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Abstract 

Mathematical programming has long been an important tool for electric utility planners. This paper presents a 
survey of state-of-the-an mathematical programming methods as applied to electric power capacity expansion 
planning. The focus is on modelling features which make it possible to investigate important power system 
issues such as reliability, uncertainty and environmental impacts which linear programming models cannot 
address without considerable simplification. Solution methodologies are also described. 
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1. Introduction 

The use of mathematical programming for planning capacity expansion for electric utili- 
ties has a long history", and has remained one of the most important and active applica- 
tions of management science/operations research. Since the earliest days, the basic 
problem has remained fundamentally the same: How to select optimally power plant ca- 
pacities and investment times so that total capital and operating costs are minimized, 
while meeting customer demand and physical constraints over a given planning horizon. 
What has changed over the intervening years are the issues which have been considered 
and the methods used to solve the problem. Linear programming models have given way 
to models requiring state-of-the-an techniques in formulation and solution. Algorithmic 
and computational advances in solving complex, large-scale mathematical programs have 
been paralleled by increasing awareness of important issues in power system planning 
beyond minimizing cost. Principal among these issues, in order of their historical appear- 
ance in the literature, are reliability of supply, uncertainty in demand and most recently, 
consideration of environmental consequences. Up to the early 1970s, with demand grow- 
ing rapidly and taxing the ability of electric power to meet it, reliability was a major con- 
cern of power systems planners. As price shocks hit and demand growth became more 
unpredictable planners needed ways of dealing with uncertainty in the planning process. 
With growing awareness of the role of power generation in environmental issues such as 
acid rain, global warming and resource depletion, attention has turned to incorporating 
environmental costs and demand-side management programs into planning models. 

It is important to emphasize that the mathematical program is not the planning process 
itself, but rather is one of the many inputs that are used by decision makers to develop 
rational plans which meet the objectives of the stakeholders. In the words of Anderson, 
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'the search for an investment program that satisfies engineering and economic criteria is 
an iterative, multidisciplinary proCess; While capturing many of the important economic 
and physical processes involved in electric power systems, mathematical programming 
models fail to consider many important aspects of the planning process, such as environ- 
mental impact reporting, pricing and other regulatory and financial characteristics. The 
methodology also cannot address one of the most important aspects of electric power 

systems planning: politics. 

Math programming models have been widely used for a number of years by just about 
every major player in electric power investment. Researchers at the de Electricite France, 
realizing that 'electrical investment serves to create not a unique product, the kilowatt 
hour, but a group of related products", discovered that linear programming techniques 
would be ideal to balance the cost of investment in electric power with the benefits that 
electricity provides. While researchers envisioned solving large, realistic power systems 
models, their size was limited by the ability to solve them. During the 1970s, as comput- 
ers became faster and more accessible, expansion planning models grew larger and more 
sophisticated. Large-scale linear programming models were developed by Brookhaven 
National Laboratory which integrated power planning into the larger context of planning 
national energy strategies, and considered all phases of energy consumption 3 . The World 
Bank has also developed power system planning models for newly industrializing and 
developing countries 4 . An early model developed for the International Energy Agency, 
WASP, is still widely used in energy planning in Europe and many countries in the de- 
veloping world as wel1 5 . 

This paper will attempt to trace the evolution of the state-of-the-art in mathematical 
programming approaches to electric power generation investment planning. This evolu- 
tion is based on investigation of issues which have had the widest treatment in the litera- 
ture; thus, approaches which address very 'important (but somewhat system-specific) 
considerations such as fuel transportation, nonutility generation, demand-side manage- 
ment, privatization and interconnection of decentralized systems are not considered in 
detail. The important areas of transmission and distribution planning and power dispatch- 
ing are also not considered. The scope of this paper is confined to the electric power sec- 
tor; studies which incorporate power sector planning as part of a broader economic 
framework are not considered in any detail. While not meant to be a comprehensive sur- 
vey of the literature in this field, papers have been selected based on the diversity of the 
approaches taken. The paper is organized in the following manner. Section 2 describes 
the basic principles involved in capacity expansion and discusses the linear formulation 
and its limitations. Section 3 discusses some recent nonlinear programming approaches to 
the problem, including integer, stochastic and multiobjective programming, to incorporate 
reliability, uncertainty and environmental concerns into capacity planning. We present 
some concluding remarks in Section 4. 

