  derived 
the dynamic programming equations for this problem by treating it as a 'vanishing dis- 
count' (i.e., p 	1 ) limit of the discounted cost problem in a suitable sense. These are: 

p +V (i) = inf [c(i, u) +I p(i, j, u) V (DJ, j E S. 

They are solved for the pair (p, V ( .)), where p turns out to be the minimum cost, attained 
by the stationary deterministic control v(.), for which v(i) attains the infimum on the 
right. All this, however, presupposes the well-posedness of this system of equations, 
which does not come by easily. In fact, the early work 3.4  on this problem uses very strin- 
gent conditions, such as finite S or 'strong uniform rescurrence' condition. More on this 
later. 

Dynamic programming equations form a basis for most computational schemes for 
MDPs. We sketch below the three archetypical schemes in the case of the discounted 
problem. 

(1) Value iteration 

In this scheme, one starts with a guess Vo( ) for V ( .) and improves it through successive 
iterations 

(i) = in f [c(i, u)+ PE p(i, j, u)V n (j)], i € S. 

Under suitable conditions, VA 's converge to VD, = V and provide an approximation thereof 
for large n. An optimal or near-optimal control can be constructed by performing the 
minimization above for n = co, n large, respectively. 

(ii) Policy iteration 

Start with a guess vo :S---*U for the optimal stationary deterministic policy v:S---> U 
and improve it successively as follows: At step n, find V( . ) by solving 

Vn (i)= c(i,v n (i))+ 131,  p(i, j,v n (i))Vn (j), j S, 

and find v„.,. 1  : S -> U such that for i E 5, v +1 (i) minimizes 

u -> 	-4- fi 	p(i, j, u)V,i(j). 
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Under suitable conditions, v„ is near-optimal for large n. 

(iii) Linear programming 

Let U be finite, If W S -> R satisfies 

W(i) inf [c(i, u)+ flE p(i, j,  u)W(j)], i e S, 

it is easy to see that W5 V termwise. Thus, V solves the linear program 

maximize za .w(i)  s.t. 

u)+ 13E 	j, u)W(j), i e S, u E U, 

where a, E (0, 1) Vi and I ai = I. The dual linear program is 

minimize 4 x(i, oc(i, u) s.t. 
Lit 

Exo, 0 43 	p(j, u)x(j,u)= a i , i e S, 

ueU 	 jeS ueU 

x(i, u) 0 Vi, u. 

If x(. , .) solves this problem, the stationary randomized strategy that picks in state i con- 
trol u with probability x(i, u)/(X, b  x(i, b)) is optimal. 

This concludes our survey of the classical theory. It should be remarked that these re- 
sults have not been presented at the greatest level of generality and some generalizations 
are immediately possible. To mention just one, U can be allowed to be unbounded by en- 
suring that the running cost c penalizes 'large' u. For further reading, some excellent texts 
are those by Dynkin and Yuskevich 5 , Kumar and Varaiya6, Ross', Tijms8  and Whittle' 1°• 
See also Puterman's survey" for an excellent account of the algorithmic aspects. 

4. Recent developments 

4.1. Extensions of classical theory 

Much of the ongoing work in MDPs remains firmly within the folds of the classical 
framework described above. Here we briefly list some of the dominant strands therein. 

(1) Generalizations 

A considerable effort'in MDPs continues to be directed towards extending known results 
to more general situations. This is particularly true for the difficult problems of total 
cost 12

'

13 

and ergodic cost". The latter, in particular, attracts much attention due to its 
popularity with the communication networks community. A major advance in ergodic 
control has been a new convex analytic approach based on a characterization of limit 
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points of empirical processes associated with the state and control sequences 15-". This 
approach completely circumvents the vanishing discount argument. The latter in turn has 
been extended to more general situations' s . It should be added that the 'convex analytic' 
approach, which treats the 'dynamic' control problem as a 'static' optimization problem 
on a set of suitably defined 'occupation measures', can also be applied fruitfully to other 

cost criteria to gain useful insight"' 19.. 
Another direction for generalization has been towards more general state spaces, nota- 

bly Bore) spaces, i.e., Bore] subsets of complete separable metric spaces"' 21 . These 
problems lead to difficult measurability issues and have had a fruitful relationship with 
descriptive set theory 22 . 

(ii) Algorithms 

The computational schemes described above continue to be refined, modified and tuned 
for special classes of problems and their convergence properties analysed 23.24 . Also, spe- 
cial algorithms are developed for specific problems 25. Two important developments in 
this context are the development of parallel algorithms 26  and a computational-complexity- 

based study of MDPs 27 ' 28. 

(iii) Special structures 

Several specific classes of MDPs have an additional structure such as the convexity of 
the value function, which allows one to say something more about the structure of 
the optimal policy. There have been quite a few success stories of this sort, the most 
prominent being the discovery of various index rules. These date back to the discovery 
of the Gittins index 29  for multiarmed bandit problems. This class of problems can 
be briefly described as follows: One has a finite family of Markov chains called `bandits'. 
If the ith bandit is at some state x and is selected to be played, a reward of R(x) is 
received and the bandit remains active over a time period of T(x), ending up in a random 
state y. At this point one selects a new (possibly the same) bandit to be played. Under the 
usual cost criteria, the optimal policy for such problems was shown to be based on simple 
comparison of certain indices (the Gittins indices) associated with the states. Specifically, 
one picks the bandit whose state has the highest index. The original work has undergone 
many simplifications and refinements 30'31 , including extentions to arm-acquiring 
bandits 32, restless bandits 33  and so on. There is also work on computation of these indi- 
ces34

. A major development in this domain is the work of Klimov 35  on a class of con- 
trolled networks of queues. 

