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Abstract 

In this paper we survey the many applications of the operations of convolution and Dilworth truncation of 
submodular functions. Among other things we discuss in detail the strong analogies that exist between 
structural results related to the two operations, in particular those that exist between the principal partition of a 
submodular function with r,tspect to a positive weight function and the principal lattice of partitions of a 
submodular function. 
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1. Introduction 

In combinatorial mathematics submodular functions are a relatively recent phenomenon. 
Systematic interest in this area perhaps began with the work of Edmonds' in 1970. By 
then, matroids were well studied with numerous applications to engineering systems 
being found 2. Submodular functions could be regarded as a generalization of matroid 
rank functions and it is natural to wonder whether the generalization is really required. 
The answer is that even if we ignore considerations of theory we come across them far 
more often in practical problems than matroids. The method of attack for these problems 
using submodular function theory is usually quite simple and the algorithms generated 
very efficient. A study of basic isubmodular operations such as convolution and 
Dilworth truncation is likely to prove fruitful for practical algorithm designers since, in 
addition to completely capturing the essence of many practical situations, they also allow 
us to give acceptable approximate solutions to several intractable problems. 

In this paper we sketch the many applications of the convolution and the truncation 
operations. We also emphasize, through a number of instances, the strong analogy that 
exists in their properties and in the problems involving them. 

The outline of the paper is as follows: Section 2 describes some preliminary notions. 
Sections 3 and 4 describe convolution and truncation operations, respectively, along with 
their applications. Section 5 is on the analogy between the principal partition, which is 
naturally associated with convolution, and the principal lattice of partitions, which is 
associated with truncation. Section 6 deals with conclusions. 
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2. Preliminaries 

If X is a subset (proper subset) of Y, we denote it by X ç Y (X C Y). 

A set function p :2 s  —> 9t is a submodular (supermodular) function iff 

p(X)+ p(Y)?.: p(X L.) Y)+ p(X nY), 

(p(X)+ p(Y)5 p(X uY)+ p(X nY)) VX,Y QS. 

If further p(P) = 0 and is monotone increasing then it is a polymatroid rank function. If, 

in addition, p is integral and p(A u e) p(A) 4- I then p is a matroid rank function. Let 

p(.) be a submodular function on subsets of S with p(0)= 0. A separator of p(.) is a 

subset X of S such that p(X)+ p(S — X) = p(S). It can be easily shown that unions and 
intersections of separators yield separators. A minimal nonnull separator is an elementary 

separator. 

A matroid M is alternatively defined as a pair (S. I) where S is a set and / a collection 

of subsets called independent sets such that 

• XcY, Ye IXe/. 

• X, Ye /,1Xl<IYI3egE (Y—X) s.t.(Xue)e /. 

The rank of a set X, denoted by r(X), can be identified with the (unique) cardinality of the 
maximal independent subset contained in it. It can be shown that r(s) would be a matroid 
rank function as defined earlier. A maximal independent subset of S in M is called a base 
of M. A minimal nonindependent set is called a circuit of M. An element of M that is 
present in no circuit is called a coloop of M. If b is a base of M and e e b then e u b 
contains a unique circuit called the fundamental circuit C(e, b). The closure of a set X in 
M is the maximal superset of X of the same rank as X. A set that is its own closure is 
called a flat. (For definitions and proofs regarding submodular functions and matroids see 
Welsh3 .) 

A bipartite graph (Vi e* VR, E) has VI_ as its left set of vertices and VR as its right set of 
vertices and E as the set of its edges. All the edges have one end point in the left set and 
the other in the right set. A matching of a graph is a set of edges no two of which have 
common end points. 

A preorder on S is a transitive relation (?..) on S such that a ?_ a Via E S (but a b, 
b a does not imply a = b). A partial order is a preorder in which a .> b, b • a implies 
a = b. An ideal I of a preorder (>.) on S is a subset of S that satisfies a E I, a b 
b €1. With every collection C of subsets of S closed under union and intersection we can 
associate a preorder (a.c) by the rule 	b iff it is true that whenever a is in a member set 
of C, b is also in it. 

A partition of a set S is a collection of subsets (called its blocks) of S no two Of which 
intersect and whose union is S. A partition Ili  of S is said to be coarser (finer), than a 
partition /72  of S. denoted by fl i  172 (denoted by R I  172 ), iff every block of the latter .  
(forma-) is contained in a block of the former (latter). If /7) , IT are two partitions 91 S 
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then the finest (coarsest) partition coarser (finer) than both is denoted by H i  V 112 

(HI A Hi). The collection of all partitions of S is denoted by P. 

We abuse the notation in the following instance: A modular function ol with o.)(0) = 0 
is treated simultaneously as a vector to : S -> 91 and a set function w: 2s  --> 9t with 

co(X) = Ettexoi(e). Such a modular function is called a weight function. 

3. Convolution 

Definition 3.1. Let f(.), g(.) : 2 3. 	91. The lower convolution of f(.) and g(.), denoted 
by f * g(.), is defined through 

f * g(X) min ycx  (f (Y) + g(X Y)). 

The collection of subsets Y at which f (Y) + g(X—Y)= f * g(X) is denoted by Al f  g (X) )  
while if X = S. we will simply write Al f  g. The upper convolution off (.) and g(.), denoted 
by f 7fr -  g(.), is defined through 

f Tcg(X)-7= max ycx  (f (Y) + g(X — Y)). 

We then have the following basic result (see, Lovasz 4  for instance). 

Theorem 3.1. If f(.)  is subnzodular (supermodular) and g(.) is modular then f * g(.) 
(f T gt )) is submodular (supernzodular). 

Remark 3.1. Henceforth, we will confine our attention to lower convolution of 
submodular functions with submodular or modular functions. The results can be 
appropriately translated for upper convolution in the supermodular case. 

Remark 3.2. If f(.), g(.) are both submodular,f * g(.) is not always submodular. 

We now list from the literature a number of examples which are related to the notion 
of convolution, more specifically, to that of principal partition. 

I. (a) Hall's Theorem (Hall s ). Hall's Theorem on systems of distinct representatives states 
the following in the language of bipartite matching: `Let B (V L  Lt.) VR, E) be a 
bipartite graph. There exists a matching meeting all the vertices in V L  iff for no 
subset X of VL  we have 1 f(X) 1 < I X I'. This condition is equivalent to say- 
ing 	iff (r * I. 0 (vo =I Iv. 