2. Electric capacity expansion modelling 
• • A 	, 

A simple statement of the electric power capacity expansion problem is to find the Wes 
size and introduction times of electric power generation resources so that demand for 



ELECTRIC POWER CAPACITY INVESTMENT PLANNING 	 51 

electricity is met over a specified planning horizon at the least cost. As first noted by 
Masse and Gibrat I , this problem lends itself quite nicely to solution via techniques of 
mathematical programming. Before a model is constructed, a number of important ques- 
tions need to be addressed, such as what the length of the planning horizon is, how de- 
mand is to be specified and what type of generation technology is available. Anderson 2  
provides an excellent survey of the state-of-the-art in modelling up to the early 1970s. A 
brief description of the basics of capacity expansion models is now provided. 

Two types of decision variables are present: investment variables, which determine the 
capacity of a particular generation type to be installed in each time period, and opera- 
tional variables, which specify the level of utilization of each technology. In linear mod- 
els investment variables will almost always refer to the total capacity required of a par- 
ticular technology type, rather than the size or number of a particular plant. Generation 
type is thus classified according to the type of fuel used. More detailed specification of 
power plants is considered in nonlinear programming models. 

Demand for electricity varies over time, and can be described graphically as a curve 
which provides the instantaneous power required at each point over the given time period. 
Figure la depicts a typical daily variation; a typical yearly curve might resemble 365 such 
curves strung together. The load duration curve (Fig. lb) is obtained by rearranging the 
instantaneous demands in decreasing order. For use in mathematical programming mod- 
els, it is convenient to approximate the load curve into a number of discrete segments, or 
blocks, each with a corresponding power requirement and duration. This discretization 
can be either with respect to the horizontal or vertical axis; Figures 2a and b show both 
types of discretization. 

At the very minimum, the system must satisfy the following constraints in each time 
period in the planning horizon: 

• generation must be less than the available capacity for each technology, 
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FIG 1. Daily (a) and cumulative (b) load duration curves. 
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FIG. 2. Horizontally (a) and vertically (b) discretized load duration curves. 

• generation must be adequate to meet projected demand in each of the N demand 

blocks. 
Other constraints that are normally considered in order to reflect the reality of the 

system under study are: 

• upper and lower bounds on capacity additions, 

• requiring sufficient reserve capacity above peak demand, 

• budgetary restrictions within each time period, 

• seasonal hydro energy limitations. 

A typical linear programming model for determining the optimal capacity expansion 
minimizing the net present value of capital and operating costs can now be presented*: 

T 	 N 

(LP) 	 Minimize y 1ye  c.. • 	
X 

0 v• 
it it 	

y il n dint 
x,y 

1=1 	j€./ 	j€./ 71=1 

subject to 

0 for all j, n, t 
	 (2) 

r=1 

Eyjnt .?"d1 
	for all ii , t , 
	 (3 ) 

fel 

'Whenever possible, notation from the original literature cited has been maintained. In some cases the nota - 
tion differs slightly from the original citation in order to make our notation consistent. 
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, 
EasJtJ i + y, Ea. x •

T 
 .?. (1+ m)dlt for all t , 	 (4) t r 

jeJ 	riz--1 jEJ 

Xjr, Yint .' 0, 	 (5) 

where x are the investment variables and y, the operating variables. Constraint (2) re- 
quires generation to be no greater than existing capacity, (3) requires generation to be at 
least equal to demand and (4) requires a sufficient reserve capacity, m, to be on line 
in every period. Constraint (5) requires generation and expansion to be nonnegative. 
The set .1 indexes generation resources while xj  denotes capacity of type j which is 
currently online and N is the set of blocks the load duration curve has been approximated 
by. aj, is an availability factor which accounts for scheduled maintenance and derating of 
performance over time. d 11  is the peak demand required in period t. If the load duration 
curve is discretized in a horizontal rather than a vertical fashion, constraint (2) is 
expressed as 