Another important type of special structure often sought is a switching policy where- 
in the state space splits into two or more (but not too many) connected sets such that 
the optimal policy is to switch between corresponding finitely many choices of controls 
whenever the process crosses the boundaries between these sets. Once again there arc 
important instances of this from controlled queues 36. 

one sometimes detects other structural aspects like hysteresis" . or 
imonotonicity' in a suitable sense 38 . 
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(iv) Miscellaneous 
In addition to the foregoing, there is also work on sensitivity analysis 39, perturbation 
analysis4°A1 , comparison of policies 42 , easily computed bounds on performance and so 
on. Approximation of complex MDPs is a major issue and in this direction one should 
mention the work on state space reduction" and singular perturbation analysis of chains 
whose transition probabilities exhibit different iscales' 45 . More recently, Koehler" has 
worked on general optimization problems with formal structural similarity to MDPs and 
Dutta47  has studied the asymptotics of discounted cost problems in the vanishing discount 
limit. 	 , 

4.2. Nonclassical problems 

In this subsection we consider some problems that have attracted much attention lately 
and are distinguished by the fact that they do not completely fit into the classical frame- 
work described above. 

(i) Multiobjective MDPs 

Suppose we wish to minimize simultaneously n distinct cost functionals (comprising a 
'vector cost') of the same type (e.g., all ergodic or all discounted with the same discount 
factor Th. This is not in general possible and one has to extend the concept of a 'solution'. 
The minimal natural requirement then is that it be a policy such that no other policy gives 
a cost vector which is at least as good in all the components and strictly better in at least 
one. Policies satisfying this are said to be Pareto-optimal. Clearly, a policy that minimizes 
a strict convex combination of the costs will be Pareto-optimal. Conversely, each Pareto- 	, 
optimal policy is obtainable as an optimal policy for a convex combination, not necessar- 
ily strict (except in the finite state/action case), of given costs". Parametric linear pro- 
gramming can be used for this problem °. Another approach5°  is to cast this problem as a 
specially structured partially observed problem (see the next section) and treat it as a 
special case thereof. 

A general scheme for converting a vector cost to a scalar cost is to take as the cost a 
scalar-valued function of the original costs that is monotone-increasing in each argument. 
Convex combinations mentioned above yield one such 'utility function'. Another is the 
distance in Tt" of the cost vector from the 'utopian point' Ds ' , ... , um], where u, = the 
minimum of the ith cost functional over all admissible policies. Minimizing this gives a 
unique Pareto-optimal point which in finite state/action case can be found through a 
combined linear—quadratic program". 

(ii) Constrained problems 

Another way of handling multiple costs is to minimize one of them while keeping the rest 
within the prescribed bounds. Under reasonable conditions, such problems admit a 
'Lagrange multiplier' formulation; moreover, one can show 51-33  that with m independent 
constraints, the optimal stationary randomized policy requires at most m randomizations 
(i.e., randomization between m i  controls at state i subject to I i  (m i  — 1)5 m). In ergodic 
case, 'pathwise' constraints of the type 
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n-1 

Pilimsup—Ek(X  

"4" n m=0 

have also been considered 54. Constrained problems are of great interest in controlled 

queueing networks, where further structure can sometimes be found 55 . 

(iii) Weighted cost criteria 	 • 

One may wish to combine the advantages of different cost criteria by combining them. 
For example, one may want to account for both short- and long-term costs by considering 
a weighted sum of the discounted and ergodic costs. Such problems have attracted a lot of 
attention in recent times 56•57 , culminating in the following result58 : Let c h  ..., cm , c be the 

running cost functions as before and ail  13 1 , 	p„, e (0, 1). Consider the cost 

oo 	 n-1 

(1— a)1 (1 43i )E[E1 3,'-'ci (X„, ;1+ a lim sup — E l Ec( xm , 40  . 

1=1 	 n=0 	
n-"'°°o n 	m=0 

Such problems need not always have an optimal policy nor need a policy optimal among 
Markov deterministic policies be optimal overall. One can, however, find for each e> 0 
an e-optimal policy with the following structure: use a policy le up to a prescribed time N 

(dependent on e) and another policy it" thereafter, where e is optimal for the ergodic 
problem with running cost e and 	is optimal for the discounted problem with discount 
factor Pi  and the time-dependent running cost 

n 
( i—lik

liajck(i,14)- 2.4 i-s. k=1 

(iv) Overtaking criterion 

Introduced first in economics literature 59'60, this criterion may be considered a refinement 
of the ergodic criterion. Here one requires the policy to be not only ergodic-optimal but 
also finite-hotizon-optimal for all Sufficiently long finite horizons. Under suitable hy- 
potheses, the overtaking optimal policies can be shown to be those ergodic-optimal sta- 
tionary deterministic policies that further maximize lim 	E[V (X„)] = E1 7r(i)V(i), 
where V is the ergodic value function and iv, the stationary distribution under the given 
stationary deterministic policy 58 '61 . 