(b) Dulmage---Mendelsohn decomposition of a bipartite graph (Dulmage and 
Mendelsohn°.  7 . The above-mentioned authors made a complete analysis of all min 
covers and max matchings in a bipartite graph through a unique decomposition 
into derived bipartite graphs. We present their decomposition using the language 
of convolution. 
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Let B a (Vie w 14, E) be a bipartite graph. Let M I  denote the collection of subsets of 

Vt, which minimize MX) 	+ I V,. —X1, where rL (X) :CI 1 nx.) 1, X ç VL., with 

f(xe) denoting the set of vertices adjacent to vertices in X. Thus, 

min xcv  ha) = 	* Ito (vo. It is easily seen that M i  is closed under union and 

intersection. Let Xrni„ and X n,„„ be the minimal and maximal sets which are members of 

MI . Then X.. — Xini„ can be partitioned into sets Ni  such that each Ni  is either contained 

in a given member of M I  or does not intersect it and further the partition is the coarsest 

with this property. Let 17 be the partition whose blocks are X mi„, all the Ni  and VL — Xina„, 

Let us define a partial order (.?..) on the blocks of IT as follows: Ni ?_ M iff M is present in 

a member of A/ 1  whenever Al i  is present. For all Ni, 	)(mi. and VI  — Xmax  M. Next, 

for each block K of 17 we build the bipartite graph BA'  as follows: Let /K be the principal 

ideal of K (i.e. the collection of all elements (blocks of 17) that are 'less than or equal to' 
K) in the partial order. Let ./ K  be the union of all the elements in Ix. Then BK  is the 

subgraph of B on Kit) crud—ru K  —10). The partial order R) induces a partial order 

(.?_B) on the collection of bipartite graphs BI  K e 17. The Dulmage—Mendelsohn 

decomposition is the collection of all BK 's together with the partial order (> 8 ). 

We now list the important properties of this decomposition. 

• A set X U Y, X CVL .  Y VR, is a minimum cover of B (i.e. every edge of B is 
incident on some vertex of the set) iff VL  — X is the union of blocks in an ideal 
contained in Xmas  of the partial order (?..) and Y= 	- X). 

• A set of edges P is a maximum matching of B iff P =U Ken PA', where PA'  is a 
maximum matching of BK . 

• Every maximum matching is incident on all the vertices in r(xmax) and VI, — Xmin• 

2. (a) Decomposition of a graph into minimum number of subfo rests (Tunes, 
Nashwilliams9). Tune and Nashwilliams characterized graphs which can be 
decomposed into k disjoint subforests as those which satisfy kr(X)?.IX1 
VX c E(G). This condition can be shown to be equivalent to 
kr * 1 .1 (E(G)) =1 E(G)1. 

We next list four problems and give their (combined) solution. 

(b) Tree of minimum size hybrid representation (Kishi and Kajitani m). Let a tree t be 
represented by a pair of sets (A„ B,), where A, c t, t n B, = 0 such that 
(A,1 , 	= (A,, , Br) ) iff t i  = t2. Note that there can be several pairs representing 

the same tree, for instance, (a', ), (0, E(G)— t) both represent t. We call 
A, u B,I the size of the representation. Find a tree which has the representation 

of minimum size. 
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(c) Maximum distance between two trees (Kishi and Kajitani 10). Find two trees in 
a given graph which have the maximum distance between them (distance 
between two trees t i  and t2  is I t i 	t2  1), i.e., the size of their union is the largest 
possible. 

(d) The topological degree of freedom of an electrical network (Ohtsuki a a l ') 
Select a minimum sized set of branch voltages and branch currents from which, 
by using Kirchhoff's voltage equations and Kirchhoff's current equations, we can 
find either the voltage or the current associated with each branch. The minimum 
size is called the topological degree of freedom of the network, or equivalently, 
hybrid rank of the graph. 

(e) The Shannon switching ganze 12 . G is a graph with one of its edges, say em , 
'marked'. There are two players —a 'cut' player and a 'short' player. The cut 
player during his turn removes (opens) an edge leaving the end points in place. 
The short player during his turn fuses the end points of an edge and removes it. 
Neither player is allowed to touch the e m. The aim of the cut player is to destroy 
all the paths between the end points of em  (equivalently, destroy all circuits 
containing em). The aim of the short player is to fuse the end points of em  
(equivalently, destroy all cut sets containing em). The problem is to analyse this 
game to characterize situations where the cut or short player playing second can 
always win and to determine the winning strategy. 

(f) The maximum rank of a cobase submatrix (Iri"). For a rectangular (m x n) mat- 
rix with linearly independent rows, let us call an nz x (n - m) submatrix a cobase 
submatrix iff the remaining set of columns correspond to an identity matrix. The 
term rank of a matrix is the maximum number of nonzero entries in the matrix 
which belong to distinct rows and distinct columns. Find 

• a cobase matrix of maximum rank, and 

a cobase matrix of minimum term rank. 

Solution. For the above four problems the solution involves essentially the same 
strategy: Find a set X (or a minimal set Xm i n  Or a maximal set Xmax) such that (2r * 1 . 1) 
(E(G)) = 2r(X) + 1 E(G) - X1. Select a tree t which has maximal intersection with X. 
The representation 0 n X, (E(G) 	(E(G)-X)) has the least size among all 
representations of all trees. 

The maximum distance turns out to be the same as the above minimum size of 
representation. Kishi and Kajitani l°  gave an algorithm for building a pair of maximally 
distant trees which is essentially the well-known algorithm for building a base of the 
union of two matroids". 

Let tx  be a tree of the subgraph on X. Let Ex  be a cotree of the graph on G x 
(E(G) – X) (the graph obtained by fusing the end points of edges in X and removing 
them). Select the branch voltages of tx  and the branch currents of Li as the desired set of 
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variables. As is easily seen, the topological degree of freedom is also the same as the 
minimum size of representation of a tree. 

If em  e Xrnin , the short player can always win. If em  E E(G) X,„„„ the cut player can 

always win. If e m  E Xmax  X„,i„, whoever plays first can always win. The winning 
strategies involve the construction of appropriate maximally distant trees during every 

turn. 

The solution is similar for the last problem. Let S be the set of all columns and let 

r(.) be the rank function on the collection of subsets of S. Then the maximum rank of 
a cobase matrix = the minimum term rank of a cobase matrix = (2r * 1 . 1) (S) r(5). 

Select two maximally distant bases (bases cw: maximally independent columns). Perform 
row operations so that an identity matrix appears corresponding to one of these. 
The submatrix corresponding to the complement of this base is the desired cobase matrix 
which has both maximum rank as well as minimum term rank. 

3. (a) The matroid intersection problem (Edmonds' s). Given two matroids MI, M2 on S 
find a maximum cardinality subset which is independent in both matroids. 

Solution. The size of the maximum-cardinality common independent set = (Fs, * r 2) 
(S). To find this set one can either use Edmond's algorithm for this purpose or find bases 
b l , 14 of M I , MI, which are maximally distant. (Hence M t  denotes the dual of M.) 

(b) The matroid union. Given two matroids MI, M2, find the maximum-cardinality 
union of an independent set in M I  and an independent set in M2. 

Solution. The collection of all unions of two independent sets, one independent in M I  
and the other in M2, is also a matroid denoted by M I  v M2. Thus, the maximum- 
cardinality union of an independent set of M I  and one of M2 is a base of M i  v M2. There 
is the well-known" matroid union algorithm for constructing this set. The rank function 
of this matroid is (r1  + r2) * 1 . 1 (.). The union of all circuits of this matroid is the min- 
imal set X which satisfies (r 1  -e- r2) * 1 . I (S) = (ri  + r2) (X) + 1 S — X 1. 