t 	, N 

ri.x.+E.• x. _Ey..  O. i i 	Jr ir 	 (2a) 
r=1 	n=1 

In addition, the vertical load duration parameter 64, is replaced by horizontal load duration 
parameter fin  in the objective function and vertical segment power demands dn, are re- 
placed by horizontal segment demands p n, in constraint (4). With this realization, the 
number of constraints (2) is reduced by a factor of N. 

Note that while the investment variables are continuous, generation technologies are 
commercially available only in certain sizes. It may not be possible to break down the 
aggregate power requirement into a set of commercially available units optimally. Thus, 
the linear programming formulation is not very useful for actual project selection. What is 
of greatest importance here is the generation mix; that is, the total capacity of coal, nu- 
clear, hydro, etc., power that is required in each time period. 

Anderson2  extends his treatment of the basic linear programming model, discussing 
marginal analysis (starting with a reference solution, then seeking to improve it by 
making marginal substitutions), simulation models (finding the least-cost operating 
schedule for a given system/demand configuration) and global models (selecting the 
optimal investment plan from all the available options). Anderson also discusses several 
possible extensions to the basic linear model. These extensions include finding optimal 
replacement times for old power stations, rudimentary inclusion of interregional 
transmission and treatment of pumped storage hydro plants. The method by which 
the model is extended is to introduce new decision variables and constraints necessary 
to depict the system accurately. The extensions do not alter the LP structure of the 
model. 

A large-scale linear-programming-based electricity supply model for India was devel- 
oped by Sengupta6. This model is a part of a larger study on commercial energy policy. 
The model follows closely that described by Anderson 2. 

• 
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3. Recent modelling approaches 

3.1. Nonlinear programming 

At the time Anderson did his survey, the growing size of capacity expansion models was 
rapidly outstripping the ability to solve them. Early attempts at nonlinear programmin g  
approaches were motivated in part by a desire to increase computational efficiency by 
reducing the number of constraints. The introduction of merit order operation facilitated 
this approach. In merit order operation, the order in which plants are brought on line to 
meet the required load is predetermined by sequencing the plants in order of their operat- 
ing costs. This implicitly allows the operating variables to be dropped from the formula- 
tion, although now the load curve must be integrated directly to obtain the energy 
produced, and thus the cost, from operating each plant. The problem of finding the system 
operating cost given the operating costs and reliabilities of the component plants, known 

as probabilistic production costing, is a rich field in itself. The reader is referred to Lin et 
al..' for a review of methods to solve this problem. 

While linear programming models have been useful in long-term power capacity 
expansion planning, it was not possible to incorporate directly many important aspects 
of real-world power systems into a linear framework. Many methods have been proposed 
which go beyond linear programming in their efforts to address problems faced by pow- 
er systems planners. Some of these, such as the multiobjective models described below, 
retain a linear programming framework. Nonlinear programming approaches, how- 
ever, can allow for the explicit inclusion of realibility of electricity supply. In models 
using linear programming, the reserve margin is chosen without regard to size, number 
or reliability of individual plants, and consider only reliability implicitly by derating 
the nominal capacity of plants by an annual availability factor. In addition, the lum- 
py, discontinuous nature of capacity additions cannot accurately be reflected with 
linear programming models. One way that these modelling issues are addressed is thro- 
ugh the assignment of integer, or binary, values to the investment variables. Instead 
of installed capacity taking continuous values (which may not correspond to realistic 
or commercially available unit sizes), project-specific capacities are specified, such as 
a 1000 MW coal-fired plant, and a binary variable is associated with it such that a 
value one is assigned if the project is to be built in a given time period and zero if it 
is not. A typical model can thus be formulated as: 