(v) Variance-sensitive control 

The standard cost functionals aim at minimizing some averages (or limits thereof) of the 
type E[F(4)) for ty=1X0, 4, XI , Z 1 , .. 1, F: (S x U)°° 	R. These do not account for the 
variability of the actual sample pathwise cost around this average. This motivates vari- 
ance-sensitive control where we add to the cost a `variance' term 

• 
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for some a > 0. More generally, one may consider the cost E [h(F (w), E [F (O])}, where 
h is the 'variability function' (h(x, y) = x + a(x y) 2  in the above instance). A variant for 
the ergodic case is 

lim sup —E[Ih[c(X n ,;),N -1 E[ic(X,,,Z„)11, 
N-00 	 n=b 	 n=0 

which is the most extensively studied case in the literature 62-64 . The convex analytic 
framework mentioned in Section 3.1 allows one to establish the existence of an optimal 
stationary deterministic policy in some cases. This class of problems is important in 
manufacturing 65 . 

5. Problems with partial information 

Problems with partial information are mainly of two types: those involving partial (or 
`noisy') observations of the state of the process and those involving model uncertainty, 
i.e., ignorance about the transition probability function p. (More complicated situations 
can arise and will be briefly mentioned later.) 

5.1. State uncertainty 

This concerns the case where there is another countably valued (s-valued, say) observa- 
tion process {Y} with the joint evolution of (X1 ), (Y„) governed by 

P (Xn+1 = Yn+1 = *An, Yo, 	Yn, Zn) = P(Xn, id, 4), n 0, 

for a suitable transition function :SxSx 3 -  x U —> [0, 1]. The problem is to control {X} 
with one of the standard cost criteria, but with Z„ constrained to depend only on 
{Y 1, i 5 n} at time n (plus, possibly, some independent randomization). This problem can 
be converted to a problem with complete observations by moving over to a new state 
space, viz., the space P(S) of probability measures on S. The 'state' at time n now is the 
conditional law th of X, given {K, Z„ i 5 n}. This is recursively computed by the discrete 
nonlinear filter 

n 	1, 

with 770  = the law of X0 , P, = the matrix Up(id, 	+ , Zn)]}i,j SI and F = the map 
kb  x2, ... 1 --> 	x2/a, 	1, a=E i l xi  I . (Here n, is being written as a row vector 
for each n.) The 'running cost' correspondingly becomes r(nn , z) = E i  nn(i)c(i,.4). 
This is then a special case of MDPs on a general (Bore!) state space and can be handled 
accordingiy646 . Of special interest is the ergodic problem, which continues to elude a 
satisfactory treatment. The existence of optimal stationary randomized policies can be 
derived by analysis of pathwise empirical measures as in the completely observed case I7 , 
but their characterization through suitable 'dynamic programming' equations is hard to 
come by. Problems arise because the process can have a complicated control-dependent 
ergodic decomposition under stationary randomized controls. Platzman made some prog- 
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ress on this problem under very restrictive Ireachability' conditions ° . More recently, 

seemingly more general but intuitively unappealing conditions have been used 68  to justify 
the dynamic programming equations and have been verified for an important special case. 

An alternative state process sometimes used is the 'unnormalized conditional law' 

(v„) given by 6  

v 	v„P„, n 0, vo= go • 

For n 0, va  is a finite nonnegative measure on S which yields I), on normalization to a 
probability measure. The advantage here is the linear dynamics, also leading to some 
simplification in the dynamic programming equations. A variant of this with a slightly 
different linear dynamics coupled with a 'measure transformation' leads to a linear dy- 
namics 'driven' by { Y,,) which become i.i.d. under the new measure". This has some 

analytic advantages. 

A recent related development 6" is to view the nonlinear filter (without control) as an 
iteration of random maps and use the theory of the latter to analyse its attractors. It will 
be interesting to extend these results to the controlled case and to explore their implica- 
tions for the ergodic control problem. 

Finally, computational aspects of control under partial observations have been investi- 
gated". 

5.2. Model uncertainty 

This refers to the situation when the system model is unknown and has to be inferred 
from the observed state while simultaneously controlling the process. Thus, the control 
process has to play the dual role of optimizing the system while probing it so as to reveal 
its structure. 

There are two broad philosophies for handling such problems. The first is that of 
adaptive control, wherein one explicitly estimates the model 'on-line' using a suitable 
statistical scheme and uses at each time that control which would be the optimal choice 
were the current estimate the true model. This is the 'self-tuning' or 'certainty equiva- 
lence' control. For the sake of completeness, we mention another standard paradigm for 
adaptive control, quite popular in linear control systems literature, but for some reason 
unexplored for MDPs. This is the 'model reference adaptive control', wherein one feeds 
the control input to the system and to a putative model based on which the control is de- 
rived and whose parameters are updated based on the error signal given by the difference 
between the system output and the model output. 

The second approach is that of 'learning control'. The broad philosophy here is to 
make probing moves in the control or the parameter space and, depending upon whether 
the performance is improved or degraded, either reinforce or discourage future moves in 
that direction. 