4. Representability of matroids (Horn 16). Horn showed that k independent sets 
of columns can cover the set of all columns of a matrix iff there exists no subset A 
of columns such that I A 1 > kr(A). He conjectured that this might be correct only 
for representable matroids. If the conjecture had been true then there would have been 
a nice characterization of representability. However, Edmonds" showed that this 
result is true for all matroids. He gave an algorithm for constructing k bases of 
a matroid whose union has the maximum cardinality. His results are equivalent 
to saying that k bases will cover the underlying set S of a matroid M iff M k , the union 
of M with itself k times, has no circuits. The rank function of this matroids 
is (kr * I . 1) (.). So the result can be stated equivalently as 'covering is possible iff 
(kr * 1 .1) (S) = I S I' . 

5. Polyhedral interpretation for convolution (Edmonds', also Lovasz4  and 
Cunningham') 

• 
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Definition 3.2. Let f (.) be a real-valued set function on subsets of S {e l , . . . , en }. 

Let xx denote the characteristic vector of X g S. Let 

x(X) (xx)Tx VX c S. 

Then the polyhedron denoted by P f  is defined as follows: A vector x E 9is  belongs to P1  if 
x(X) f (X) V X g S. We say f(.) is polyhedrally tight if for each X g S there exists a 
vector x E Pf  such that x(X) = f (X). 

(a) (i) Let f (.), g (.) be set functions on subsets of S. Then Pf  n Pg = Pf * g. 

(ii) If f(.), g(.) are submodular functions that take zero value on (1) then f * g(.) is 
polyhedrally tight. Equivalently, 

f st g(X) miny cx (f (Y) + g(X - Y))= max(x(X)), 

where x is a vector satisfying x(Z) 	x(Z) g(Z) VZ c X. Further, if 
f 	g(.) are integral, x can be chosen to be integral. 

6. Submodular function minimization (see Lawler' s). Let p(.) be a submodular function. 

Let g(.) be the weight function defined through g(e) p(S —e) p(S). Let 

f(.) p(.) + g(.). It can be shown that f(.) is a polymatroid rank function and that p(.) 

reaches a minimum at X c S iff X E MI g (see Definition 3.1). Thus, minimization of 
a submodular function is equivalent to convolving a polymatroid rank function with a 
weight function. 

7. New matroids (Edmonds 1 ). The following is one of the most important ways of 
generating new matroids. 

Theorem 3.2. Let f(.)  be an integral polymatroid rank function, k, 	an integer and let 
g(.) -el 0 I. Then k f * g(.) is a matroid rank function. 

8. The principal partition. The idea of convolution has found perhaps its strongest 
application in the study of the principal partition, which concerns itself with the sets 
Y c X at which we have A f * g(X) = A f 	g(X — Y), A O. Indeed, one is temp- 
ted to conclude that the function f*  g(X) is often less important than such subsets of 
X. This study started with the work of Kishi and Kajitani m. It was completed for the 
case of a matroid with respect to the weight function 1 . 1 independently by 
Tomizawa l9  and Narayanan 20 . The case of two graphs was studied by Ozawa 21  and 
that of two polymatriods by Nakamura and Iri 22 . Much work has been done by Iri 13 , 
Tomizawa23  and Fujishige24. 25  and others clarifying the underlying notions. A survey 
of applications may be found in hi and Fujishige 2 . 

Definition 3.3. Let f (.), g(.) be polymatroids on the subsets of S. The collection of all 
subsets of S which belong to some M ai.g . A e 9i (see Definition 3.1) is called the 
principal partition of ( f (.), g(.)). 
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As can be seen below, one of the interesting features of the principal partition is that 
one need only examine a finite number of As in order to solve the optimization problems 

for all the As. 

We will confine ourselves to the case where g(.) is strictly increasing, more 

particularly, to the case where g(.) is a positive weight function. 

We list below the main properties of the principal partition. 

(a) For the case where f(.), g(.) are submodular, but g(.) not necessarily strictly 

increasing, we have: 

Property PP I . The collection MA LE , A 0, is closed under union and intersection and 

thus has a unique maximal and a unique minimal element. 

Let r, XA, denote, respectively, the maximal and minimal elements of M AI  e . 

Remark 3.3. For the remaining properties we assume f(.) to be submodular and g(.) to be 
a strictly increasing (Le., g(Y) < g(X), VY c X g 5) polymatroid rank function. 

(b) Property PP2. If At  > A2 0, then X Ai C XA 2 . 

(c) Definition 3.4. A nonnegative value A for which M A t g  has more than one subset 
as a member is called a critical value of (f Q, g(.)). 

Property PP3. The number of critical values of (f(.), g(.)) is finite. 

(d) Property PP4. Let Xi, . . . , 2,, be the decreasing sequence of critical values of 
(f (.), g(.)). Then XL = XL., for i = 1, .. . , t — 1. 

(e) Property PPS. Let (A i ) be the decreasing sequence of critical values. Let 
A i  > a > A i+1 . Then X A• = Xo = X0  = 

Remark 3.4. Each of the collection Marx  is closed under union and intersection. Hence 
one can define preorders for each of them as follows: e i  4 e2, el, e2 S, iff whenever ei 
is in a member set of Al A L e  so is e2 . For a given A, it is clear that r, the maximal element 
of Al g  is partitioned by the equivalence classes of the corresponding preorder. 

Here is a simple result on 'density' which suggests usefulness of principal partitions. 
The routine proof is omitted. 

Definition 3.5. Let f (.) be a polymatroid rank function and g(.) a positive weight function 
on subsets of S. The density of X c S with respect to ( f (.), g(.)) is the ratio g(X)/f (X). 

Theorem 3.3. Let f (.) be a polymatroid rank function and let g(.) be a weight function on 
the subsets of S. Let X be a member of M a  1 g  for some A. Then among all sets which have the same g(.) value as itself, X has the maximum density. 
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4. Dilworth truncation 

In this section we study the Dilworth truncation (truncation for short) operation on 
submodular functions, some of its many theoretical and practical applications and some 
structural results analogous to those on the convolution operation. 

Definition 4.1. Let f 0 be a real set function on the subsets of S. The partition associate 

of f(.), defined on the collection Ps  of all partitions of S, is denoted by j(.) and is 

defined through fan IN, En f(Ni ). The lower (upper) Dilworth truncation of f(.)  is 

denoted by !,  (.) (140) and is defined through 

f1(cP)=.0t MX) a mingep x [Ef(Xi)] 
X,eI7 

[ft(d)e0, f t(X) maxi-1 E13[ yfixi)]] 
X,efl 

Remark 4.1. As in the case of convolution, perhaps even more important than the function 
f, (.) (f r  (.)) are the partitions at which 10 reaches its optimum. 

When f (.) is submodular (supermodular) l(.)  has the following attractive property. 

Theorem 4.1". Let ITN denote a partition of S such that N is a block and all other blocks 
are singletons. Then f (.) is submodular (supermodular) if 

fu-o+ fa7 TRn N  v m+ :Ant N  Am 

(PM + 	05- PriNv 	N All)) \Qin E  PS 

Using Theorem 4.1 we can prove the following two results. 