[MIP] 	 Minimize ye I Ec•x. 
x, y 

1=1 kJEJ 

subject to 

E Efk, on Ant) 
ke(I, .1) n=1 

(6) 

eriri — y ita  ?_ 0, for all i,n,t, 	 (7) 

a, R. x• —y• ?_ 0 for an j,n,t, 	 (8) it if it 	int 
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I Yint E 	dm  for all n,t, 	 (9) 
iel 	it/ 

y 	 (10) 
where the decision variables x are binary-valued. As in [LP], eqns (8) and (9) are the ca- 
pacity and demand constraints. I is the set of plants currently on line, with capacities xi  
and availabilities ai. ij  is the capacity associated with project j and ci, is the present- 
value cost of building project j in period t. This use of integer variables is essentially the 
approach followed by Noonan and Giglios . Other features which can be modelled using 
this framework are constraints prohibiting more than one project of a certain predefined 
set from being built (allowing for consideration of multiple projects on the same site, for 
instance.) Also, cost functions exhibiting economies of scale or other general characteris- 
tics can be introduced by describing the capital cost in terms of piecewise linear func- 
tions. Integer variables can be used in other contexts as well, as in the model by Scherer 
and Joe9, where they are used to model system states where the reliability requirement is 
met. Mixed-integer formulations also have been used in applications to power sector 
planning in India lcu 1 . 

Another method for handling nonlinear elements in the capacity expansion problem is 
the use of dynamic programming. Dynamic programming has been used extensively in 
solving both systems simulation and capacity expansion problems. See, for example, 
Booth 12, Brookhaven National Laboratory's DESOM mode1 13, the WASP model s , the 
EGEAS model" and Dapkus and Bowe ls . In dynamic programming, a multistage optimi- 
zation problem is broken down into a series of simpler problems. These subproblems of- 
ten involve only the evaluation of an objective function, rather than solving an 
optimization problem, and in general the objective function need not be linear. At each 
stage, there exist a number of possible configurations which satisfy the requirements of 
the system, given the initial system and the expansion options available at each stage. 
These configurations are the states of the system, and the goal of dynamic programming 
approaches is to find the sequence of decisions that lead from the initial state to the least- 
cost state in the final stage. For example, the EGEAS and WASP models simulate the 
production cost for each feasible state of the system, and identify the least-cost transitions 
to each state in the next stage. Once the state in the final stage with the least total cost is 
found, a backward path from the final state along the least-cost transitions specifies the 
optimal sequence. A major drawback of dynamic programming is the curse of dimen- 
sionality. This is the potential for an enormous number of problems which need to be 
solved as the process moves along. 

From the 1970s onward, more sophisticated approaches to modelling power systems 
were taken to describe them more accurately. What follows are brief summaries of papers that 
have made contributions to modelling and methodology in capacity expansion planning. 

3.2. System reliability 

The goal of the utility is to provide customers the electricity desired, ideally without fail- 
ure. However, shortages may result from failure of equipment (supply uncertainty) or 
from demand exceeding available supply (demand uncertainty). Improvement in supply 
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Reliability Level 

FIG. 3. Trade off between cost and reliability level for 

electric power system. 

reliability can be made by either reducing the outage probability of individual plants or 
by using an increased number of plants of smaller size (for a given load requirement). 
There is, however, a tradeoff between the cost of increased reliability and reducing the 
level of electricity provided due to power shortages. The economic cost associated with 
providing different levels of reliability is shown in Fig. 3. Munasinghe i6  provides a sum- 
mary of the issues involved in optimal reliability, pricing and planning in an economic 
framework. The typical approach in system planning, however, is to fix a reliability level, 
and optimize the system around this value. Few math-programming-based capacity plan- 
ning models specifically optimize the reliability level, although a family of solutions 
parameterized over different levels can be obtained if computation times allow. 

Noonan and Giglio8  formulate a mixed-integer program to determine the type and size 
of electric generation facilities. Specifically, the model considers the addition of thermal, 
conventional hydro and pumped storage hydro units to the existing system under a sys- 
tems reliability requirement. This model is more detailed than other models in that de- 
mand and operating conditions are decomposed into typical weeks, primarily to reflect 
changing hydro conditions. 