In the literature, what we call adaptive and learning control are sometimes referred to 
as indirect and direct adaptive control. 
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Self-tuning control for MDPs was pioneered by Mand1 72  for the finite case. For a class 
of estimation schemes that include maximum likelihood, he showed that for a parameter- 
ized model set containing the true model, the parameter estimates converge to the true 
parameter and the ergodic cost to the optimal, with probability one. Similar results for the 
discounted case followed". The main problem with these was a strong `identifiability 
condition' which ensures complete model discrimination under any arbitrary policy. In 
the absence of this, one may end up in a trap where one uses a nonoptimal policy that 
consistently leads to a wrong choice of the parameter estimate (by virtue of not distin- 
guishing it from the true parameter), which in turn leads to the choice of the said policy 74 . 
(More complicated scenarios are possible.) Subsequent worke 5 •76  relaxed this condition 
by taking recourse to randomization of parameter estimates or controls. A significant de- 
velopment to follow (for the finite case) was the introduction of an explicit, asymptoti- 
cally negligible cost bias in the estimation scheme which favours parameters with lower 
optimal costs". This leads to the optimal cost even when the parameter estimates do not 
converge. These works have been recently extended to a broad class of MDPs 79 '80 . 

The foregoing used maximum-likelihood estimates. Other estimation schemes have 
also been used, such as Bayesian 81 '82  or nonparametric". Furthermore, algorithmic as- 
pects have been investigated, involving a stochastic approximation algorithm for parame- 
ter estimation" or value iteration for the control update 85 . A more recent development of 
interest is the work on asymptotically efficient adaptive control schemes 86. Extending the 
earlier work in this vein on bandit problems", this work derives a lower bound for the 
'loss', i.e., the difference between the actual cost and the ideal optimal, uniform with re- 
spect to whatever value the true parameter may take. The aim then is to find a policy 
whose loss equals this bound for every possible value of the true parameter. 

In learning control, an important recent contribution is that of Wheeler and Naren- 
dra88, who propose a decentralized learning scheme using a team of learning automata 
each of which uses a very simple estimation scheme to improve its policy. An alternative 
approach is provided by Santharam and Sastry 89 , who use a stochastic neural network to 
implement learning in policy space. This work is in the spirit of `Q-learning' introduced 
by Watkins943 191 , which can briefly be described as follows. The agent tries all state—action 
combinations repeatedly and evaluates which are the best overall by looking at the costs 
incurred. The Watkins algorithm is similar in structure to stochastic approximation and 
this fact was exploited by Tsitsiklis 92  to simplify its analysis and give a parallel asyn- 
chronous version. 

Comparing different adaptive control and/or learning schemes is not easy and one ex- 
pects different comparative merits for different problem classes. Learning schemes are 
cruder and therefore simpler to implement, but appear less desirable for large MDPs. 
Also, parametric self-tuning versus nonparametric self-tuning or learning may be ex- 
pected to exhibit the `bias-variance' dilemma 93 : Observing that the inclusion of true 
model in the model class under consideration is a theoretical convenience not often met in 
practice, one expects parametric methods to have a built-in bias because of modelling 
limitations, but low fluctuations around this bias. Nonparametric schemes assume less 
structure and should exhibit lower bias, but the variance may be high. 
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Finally, Araposthasis et al have considered joint state—parameter estimation, te e , 

adaptive filtering" and, subsequently, adaptive control under partial observations 95 . 

5.3. Decentralized control 

Consider the 'team' theoretic problem of several agents trying to control a common proc- 
ess, but with access to different sets of observations. This is an important situation in 
practice, where the control is required to perform yet another function in addition to op- 

timization and probing, viz., that of signalling. The agents can use controls to signal to 

each other a part of their information 96. This is a difficult problem to analyse and only a 

few special instances have been studied 97 . 

6. Conclusions 

In conclusion, we briefly mention some application areas and allied disciplines. 

While the traditional application areas of MDPs, like inventory control, continue to 
draw inputs98.99, the area really bursting forth with activity is the area of control of queu- 
ing networks, notably in the specific application areas of flexible manufacturing sys- 
tems m  and communication networks 1°L 102. These are vast fields in themselves that merit 
separate full-length surveys, so we shall confine ourselves to mentioning a few salient 
features thereof. An important aspect of this class of problems is the frequent use of very 
novel techniques, distinct from dynamic programming, for solving specific problems. 
These include interchange arguments, forward induction and so on t02 . These (or tradi- 
tional dynamic programming, for that matter) can often be combined with the special 
features of the problem to deduce additional structure of the policy, say a switching 
structure or an index rule. One also encounters here multiagent control problems with 
each agent seeking to optimize his own cost criterion, with a notion of overall perform- 
ance in the background. Thus, considerations such as 'individual versus social optimality' 
arise t02 . Sometimes these problems are fruitfully analysed as stochastic games t° . Finally, 
effort is also directed towards evaluating and comparing simple and intuitively appealing 
policies 104  (such as 'first come first served'). 

Some of the recent work in controlled queues concerns optimal scheduling of proces- 
sors executing a communication protocol stack m5 , admission control to queues with de- 
layed queue length information t06  and admission control subject to a fairness criterion to 
compare services allotted to different queues t°7 . 

Finally, MDPs occasionally find unexpected applications in novel problems, such as 
stochastic shortest path problems t°8 , to mention but one instance. 