Theorem 4.2 30 . Let f (.) be submodular (supermodular) over subsets of S and let 111, 112 
minimize (maximize) l(.) over P s. Then: 

1• 171 v 112 (111 A 172 ) also minimize (maximize) .1(.). 

2. If N 11  . , Nk  are some of the blocks of f7 and M I , .. • Mr  are some of the blocks 
of .112  such that N nM i = 0, Vi, j and u N i u = 5, then the partition 
(N 1 ,. • • 9 Nic, Ali • • • Al, j minimizes (maximizes) f(.). 

Theorem 4.3. Let f(.)  be subnzodular (supermodular) over subsets of S and let X c Y 
S. Let 17 minimize (maximize) Jo  I P. Then there exists a 17'in P y  such that the 

blocks of flare contained in the blocks of 11' and IV minimizes (maximizes) 10 I P. 

The following well known and fundamental result & 26  can be proved using the above 
results. 
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Theorem 4.4. If f(.)  is submodular (supermodular) on subsets of S then f, 	( fr ()) is  

submodular (supermodular). 

We now list a number of examples from the literature relevant to the Dilworth 

truncation operation. 

1. Truncation of matroids (Dilworth"). Let M be a matroid on S. Let Sk be the collection 

of k-rank flats of M. Build a matroid Mk on Sk such that 

• each element of Sk has rank 1; 

• if A is a flat of M with rank p> k then A, the collection of all k-rank flats of M 

contained in A, is a flat of Mk with rank p—(k-1). 

Solution. Let P x  denote the collection of all partitions of X g Sk. Define the rank function 

rk  (.) on subsets of Sk as follows: 

rk (CP) 0, rk(X) min fi e px  x ( r-(k —1))(X i ). 

x,ell 

It can be shown that 

• rk  (.) is a matroid rank function, 

• if A is a flat of M with rank p> k then A is a flat of Mk with rank p-(k- 1). 

2. Intersecting submodular function (Lovasz 28). A set function f(.) on subsets of S is 

said to be intersecting submodular iff 

f(X)+ f(Y)_ f(XuY)+ f(X nY) VX,Y s.t. X —Y, Y— X, X nY 

Find a submodular function g(.) such that Pf = Pg . 

Solution. It turns out that f, 0 is submodular. This is also the desired function since for 
any set functionf 0 we have pi  = Pf ,. 

3. Hybrid rank relative to a partition of the edges of a graph (Narayanan 29). The problem 
described below arises when we attempt to solve an electrical network by 
decomposing it. First we define two operations on graphs. A node pair fusion means 
fusing two specified vertices v i , v2  into a single vertex v 12 , while a node fission means 
splitting a node v i  into v 11 , v 12  making some of the edges incident at v i  now incident at 
V i  and the remaining at v 12 . We are given a partition 17 of the edge set E(G) of a 
graph G such that the subgraph on each block of the partition is connected. Find a 
sequence of fusion and fission operations least in number such that the resulting graph 
has no circuit intersecting more than one block of n. (The hybrid rank problem given 
in the description of topological degree of freedom in Section 3 is a special case of 
this problem corresponding to the edge partition with singleton blocks.) 
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Solution. It is easy to see that one cannot lose if one performs fusion operations first and 

then fission operations. Let 1(X), X c V(G), be the set of branches incident on vertices in 

X. Let fr be a partition that minimizes 1/01-2. The best sequence is the following: Fuse 

each block of if into a single node. (If k nodes are in a single block, this involves k-1 

operations.) In the resulting graph, which we shall call G', perform the minimum number 

of node fissions required to destroy all circuits intersecting more than one block of FL 
This is relatively easy to do and the number of such fission operations is 

E men e(Ni )- r'(E(G)), where r'(.) is the rank function of G'. 

4. New matroids. A well-known method for generating new matroids from polymatroid 
rank functions is the following 30-32 . Let p(.) be an integral polymatroid rank function 
with it(e)= k, e E S. Let pk q = 1. The ( pp — q), is a matroid rank function. 

Example. Let V(.) be the polymatroid rank function on the subsets of E(G) (where G is a 
self-loop free graph) such that V(X) a-  number of vertices incident on edges in X. Clearly, 
V(e) = 2. Then (kV(.) (2k-1)), is a matroid rank function. In particular, (V0-1), is the 
rank function of the graph and (2V0-3), is the rank function of the rigidity matroid 
associated with the graph. 

5. Posing convolution problems as truncation problems 30' 33.34 . We give an example. 
Consider the convolution problem: Find min xcE(G)  Ar(X) + w(E(G)- X), A.> 0, where 

E(G) is the edge set, r(.) the rank function of the graph G and w(.), a weight function 

on E(G). Let 1(X) set of edges incident on vertices in X c V(G), let E(X) a set of 

edges incident only on vertices in X ç V(G) and let co(/(X)), 0.(E(X)) denote the sum 

of the weights of edges in the corresponding sets. Then one can show that X g E(G) 

solves the above convolution problem iff X = 	E(N). where //' solves the 

Find 	min nEpv(c) imic pi-A(J1) 	or, 	equivalently, 	find 

Thus, the principal partition of the rank function of a graph 

truncation 	problem: 

max nEpt, (G)  logEoy+X(17). 

can be determined equivalently by solving either of the above-mentioned truncation 

problems for appropriate values of A. Indeed, this approach yields the fastest 
algorithm currently known for this principal partition problem (0(EV2  log 2(V) for the 
unweighted case and 0(EV 3  log (V) for the weighted case). 

6. The principal lattice of partitions of a submodular function (Narayanan"). The natural 
optimization problems associated with convolution are over the collection of subsets 
of the underlying set S while those associated with Dilworth truncation are over the 
collection Ps  of partitions of S. The principal partition finds its analogue in the 
principal lattice of partitions. 

Definition 4.2. Let f (.) be submodular on the subsets of S. Let LA  denote the collection of 
partitions of S that minimize f — A. The collection of all partitions of S which belong to 

some LA, A e 9t, is called the principal lattice of partitions off (.). 
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features 	of the 	principal 	lattice of 
number of As in order to solve the 

As can be seen below, one of the interesting 
partitions is that one need only examine a finite 
optimization problems for all the As. 

We list below the main properties of the principal lattice of partitions. The reader 
might like to compare them with those of the principal partition given in Section 3. 

(a) Property PLPI. The collection L, is closed under join (v) and meet (A) operations 

and thus has a unique maximal and a unique minimal element. 

(b) Property PLP2- if Aq > A2, then RAI 5 '1A2 ' where it, 17, denote, respectively, the 

maximal and minimal elements of L. 

(c) Definition 4.3. A number A for which L, has more than one partition as a member is 

called a critical value off (.). e  

Property PLP3. The number of critical values off (.) is finite. 

(d) Property PLP4. Let A l , 	, A, be the decreasing sequence of critical values off O. 

	

Then 17 	= F 1 a 	for i = 1,... t t - 1. 

(e) Property PLP5. Let A 1 ,..., A, be the decreasing sequence of critical values. Let 

	

> a> 	Then /711, = 17c = p 

Definition 	4.4. 	If 	Hs IS - N 1 ,. .. , S - ba } 	is 	a 	partition 	of 	S, 	the 	collection 
{N i , ... , Nk}, denoted by H*, is called a copartition of S. Further it is said to be the dual 
copartition to 17. We say Flt 	171 	iff 	ri, 	n 2 . 