In this survey we have not touched the related areas of stochastic games'" and control 
of continuous-time Markov processes 110 . The former entails several agents seeking to op- 
timize their own costs or rewards, with or without cooperation and with or without addi- 
tional information constraints. The field has many novel features not present in single- 
agent MDPs and is of great interest to economists trying to model group behaviour m 
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economic phenomena. On the other hand, control of Markov processes in R" in continu- 
ous time has formal similarity to MDPs, but has a far richer mathematical structure, a 
high point of which is its link with a class of nonlinear partial differential equations. 

References 

1. HOWARD, R. 

2. DERMAN, C. 

3. Ross, S. 

4. TIMIS, H. C. 

5. WHITTLE, P. 

6. WHITTLE, P. 

7. PUTERMAN, M. 

8. VAN DAWEN, R. 

Concergence of probability measures, 1968, Wiley. 

On the existence of stationary optimal sratetegies, Proc. Am. Math. 
Soc., 1969, 20, 563-569. 

Dynamic programming and Markov processes, 1960, MIT Press. 

Denumerable state Markov decision processes-average cost criterion, 
Ann. Math. Stat., 1966, 37, 1545-1554. 

Controlled Markov processes, 1979, Springer-Verlag. 

Stochastic systems-estimation, identification and adaptive control, 
1986, Prentice-Hall. 

Introduction to stochastic dynamic programming, 1983, Academic 
Press. 

Stochastic modelling and analysis: a computational approach, 1986, 
Wiley. 

Optimization over time: dynamic programming and stochastic 
control. Vol. 1, 1983, Wiley. 

Optimization over time: dynamic programming and stochastic 
control, Vol. 2, 1983, Wiley. 

Markov decision processes. In 'Handbooks in OR and MS'. Vol. 2 
(D. P. Heyman and M. J. Sobel, eds), 1990, pp 331-434, Elsevier. 

Pointwise and uniformly good strategies for dynamic programming 
models, Math. OR, 1986, 11, 521-535. 

1. BILLINGSLEY, P. 

2. ORNSTEIN, D. 

3. DYNKIN, E AND 

YUSHKEVICH, Y. Y. 

4. KUMAR, P. R. AND VARAIYA, P 

13. FASSBENDER, M. 	 Optimal stationary strategeties in leavable Markov decision processes 
J. App! . Prob., 1990, 27, 134-145. 

14. ARAPOSTHASIS, A., BORKAR, V. S., Discrete-time controlled Markov processes with average cost 
FERNANDEZ-GAUCHERNAND, E., 	criterion - a survey, SIAM]. Control Opt., 1992, 31, 282-344. 
GHOSH, M. K. AND MARCUS S. 1. 

15. BORKAR, V. S. 	 Control of Markov chains with long-run average cost criterion. In 
Stochastic differential systems, stochastic control theory and 
applications. (W. .Fleming and P. L. Lions, eds), 1MA, Vol. 10, 
pp. 57-77, 1988, Springer-Verlag. 

16. BORKAR, V. S. 	 Control of Markov *chains with long-run average cost criterion: the 
dynamic programming equations. SIAM J. Control Opt., 1989, 27, 
642-657. 

17.  BORKAR, V. S. Topici in 	controlled Markin, 	chains, 	Pitman 	Research 	Notes 	in 
Maths. No. 240, 1991, Longman Scientific and Technical. 

18. SENNOTT, L. 1. Average cost optimal 	stationary 	policies 	in 	infinite 	state 	Markov 
decision processes with unbounded costs, Op. Res., 1989, 37, 626-633. 



20 
	 V. S. BORKAR AND M. K. GHOSH 

19. BORKAR, V. S. 

1. BERTSEKAS, D. AND SHREVE, S 

2. HORDIJK, A. 

3. PORTEUS, E. 

A convex analytic approach to Markov decision processes, Prob. 

Theory Related Fields, 1988, 78, 583-602. 

Controlled semi-Markov model under long-run average rewards, J. 

Stat. Malin. Inference, 1939. 22. 223-242. 

On stationary strategies in Bore! dynmaic programming, Math. OR, 

1992. 17. 392-397. 

Stochastic optimal control-the discrete time case, 1978, Academic 

Press. 

On the convergence of policy iteration in finite state undiscounted 
Markov decision processes: the unichain case. Math.OR, 1987, 12, 

163-176. 

Survey of numerical methods for finite Markov and semi-Markov 

chains, XII Conf on Stochastic Process Applications, Ithaca, NY, 

1983. 

20. BHATTACHARYA, R. N. AND 

MAJUMDAR, M. 

21. FEINBERG, E. A. 

25. VARAIYA, P. 	 Optimal and suboptimal stationary controls for Markov chains, IEEE 
Trans. Automat. Control, 1978, AC-23, 388-394. 

26. BERTSEKAS, D. AND TSITSIKL1S, J. Parallel and distributed computation-numerical methods, Ch. 4, 

pp. 323-324, 1989. Prentice-Hall. 

27. PAPADIMITRIOU, V. AND 	The complexity of Markov decision processes, Math. OR, 1987, 12, 

TSITSIKLIS, J. 	 441-450. 

28. ISENG, P. 	 Polynomial time algorithms for finite horizon. stationary Markov 
decision processes, Technical Report CICS-P-65, Center for 
Intelligent Control Systems, MIT, Massachusetts. USA. 1988. 

29. Grt-rms, J. C. AND JONES, D. M. A dynamic allocation index for design of experiments. In Progress in 
statistics, Vol. 1, (.1. Gani, K. Sarkadi and J. Vince, eds), 1974. pp. 161- 
173, North-Holland. 

30. VARAIYA, P., WALRAND, J. AND 	Extensions of the multi-armed bandit problem, the discounted case, 
BUYUKKOC. C. 	 IEEE Trans. 1985, AC-30, 426-439. 

31. TSITSIKLIS, J. 	 A short proof of the Gittins index theorem, Technical Report CICS 
P-363, Centre for Intelligent Control Systems, MIT, Massachusetts. 
USA, 1993. 

32. WHITTLE, P. 	 Arm acquiring bandits, Ann. Prob, 1981. 9, 284-292. 

33. WEBER, R. R. AND WEISS, G. 	On the index policy for restless bandits, J. App!. Prob., 1990, 27, 
637-648. 

34. CHEN, Y. R. AND 

HATEHAKIS, M. 
Linear-programming for finite state multi-armed bandit problems, 
Math. OR, 1896, II, 180-183. 

35. Kumov, G. P. Time sharing service systems, I., Th. Prob. App!., 1974, 19, 532-551. 

36. HAWK, B. Optimal control of two interacting service stations, IEEE Trans. 
Automat. Control, 1984, AC-29, 491-499. 

37.  HIPP, S. K. AND 

HOLZBAUR, U. D 
Decision processes 	with 	monotone 	hysteretic policies, 	Op. 	Res., 
1988. 36, 585-588. 

38. PrrTENGER, A. Monotonicity in Markov decision processes, Math. OR. 1988. 13. 
65-73. 



RECENT TRENDS IN MARKOV DECISION PROCESSES 
	

21 

39. GLAZEBROOK, K. D. 	 Sensitivity analysis for stochastic scheduling problems, Math. OR. 
1987, 12, 205-223. 

40. VAN DIJK, N. M. AND 	 Perturbation 	theory 	for Markov 	reward 	processes 	with 
PUTERMAN, M. 	 applications to queueing systems, Adv. Appl. Prob., 1988, 20, 79-98. 

41. VAN DIJK, N. M. AND 	 Perturbation 	theory 	for 	unbounded-Markov 	reward 
PUTERMAN, M. 	 processess with applications to queueing, Adv. Appl. Prob., 1988, 

20, 99-111. 

42. SHWARTZ, A. AND 	 Comparing policies in Markov decision processes-Mandl's lemma 
MAKOWSKI, M. 	 revisited, Math. OR, 1990, 15, 155-174. 

43. LovuoY, W. S. 	 Policy bounds for Markov decision processes, OP. Res., 1986, 34, 
630-637. 

44.  FORESTIER, J. P. AND 

VARAIYA, P. 

Multilayer control of large Markov chains, IEEE Trans. Automat. 
Control, I978,AC-23, 298-304. 

45.  QUADRAT, J. P. Optimal 	control 	of 	perturbed 	Markov 	chains. 	In 	Singular 
perturbations 	and 	asymptotic 	analysis 	in 	control 	systems 
(P. 	Kokotovic, A. 	Bensoussan and G. Blankenship, eds), Lecture 
Notes in Control and Information Sciences No. 90, pp. 288-309, 
Springer-Verlag. 

46. KOEHLER, G. Relationships between various Markovian decision problem classes, 
SIAM Control Opt., 1990, 28, 1452-1460. 

47.  DUTTA, P. K. What do discounted optima converge to? A theory of discount rate 
asymptotics in economic analysis, 1 Econ. Theory, 1991, 55, 64-94. 

48.  GHOSH, M. K. Markov decision processes with multiple costs, OR Len., 1990, 9, 
257-260. 

49.  V1SWANATHAN, B., 

AGGARWAL, V. V. AND 
Multiple criteria Markov 	decision 	processes. 	In 	Multiple criteria 
decision making, (M. K. Starr and M. Zeleny, eds) Vol. 6, TIMS 

NAIR, K. P. K. Studies in Management Sciences, North-Holland. 

50. WHITE, C. C. AND KIM. K. M. Solution 	procedures 	for solving vector criterion 	Markov decision 
processes, Large Scale Systems I, 1980, 129-140. 

51.  BEUTLER, F. J. AND Ross. K. W. Optimal policies for controlled Markov chains with a constraint, 
Math. Anal. App!., 1985, 122. 236-252. 

52.  Ross, K. W. Randomized 	and 	past-dependent 	policies 	for 	Markov 	decision 
processes with multiple constraints, Op. Res., 1989, 37, 474-477. 

53. BORKAR, V. S. 	 Ergodic control of Markov chains with constraints — the general case, 
SIAM J. Control Opt., 1994, to appear. 

54. Ross, K. W. . AND 	 Markov decision processes with sample path constraints: the 
VARADARAJAN, R. 	 communicating case, Op. Res., 1989, 37, 780-790. 

55. HORDIJK, A. AND SPTEKSMA, F. 	Constrained admission control to a queueing system, Adv. Appl. 
Prob., 1989, 21, 409-431. 