We now have the following lemma whose routine proof is omitted. 

Lemma 4.1. Let f(.) be a set function on subsets of S. Let f' (X) 	(S - X), VX g S. 
Then 

(a) (fT = f 

(b) ft) is submodular ifff (.) is submodular, and 

(c) f - 417*) = f - 417), where f - A.(FI*) 	ivef.(f' -  A,)(A1 i ). 

Remark 4.2. It is clear from the above lemma that we can define a 'principal lattice of 
copartitions (PLC)' for a submodular function f(.) by considering the dual copartitions to 
the partitions in the PLP of f'(.). We say that A is a critical value of the PLC of f iff it  
is a critical value of the PLP of f'(.). 

7. Optimal partitions30.35. 36 . Most large-scale problems are solved by taking recourse 10  
partitioning. This naturally gives rise to the problem of determining the optimal 
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partition relevant in the context. Usually, this amounts to determining a partition 
which minimizes 'interaction' between blocks. As is to be expected, this partitioning 
problem, even if it can be stated precisely, is invariably NP-hard. A promising 
approach to tackle this issue is to check whether the problem (or one near enough) can 
be stated as a truncation problem on an appropriate submodular function. The starting 
point is the following simple result 30  (the reader might like to compare with Theorem 
3.3). 

Theorem 4.5. Let Jr() be real-valued set function on subsets of S. Let 11 be any partition 
that minimizes R.)— A for some A.. Let 17 have n blocks. Then among all n block 
partitions of S, H minimizes P.). If f(.) is submodular then every partition in the 
principal lattice of partitions of f (.) has this property. 

It must, however, be remembered that there may be no partition in the PLP with the 
desired number, say k, of blocks. A simple way to get 'near optimal' partitions is to first 
find two partitions Hi  112  in some LA  whose numbers of blocks are on either side of k. 
By judiciously 'mixing' the two partitions, one can get a partition whose f(.)  value is 
worse than the optimal by no more than a fixed factor. 

Example. A standard problem is to partition the vertices of a graph G (whose edges are 
weighted by co()) such that the sum of the weights of edges lying between blocks is 
minimized. 	It is easily 	seen 	that this 	is 	equivalent to 	minimizing 	co(R.)) 	(see the 
definition in 'posing convolution problems as truncation problems'). This approach 
yields a partition which is worse than the optimal partition atmost by a factor 2 — k'Int, 
where k' =- k—(1 H i  I — 1) and n' -al E(G) I — (I 11 1  I — 1). 

S. The PP—PLP analogy 

In this section we present a number of additional results which emphasize the analogy 
already suggested between the principal partition and the principal lattice of partitions. 
We adopt the technique of presenting a result on principal partition followed by its PLP 
counterpart. 

We begin with a pair of elementary symmetry results whose trivial proofs are omitted. 
But first some definitions. 

Definition 5.1. Let f (.) be a real-valued function on the subsets of S. An automorphism of 

f(.) is a bijection a:S -4 S such that f(K) = f (a (X)) VX g S. A set X is invariant 

under a(.) iff c/00 = X. A function g() is symmetric with respect to f(.)  iff every 

automorphism of f(.)  is also an automorphism of g(). A partition H is invariant under 
a(.) iff a(X) is a block of 17 whenever X is. A collection P of partitions of S is invariant 
under c4.) iff whenever H is a partition in P the partition a(17)a.-  (a(X), X e 111 is also 
in P. 
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Theorem 5.1. Let f (.) be a submodular function and g(.) a strictly increasing polymatroid 

rank function on the subsets of S. If g(.) is symmetric with respect to f (.), every MA 1 and 

the maximal and minimal sets in any MA!. g are invariant. 

Theorem 5.2. Let f (.) be a submodular function on the subsets of S. Every L, is invariant 
and the maximal and minimal partitions in any L, are invariant. 

The next four results are about changes in the submodular function which leave the PP 

(PLP) unchanged. 

Theorem 5.3. Let f (.) be a polymatroid rank function on subsets of S and g(.) a positive 

weight function on S. 

I. The principal partition of of (.), ag(*)), where p, a> 0, is the same as that of 

(f(.), g(.)); 	A is a critical value of the principal partition 	of (f(.), g(,)) iff 

(A. a 1$) is a critical value of the principal partition of( /3f (.), ag0). 

2. The principal partition of ((f+ ag) (.), g0), where a ?_ 0, is the same as that of 
(f(.), g(.)); A is a 	critical value of the principal partition 	of (f(.),  g(.)) ill 
Al (1 + Act) is a critical value of the principal partition of ((f is ag) (.), g(.)). 

Proof 

I. We have 

f (X)+ g(S — X) = (11 a)[(Aa 13)P f (X) ag(S X)]. 

Clearly, therefore, we must have 

M Af ,g A 1  (Aal Thf ag • 

The required result is now immediate. 

2. We see that 

= A,(f (X) + ag(X))+ (1+ Aa)g(S 
- X) - Aag(S). 

Clearly, therefore, we must have 

M A f ,g = M A( f +ag),(1-f-Azog = 41 (A/(1 -1-Aa))(f+aag • 

The required result is now immediate. 

The analogous PLP result is presented below. We omit 'the routine proof. 

Theorem 5.4. Let f (.) be a submodular function on subsets O f S and let g(.) be a weight function on S. Then: 
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I. The principal lattice of partitions of pi0, where p > o, is the same as that of f (.); 
A is a critical value of the principal lattice of partitions of f(.) if Ap is a critical 
value of the principal lattice of partitions of 13f (.). 

2. The principal lattice of partitions of ( f + g)(.) is the same as that of f(.);  A is a 
critical value of the principal lattice of partitions of f(.) if it is a critical value of 
the principal lattice of partitions of (f + g)(.). 

Theorem 5.5. Let M.), (.) be polymatroid rank functions on subsets of S and let g(.) be 
a positive weight function on S. Let (f0(.),  g(.)), ( (.), g(.))) have the same principal 
partition with decreasing sequence of critical values A IN , 	, Ao, and A 11 , 	, A ir , 
respectively. The n(( ft °  + )(.), g(.)) has the same principal partition with decreasing 
sequence of critical values A31, . , Am where .1,3i = ((Am  ) -1  + (A 11 	1, 	, t. 

Proof Let 	MI 	denote the collection of minimizing sets corresponding to A in the 

principal partition of (fo  (.) +fi (3, g(.)). Let X be a set in M2 0  as well as in MI .. We 

claim that X e M/ , where A 3  = ((A0 ) -1  +(A 1 4 . We have 
3 

f1 (X)-F((A 1 ) -1 )g( - X) fi ( Y)+00 -1 g(S -Y), i =0,1 VY c S. 

Hence, 

fo ( x ) + ( x ) +(O. () 	(.1 0 -1  

f0 (Y) f i (Y) + ((Ao) -1  + (A i ) -1  g(S — Y) \IY c S. 

This proves the claim. In the above proof note that the final inequality reduces to an 

equality iff the former inequalities do so for i = 0, 1. So, if X is a maximal (minimal) 

member of MR. then X is a maximal (minimal) member of MI  and further if 
3 

Mie 0  = MI ,  then MA3 3  = 	. The required result is now immediate. 

On the same lines as the above (indeed by a line-by-line translation) we can also prove 
the following. 

Theorem 5.6. Let f o (), fi (.) be submodular functions on subsets of S. Let f 0 (.),.fi  (.) have 
the same principal lattice of partitions with decreasing sequence of critical values 

	

, Ao, and A 11 , 	, A 1 , respectively. Then ( f o + MO has the same principal lattice 
of partitions with decreasing sequence of critical values A 3i , 	, 4, where A3i = 
Ao i 	A u, i = 1, ... r. 

The next couple of results are on the principal partition of ( f (.) * g(.), g(.)) and the 
principal lattice of partitions of (f 01 . Once again the result about the latter and its 
proof are literal 'translations' of those pertaining to the former. 

Definitions 5.2. Let f (.) be a submodular function on subsets of S with f(0) = 0. Let g(.) 
be a positive weight function on S with f (e) g(e) VeE S. If (e) is a separator of f(.) 
with f (e) = g(e) then e is called a coloop with respect to g(.). 
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Theorem 5.7. Let f (.) be a polymatroid rank function on subsets of S and let g(.) b e a  

positive weight function on S such that f (e) 5_ g(e) V e e S. Let p(X) d enote  

A( f * g)(X) + g(S — X) and let h(X) denote A f (X) + g(S — X) VX g S. 

I. When A I 

• The minimum values of p(.) and h(.) over subsets of S are equal. If Y minimizes 
P(.) then it contains a subset Z that minimizes h(.). 

• Any set that minimizes h(.) also minimizes p(.). 

2. When A> I, Y minimizes p(.) if it minimizes /10. 

3. There is a unique minimal set that minimizes bath p(.) and h(.) and when A=1 its 
complement is the set of coloops off* g(.) with respect to g(.). 

Proof 

I. A 1. By the definition of convolution, 

(f *g)(X).. f(X) VX g S. 

Hence, since A. 1, p(X) h(X) VX c S and min es p(X) 5. min xcs  h(X). Next, for any 
subset X of S. when A..?_ 1, we have 

p(X) a A(f * g)(X)+ g(S — X) 

= A( f (Z)+ g(X — Z))+ g(S — X) for some Z c X, 

?.. A f (Z) + g(S — Z) ---E g(Z). 

We conclude that 

min xcs P(X) = minxcs h(X) 

and that any set that minimizes p(.) contains a subset that minimizes h(.). Let m denote 
this minimum value. Suppose Y minimizes h(.). We then have 

m= A. f (Y)+ g(S - Y) _. A(f * g)(Y) + g(S 
- Y) m. 

Thus, Y must minimize p(.). 

2. 2.> 1: We need to show that if Y minimizes p(.) it also minimizes h(.). 
that in this case f* g(Y)= fm, from which it would follow that m = 
otherwise. Then we must have 

We claim 
Suppose 

m = An E- A(f * g(Y)) + g(S —Y) 

= A( f (Z) + g(Y — Z)) + g(S — Y) for some Z c Y, 
> A( f (Z)) + g(S — Z) E---  h(Z) m, 
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which is a contradiction. Thus, we must have f * g(Y) = f (Y) and hence Y minimizes h(.). 

3. Since p(*) is clearly submodular (it is the sum of the submodular function 
A.(f * g)(Y) and the submodular function g(S — n), we must have the minimal minimiz- 
ing set to be unique since the minimizing sets of p(.) are precisely the minimizing sets in 
the principal partition of (f * g(.), g(.)) and property PP1 can be used. From the first part 
of the present theorem it follows that this set is also the unique minimal set minimizing 
h(.). Consider the situation when A= 1. Let X minimize f * g(Y) + g(S — n and let 
Z Q X. We show that Z also minimizes this expression. We have 1* g(X) +1* g(Z — 
X) .f * g(Z) (f * g(.) is submodular by Theorem 3.1 and its value on the null set is 
zero). So 1* g(X) + g(Z — X) f* g(X) + f * g(Z — X) f* g(Z). Hence 1* g(X) + 
g(S — X) ?_ f * g(Z) + g(S — Z). Thus, Z and, in particular, S minimizes the expression 
as claimed. Further since 1(e)  g(e) 'vi e   E S, 1* g(Z) + g(S — Z) f* g(Z) +f * g 
(S — Z). The latter is greater or equal to f*  g(S). The only way these inequalities can be 
satisfied is by having equalities throughout. Thus, every superset of X is a separator of 
f* g(.), from which we conclude that S — X must be a set of coloops of f*  g(.). Next if 
K is a set of coloops of f * g(.), we have f * g(S — K) + g(K) = f * g(S —K) 

1- 1* 00 = f * g(S). This completes the proof. 

Now the PLP version. 

Theorem 5.8. Let f (.) be a submodular function on subsets of S. Let p(.) denote ((f— a), 
— A)(.) and let 12(.) denote ( f — (a+ A))(.). Then: 

I. When A. 0 

• The minimum values of po and FI(.) over partitions in P s  are equal. If 11 
minimizes p(.) then there exists a finer partition IP that minimizes E(.). 

• Any partition that minimizes Rialso minimizes pc). 

2. When A> 0, a minimizes p(.) if it minimizes FM- 

3. There is a unique minimal partition that minimizes both po and FI(.) and when 
A= 0 its blocks are the elementary separators of (f — a): (-). 

The next couple of results are on the PP and PLP associated with duals. 

Definition 5.3. Let f(.)  be a submodular function on the subsets of S and let g(.) be a 
positive weight function on S. The comodular dual of f(.)  with respect to g(.) is denoted 
by f *(.) and defined through f*(.) a g(X) — ( f(S) — f(S — X)) VX g S. 

Remark 5.1. If f(ø) = 0 then (f  *)*(•) 	
f(.). If  f(.)  is a polymatroid rank function and 

f(e) 5 g (e) Ve E S the f*(.) is also a polymatroid rank function. 
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Theorem 5.9. Let f(.) be a polymatroid on the subsets of S and let g(.) be a positive 

weight function on S. Let Ma. An denote, respectively, the collection of minimizing sets 

corresponding to A in the principal partitions of (f(.) ,  80), (c (.), g0), where f*(,) 

denotes the comodular dual of (.) with respect to g(.). Let d(A) denote 0 - 

VA. E 91. Then: 

I. A subset X of S is in It tff S — X is in M; (A) . 

2. If A 1 ,... , Ai  is the decreasing sequence of critical values of (f(.), g()) then 

d(A,),... ,d(A i ) is the decreasing sequence of critical values of (f* (.), g0). 

Proof We begin by observing that f**(.)= f(.) and if g(e) f(e) Ve e S then we must 

have $4. (e)>: f *(e) V e E S. 