56. FEINBERG , E. AND SHWARTZ, A. 	Markov decision models with weighted discounted criteria, Math. 
OR, 1993, to appear. 

57. KRASS, a, FILAR, .1 AND 	 A weighted Markov decision process, Op. Res., 1992, 40, 1180— 
SINHA, S. 	 1187. 



22 
	 V. S. BORKAR AND M. K. GHOSH 

58. FERNANDEZ-GAUCHERAND, E. 	Controlled Markov processes on the infinite planning horizon: 

GHOSH, M. K. AND MARCUS, S. I. weighted and overtaking cost criteria, Z. Op. Res., 1993, to 

appear. 

59. VON WE1ZSACKER, C. 	 Existence of optimal programs of accumulation for an infinite time 

horizon, Rev. Econ. Stud., 1965, 32, 85-164. 

60. GALE. D. 	 On optimal development in a multisector economy, Rev. Econ. Stud., 

1967, 34, 1-19. 

61. LEIZAR0W1TZ, A. 	 Infinite horizon optimization for finite state Markov chains, SIAM 

J. Control Opt., 1987 25, 1601-1618. 

62. FILAR. L. KALLENBERG, L. C. M., Variance-penalized Markov decision processes. Math. OR, 1989, 14, 

LEE, H. M. 	 147-161. 

63. ALTMAN, E. AND SHWARTZ, A 

63. MONAHAN, G. E. 

64. PLATZMAN, L. 

65. FERNANDEZ-GAUCHERAND, E., 
ARAPOSTHASIS, A. AND 

MARCUS, S. I. 

Markov decision processes and state-action frequencies. SIAM J. 

Control Opt., 1991, 29, 786-809. 

Variability sensitive Markov decision processes, Math. OR, 199 1 , 

17, 558-571. 

Efficient scheduling policies to reduce mean and variance of cycle- 

time in semiconductor manufacturing plants, preprint, 1993, 
Coordinated Science Lab., Univ. of Illinois at Urbana-Champaign. 

A survey of partially observable Markov decision processes: theory. 
models and algorithms, Mgmt. Sci., 1982, 28, 1-16. 

Optimal infinite-horizon undiscounted control of finite probabilistic 
systems, SIAM J. Control Opt., 1980, 18, 362-380. 

On the average cost optimality equation and the structure of optimal 
policies for partially observable Markov decision processes. Ann. 

OR, 1991, 29. 429-470. 

64. BAYKAL-GURSOY, M. AND 

Ross, K. W. 

65. Lu, S. C. H., RAMASWAMY, D 
AND KUMAR, P. R. 

69. PICCIONI, M 

70. ELTON, J. AND PICCIONI, M. 

71. LOVEJOY. W. 

72. MANDL, P. 

73. scHAL, M. 

74. BORKAR, V. S. AND VARAIYA, P 

75. BORKAR, V. S. AND VARA1YA, P 

76. DOSH1, B. AND SHREVE, S. 

On the asymptotic behaviour of the predictor of a binary Markov 
chain, Boll. Uni. Mat. Ital. Ser. A. 1990. 7, 319-329. 

Iterated function systems arising from recursive estimation problems, 
Prob. Theroy Related Fields, 1992, 91, 103-114. 

Computationally feasible bounds for partially observed Markov 
decision processes, Op. Res. 1991, 39, 161-175. 

Estimation and control in Markov chains, Adv. Appl. Prov., 1974, 6, 
40-60. 

Estimation and control in discounted dynamic programming. 
Stochastics, 1987, 20, 51-71. 

Adaptive control of Markov chains 1: finite parameter set, IEEE 
Trans. Automat. Control, 1979, AC-24, 953-957. 

Identification and adaptative control of Markov chains, SIAM J. 
Control Opt., 1982, 20, 470-489. 

Strong consistency of a modified maximum likelihood estimator for 
controlled Markov chains, ./. App!. Prob., 1980, 17, 726-734. 

77. KUMAR, P. R. AND BECKER, A 
	

A new family of optimal adaptive controllers for Markov chains, 
IEEE Trans. Automat. Control, 1982, AC-27, 137-146. 



• 

78. 

79.  

	

RECENT TRENDS IN MARKOV DECISION PROCESSES 	 23 

MILITO, R. AND CRUZ, J. B. 	An optimization-oriented approach to adaptive control of Markov 
chains, IEEE Trans. Automat. Control, 1987, AC-32, 754-762. 

BORKAR, V. S. 	 The 	Kumar—Becker—Lin 	scheme 	revisited, 	J. 	Opt. 	Theory Appl. 
1990, 66, 289-309. 

80. BORKAR, V. S. On the Milito—Cruz adaptive control scheme for Markov chains, J. 
Opt. Appl., 1993, 77, 385-393. 

81. VAN HEE, K. Bayesian control of Markov chains, Math. Centrum Tracts No. 95, 
1978, Math. Centrum. Amsterdam. 

82. BORKAR, V. S. AND MUNDRA, S Bayesian 	parameter estimation 	and 	adaptive 	control 	of 	Markov 
processes with time-averaged cost, 1993, Preprint. 

83. FIERNANDEZ-LERMA, 0. AND Adaptive policies for discrete-time stochastic control systems with 
MARCUS, S. I. unknown distrubance distribution, Systems Control Len., 	1987, 9, 

307-315. 

84. EL FATTAt-t, Y. M. Gradient 	approach 	for 	recursive 	estimation 	and 	control 	in 	finite 
Markov chains, Adv. Appl. Prob., 1981, 13,778-803. 

85. JALALI, A AND FERGUSON, M Adaptive 	control 	of Markov 	chains 	with 	local 	updates, 	Systems 
Control Lett., 14,1990, 209-218. 

86. AGARWAL, R., TENEKETZIS, D Asymptotically 	efficient 	adaptive 	allocation 	schemes 	for 
AND ANANTHRAM, V. controlled 	Markov 	chains: 	finite 	parameter 	space, 	IEEE 

Trans.Automat. Control, 1989, AC-34, 1249-1259. 

87. LAI, T. L. AND ROBBINS, H Asymptotically 	efficient 	adaptive 	allocation 	rules, 	Adv. 	App!. 
Math., 1985, 6, 4-22. 

88. WHEELER, R. AND Decentralized 	learning 	in 	finite 	Markov 	chains, 	IEEE 
NARENDRA., K. S. Trans. Automat. Control, 1986, AC-31, 519-526. 

89. SANTHARAM, G. AND A 	reinforcement learning neural 	network 	for adaptive control of 
SAS -TRY, P. S. Markov chains, preprint. 

90. WATKINS. C. AND DAYAN, P Q-learning, Mach. Learning, 1992,8, 279-292. 

91. BARTO, A., BRADTKE, S. Real-time 	learning 	and 	control 	using 	asynchronous 	dynamic 
AND SINGH, S. P. programming, Technical 	Report 91-57, 	1991, Dept. of Computer 

Science, Uni. of Massachusetts. 

92. TSITSIKLIS, J. Asynchronous stochastic approximation and Q-learning, preprint. 

93.  GEMAN, S., BIENENSTOCK, E. Neural 	networks 	and 	the 	bias/variance 	dilemma. 	Neural 
AND DOURSAT, R. Computation, 1992, 4, 1-58. 

94. ARAPOSTHASIS, A., 
FERNANDEZ-GAUCHERAND, E 
AND MARCUS S. I. 

Analysis 	of an 	adaptive 	control 	scheme 	for a 	partially 	observed 
Markov chain, Proc. 	29th Conf. on Decision and Control, 	1990, 
pp. 1438-1444, IEEE Press. 

95.  ARAPOSTHASIS, A. Analysis 	of an 	identification 	algorithm 	arising 	in 	the 	adaptive 	Esti- 
AND MARCUS, S. I. mation of Markov chains, Math. Control. Signals Systems, 1990, 3, 1-29. 

96. SANDELL, N., VARAIYA, P., 

ATHANS, M. AND SAFONOV, M 
Survey of decentralized control 	methods 	for large scale systems, 
IEEE Trans. Automat. Control, 1978, AC-23, 108-128. 

97.  Hsu, K., AND MARCUS, S. I. Decentralized control of finite state Markov processes, IEEE Trans. 
Automat. Control, 1982, AC-27, 426-431. 



24 V. S. BORKAR AND M. K. GHOSH 

98. FEDERGRUEN, A. AND ZIPKIN, P. An inventory model with limited production capacity and uncertain 
demands I: the average cost criterion, Math. OR, 1986, 11, 193-207. 

99. FEDERGRUEN, A. AND ZIPKIN. P. An inventory model with limited production capacity and uncertain 
demands 11: th discounted cost criterion. Math. OR, 1986, 11, 208- 

215. 

100. GUN., L. AND MAKOWSKI, A. Optimal production strategies for discrete-time machines subject to 

failures and breakdowns, Technical Report TR-86-1, 1986, Systems 
Research Center, Uni. of Maryland. College Park. 

101. STIDHAM, S. Optimal control of admission to a queueing system, IEEE Trans. 
Automat. Control, 1985, AC-30, 705-713. 

102. WARLAND, J. Introduction to queueing networks, Ch. 	8-9. pp. 253-314, 	1988, 
Prentice-Hail. 

103. HSIAO, M. AND LAZAR, A. A 	game 	theoretic 	approach 	to 	decentralized 	flow 	control 	of 
Markovian queueing networks. In Performance 87 (P.-J. Courtois, 
G. Latouche, eds), 1988, pp. 55-73. Elsevier. 

104. KUMAR, S. AND KUMAR, P. R. Performance bounds for queueing networks and scheduling policies, 
preprint, 	1993, 	Coordinated 	Sciences 	Lab., 	Univ. 	of 	Illinois 	at 
Urbana-Champaign. 

105. KURAPATI, S. AND KUMAR, A. Optimal 	scheduling 	of 	a 	processor 	executing 
protocol stack, Proc. NET  WRORKS 92, to appear. 

a 	communication 

106. KUM, J. AND KUMAR, A. Optimal control of arrivals to queues with delayed queue length 
information, Proc. 31st Conf. on Decision and Control, 1992, IEEE 
Press. 

107. MUKHERJEE, U. AND Fairness 	in 	queue 	lengths 	through 	dynamic 	access 	control, 	in 
PILLAI, A. R. preparation. 

108. BERTSEKAS, D. AND 
TS/TSIKLIS, J. 

An analysis of stochastic shortest path problems, Math. OR, 1991, 
16, 580-595. 

109. FRIEDMAN, J. Oligopoly and the theory of games, Ch. 	10, pp. 213-233, 	1977, 
North-Holland. 

110. BORKAR, V. S. Optimal control of diffusion processes, Pitman Research Notes in 
Maths. No. 203, 1989, Longman Scientific and Technical. 