I. We 	will 	show 	that 	Y 	minimizes 
d(A) f *(X) + g(S — X). We have 

A f (X) + g(S — X) iff S — Y minimizes 

[ d(A)f *(X)+ g(S — X)= d(A) Eg(e)—(f(S)— f(S — X)) + g(S — X) 
eeX 

= d(A) f (S — X) + (d(A)-1)g(X)— d(A) f (S)+ g(S). 

This is equivalent to minimizing the expression d(A)(d(A) — 1) f (S — X) + g(X). Not- 

ing that d(A)(d(A) —1 y- ' = A we get the desired result. 

The corresponding result for PLP is immediate from the definition of PLC (see 
Remark 4.2, Lemma 4.1, Theorem 5.4). 

Theorem 5.10. Let f(.) be submodular on subsets of S and let f*(.) be its comodular dual 
with respect to the weight function g(.). Then 11 belongs to the PLP of f(.)  ( f * ()) Eff 11* 
belongs to the PLC of f*(•) (f(.)). Further, A is a critical value of the PLP of f(.) 
(f*(.)) if A+ f(S)(A+ f*(S)) is a critical value of the PLC of f*(.) ( f (.)). 

We sketch the nature of the algorithms 19' 20*" for constructing the PP of ( f(.), g()) 
and the PLP of f 0, where f(.) is submodular and g() is a positive weight function. In 
both cases we make use of the following idea: Suppose we have found two sets Y c Y2 

(partitions 171  5_ 172) in the PP (PLP). Suppose these minimize Al .f(X) 	— X), 
A2 f (X) + g(S — X) ( f A i  (17), f A.2 (H)). If these minimize A f (X) + g(S X)(f - ailn) 
then A( f (Y2) f (Y()) = (g(Y2)— g(Yi)) (1 ( 1 2) — (17 1 ) = 	I7 2 i—t 1 1)). So in order to 

find more critical values, if they exist, we minimize appropriate expressions involving A, 
calculated as above. If the values on the two sets (partitions) turn out to be the same as 
this minimum value, no further critical value can be found between A i  and A2. Repetition 
of this process gives us the list of critical values and, after pruning, the maximal and 
minimal sets (partitions) corresponding to these critical values. For each critical value the 
collection of all sets (partitions)' which minimize the appropriate expression is found 
essentially by repeated minimization using the partial order (multiple partial order) 
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representation of the distributive lattice (partition lattice) of minimizing sets (partitions). 
In the PP case, each minimization is of a submodular function. In many practical 
situations this reduces to a min cut problem or transforms to a matroid union problem. In 
the PLP case the key step is to find a fusion set, i.e., a nonsingleton set which is 
contained in a block of the minimizing partition. This involves a submodular function 
minimization-cut minimization in many practical problems. Once such a set is found, it is 
'fused' into a single element and we work with a 'fused' submodular function which 
agrees with the previous function modulo an appropriate weight function in all supersets 
of the fusion set. Repetition of this process ultimately leads to a situation where there are 
no fusion sets, which means the partition into singletons is the required minimizing 
partition. This partition is blown up enlarging the fusion sets in the reverse order in which 
they were formed to get the minimizing partition corresponding to the original 
submodular function. 

6. Conclusions 

We have described a number of instances in the literature where the notions of 
convolution and Dilworth truncation are implicitly or explicitly used both for generating 
new results as well as for applications. Although the truncation operation was explicitly 
described much earlier in the literature, it is curious that theoretical and practical 
applications of the convolution operation have been studied so far with much greater 
thoroughness. In our view, research into the former operation promises to be equally 
fruitful, particularly in view of the strong analogies that, as we have shown in this paper, 
exist between the principal partition and the principal lattice of partitions. 

References 

1. EDMONDS, J. Submodular 	functions, 	matroids 	and 	certain 	polyhedra, 	Proc. 

Calgary 	Int. 	Conf. 	on 	Combinatorial 	Structures, 	1970, 	pp. 
69-87, Gordon and Breach, New York. 

2. IRI, M. AND FUJISHIGE, S. Use of matroid theory in operations research, circuits and systems 
theory, Int. J. Systems Sri., 1981, 12, 27-54. 

3. WELSH, D. J. A. Matroid theory, 1976, Academic Press. 

4. LovAsz, L. Submodular 	functions 	and 	convexity, 	Proc XI Int. 	Symp. 	On 

Mathematical Programming, 1982, Bonn. 

5. HALL, P. On 	representatives 	of subsets, J. 	Land. 	Math. 	Soc., 	1935, 	10. 

26-30. 

6. DULMAGE, A. L. AND 
MENDELSOHN, N. S. 

Coverings 	of 	bipartite 	graphs, 	Can. 	J. 	Math., 	1958, 	10, 
517-534. 

7. DULMAGE, A. L. AND 
MENDELSOHN, N. S. 

A structure theory of bipartite graphs of finite exterior dimension, 
Trans. R. Soc. Can., Ser. 3, 1959, 53, 1-13. 

8. TUTTE, W. T. On the problem of decomposing a graph into connected factors, J. 
Lond. Math. Soc., 1961, 36. 221-230. 



44 
H. NARAYANAN 

9.  NASHWILLIAMS, C., Si. J. A. Edge disjoint spanning trees of finite graphs, J. Land. Math. Soc., 

1961, 36, 445-450. 

10.  KISH!, G. AND KAJITANI, Y. Maximally distant trees and 	principal 	partition of a 	linear graph, 

IEEE Trans., 1963, CT-16, 323-330. 

1. OHTUSKI, T., 1SHIZAKI, y. Topological degrees of freedom and mixed analysis of electrical 

AND WATANABE, H. networks, IEEE Trans., 1970, CT 17, 491-499. 

12. EDMONDS, J. 
Lehman's switching game and a theorem of Tutte and Nashwilliams, 

J. Res. Nat. Bur. Stand. 13, 1965, 69, 73-77. 

13.  NI, M. 
The max rank-min term rank theorem for pivotal transformation of a 

matrix, Linear Algebra Applic., 1969, 2, 427-446. 

14. EDMONDS, J. 
Minimum partition of a matroid into independent subsets, J. Res. 
Na:. Bur. Stand. B, 1965, 69, 67-72. 

15. 

16. 

17. 

EDMONDS, J. 

HORN, A. 

CUNNINGHAM, W. H. 

Matroid intersection, Ann. Discrete Maths, 1979, 4, 39-49. 

A characterization of unions of linearly independent sets, J. Lond. 

Math. Soc., 1955, 30, 494-496. 

Testing membership in matroid polyhedra, J. Comb. Theory, Ser. 

B. 1984, 36, 161-188. 

18. CUNNINGHAM, W. H. On 	submodular 	function 	minimization, 	Combinatorica, 	1985, 
5, 185-192. 

19. TomizAwA, N. Strongly irreducible matroids and principal partition of a matroid 
into 	strongly 	irreducible 	minors 	(in 	Japanese), 	Trans. 	Inst. 
Electronics Commun. Engrs. lap. A, 1976, J59, 83-91. 

20. NAYARANAN, H. Theory 	of 	mat raids 	and 	network 	analysis. 	Ph.D. 	thesis, 
Department of Electrical Engineering, Indian Institute of Technology, 
Bombay, 1974. 

2i. OZAWA, T. Topological conditions for the solvability of linear active networks, 
Int. J. Circuit Theory Applies, 1976, 4, 125-136. 

22. NAKAMURA, M. A structural theory for submodular functions, polymatroids and 
AND NI, M. polymatroid intersection, Res Memorandum, Dept of Math. Engng 

and Inst. Phys., Aug. 1981, RM1 81-06, Univ. of Tokyo. 

23. TomizAwA, N. AND Historical survey of extensions of the concept of principal partition 
FUJISHIGE, S. and their unifying generalization to hvpermatroids, 	April 	1982, 

System Science Res. Rep. No. 5, Dept of Systems Science, Tokyo 
lnst of Tech. 

24. FUJISHIGE, S. Principal structures of submodular systems, Discrete App!. Math ,  
1980, 2, 77-79. 

25. FUJISHIGE, S. Submodular functions and optimization, Monograph, 1991, Annals 
of Discrete Mathematics 47, North Holland. 

26. FRANK, A. AND 

TARDOS, E. 
Generalized polymatroids and 	submodular 	flows, 	Math. 	Progm., 
1988, 4, 489-565. 

27. DILWORTH, R. P. Dependence relations in a semimodular lattice, Duke Math. J.. 1944, 
11, 575-586. 



CONVOLUTION AND DILWORTH TRUNCATION OF SUBMODULAR FUNCTIONS 	45 

28 LovAsz, L. Rats in 	matroids and geometric graphs, 	Combinatorial surveys, 
Proc. Sixth British Combinatorial Conf, (P. J. Cameron, ed.), 1977, 
45-86, Academic. Press. 

29 NARAYANAN, H. On the minimum hybrid rank of a graph relative to a partition of its 
edges and its application to electrical network analysis, Int. J. Circuit 
Theory Applic., 1990, 18, 269-288. 

30 NARAYANAN, H. The principal lattice of partitions of a submodular function, Linear 
Algebra Its Applic., 1991, 144, 179-216. 

31. PATKAR, S. Investigations into the structure of graphs through the principal 
lattice 	of 	partitions 	approach. 	Ph.D. 	thesis, 	Dept. 	of 
Computer Sci. and Engng. Indian Institute of Technology )  Bombay 
400 076, India. 

32. PATKAR, S. AND. 
NARAYANAN, H 

Principal 	lattice 	of 	partitions 	of 	the 	rank 	function 	of 	a 	graph, 

1989, 	Technical Report 	VLSI-89-3, 	VLSI-Design 	Center, 	Indian 
Institute of Technology, Bombay 400 076, India. 

33. PATKAR, S. AND Principal 	lattice of partitions of submodular functions on graphs: 

NARAYANAN, H Fast algorithms for principal partition and generic rigidity. Proc. 
3rd Int. Symp. on Algorithms and Computation, To appear in Lecture 
Notes in Computer Science series. 1992, Nagoya, Japan. 

34. NARAYANAN, H., ROY, S. Min k-cut and the principal partition of a graph, Proc. 	Second 

AND PATKAR, S. National Seminar on Theoretical Computer Science, 1992. India. 

35. ROY, SUBIR. The PLP approach to partitioning problems in VLSI, Ph.D. thesis, 

Feb 1993, EE Dept, Indian Institute of Technology, Bombay 400 076, 
India. 

36. NARAYANAN, H., ROY, S. Approximation 	algorithms 	for Min-k-overlap 	problems using 	the 

AND PATKAR, S. principal lattice of partitions approach, submitted, February 1993. 

Appendix 

Some proofs omitted in the main text 

Proof of Theorem 5.4. 

1. A partition HE Ps  minimizes f — M.) iff it minimizes /3 f /3A(.). The result 
follows. 

2. If g(.) is a weight function and HE Ps  then 

f + g AU-0= f A(17) + g(S). 

The result follows. 

Proof of Theorem 5.6. Let La, LA, 4 denote the collection of minimizing partitions 

corresponding to A in the principal lattice of partitions of fo(), /10, fo(.) 
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respectively. Let 17 be a partition in Ly 0  as well as in 4 4 . We claim that Ti e La o  where 

A3 = A0 + Al . We have 

fi- Ai (11)5 fi - Ai(in Vn i  e PS- 

Hence, 

fo ± ft - (A0 +Ai)(in 5 fo - E fi - (Ao + AOM 1 VIP e Ps- 

This proves the claim. In the above proof note that the final inequality reduces to an 

equality iff the former inequalities do so for i = 0, 1. So, if 17 is a maximal (minimal) 
member of La then it is also a maximal (minimal) member of 4, and, further, if 

. 

4 0  = Li. then Li, = 4,. The required result is now immediate. 

Proof of Theorem 5.8. 

1. By the definition of truncation, 

(ft -01(M 5 f -a(n) Vir E Ps • 

Hence, p-  (17) 5 h-  (17) Vile Ps and min ne ps  77 (IT!) 1.C. min neps  17(11). Next, for any par- 
tition 17 of S, when A.> 0, we have 

p(17) Es: (f — a), (II) — A1171= f — o -(17 1 ) — Al/71 

and, for some Th 5 TI, 

p(n) ->, f -a(r11)-Alno=ri. 

We conclude that min neps  p(1-0= min 	/1 (11) and that if II minimizes pt.) then there 

exists a finer partition 17' that minimizes both EC) and po . Let ni denote this minimum 
value. Suppose IT minimizes ric). We then have 

m= f — °VD — A1711> (f — o) t (17)— ALIT>. m. 

Thus, II minimizes p(.). 

2. A.> 0: We need to show that if 17 minimizes po then it also minimizes rt(.). We 
claim that in this case 

(1 -0),(17)= f -a(il), 

from which it would follow that in = F(J7). Suppose otherwise. Then we must have 

nt = f — o-(17)— Al /71= (f — o) t (170— al /71, 

and, for some ili  < 17, 
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m>(f 

which is a contradiction. Thus, we must have 

(f - a) r (H)= f -a(17), 

and that 1-1 minimizes f - a(.). 

3. Since p(.) is clearly submodular, we must have the minimal minimizing partition to 
be unique since the minimizing partitions of pH are precisely the minimizing partitions 

in the principal lattice of partitions of (f-  a)(.) and property PLP1 can be used. From 
the first part of the present theorem it follows that this partition is also the unique 

minimal partition that minimizes R.). Consider the situation when A = 0. Let Ii minimize 

p(.). Now if M is any union of blocks of 17, we have, by the submodularity of ( f-  a), 

and the fact that it takes value zero on cro, (f— a), (M) E( f - a), (Ni ), where Ni  are 

the blocks of 17 contained in M. Thus, if a' 11 then EV (in particular, Hs ) also 

minimizes p(. ) . It follows that the blocks of 17,„i n , the minimal minimizing partition of 

TO must be separators of ( f - a),. On the other hand, if 11 has its blocks as separators 

of (f— a),, by the definition of separators, we must have (f - a) 1 (17)=(f - 0),(17 s ). 

This completes the proof. 