The objective of the model is to minimize total discounted cost. The systems reliabil- 
ity requirement'is modelled by including constraints of the following form for each plan- 
ning period t: 

Pr ob ([3,C, 5 di k  } < R*, 

with C, a random variable representing total available capacity at peak demand, A, a pa - 
rameter to adjust total capacity for seasonal inefficiencies and scheduled maintenance and 
peak demand given by dr . R* is the maximum allowable loss of load probability 
(LOLP). These chance constraints are converted to nearly equivalent deterministic con- 
straints for use in the model. Defining decision variable yc as the demand requirement for 
restoring reservoir levels for pumped-storage units, the model can be described as fol - lows: 
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MO, j) 	T 	1 

[NG) 	 Minimize 1, 	 Dienfo„ 	(12) 
x, y t=1 JEJ m=1 	 1=1 1=1 JEJ n=I 

subject to 

wt. j) 

	

for all j, t , 	 (13) 
fft=i 

y 	—Eycpn it  d n it 	for all n, t, 	 (14) 
pEP 

t 	M(r, j) 

ZUX- E Ea urirmi xtum  — y inir  0 for all ti s  i t 	 (15) 
11 1 

r=1 m=1 

along with the deterministic equivalents to eqn (11) and nonnegativity restrictions. Equa- 
tion (13) states that at most one of the M (t, j) possible projects of generation type j avail- 
able for construction in time t can be built in time t. Equation (14) requires total 
generation less the generation required to restore pumped storage facilities P to meet 
system demand in each demand block and time period. Additional constraints on the op- 
erational variables include constraints specifying the maximum and/or minimum energy 
levels allowed and a constraint which requires reservoir levels for pumped storage units 
to equate at the beginning and end of each week. 

A methodology which has been found to be successful in solving complex formula- 
tions of the power capacity expansion problem is the use of decomposition methods. The 
most popular decomposition technique which has been applied to the solution of the pres- 
ent problem is the generalized Benders' decomposition. Benders' decomposition is a 
technique for solving programs which have two (or more) distinct classes of decision vari- 
ables, one of which complicates the problem considerably. By fixing the values of the compli- 
cating variables, a mathematical program in terms of the noncomplicating variables results, 
referred to as the subproblem. Ideally, this problem should be significantly easier to solve than 
the original program. Information from the solution of this program is incorporated into what is 
called the master problem. This program is used to determine improved solutions for the 
complicating variables. The process continues until an optimal (or satisfactory) solution is 
reached. For a complete discussion of the generalized Bender's decomposition, see Lasdon 17 . 
In the power capacity expansion problem, the investment options, such as plant size, type and 
number can be thought of as the complicating variables. Once the investment plan is fixed, the 
least-cost operating strategy for the system can be obtained. 

Scherer and Joe 9  develop a mixed-integer program which uses binary-valued decision 
variables to incorporate probabilistic reliability requirements. Recognizing the increasing 
adoption of probabilistic approaches to reliability planning, constraints incorporating a 
probabilistic measure are introduced, with loss of load probability used as the measure of 
reliability. In contrast to other planning models, this considers a single time period. No 
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discussion of issues involved in extending the model to the multiperiod case is made. In 
addition, only the ability of the system to meet peak capacity requirements is of concern; 
no load duration curve or relative operating costs are considered. 

The decision variables are yi, which is set to one if plant j is to be built and zero if it is 

not, and gat , the size of the plant. The other decision variable is the system state. Every 
possible combination of running and failed plants is assigned a binary value, x i, which 

takes the value one whenever the plants which are operating in state i can meet demand 

and zero otherwise. For a system with n candidate plants, this results is r possible system 

states to be considered. The model is given as: 

[SI] 	 Minimize E(58,-1-fi y,) 
	

(16) 

.i=I 
subject to 

for all i, 

(17) 

(18) 

81 5- LY) for all j, 	 (19) 

g 
	

for all j, 	 (20) 

where fi  is the fixed charge associated with plant j and ci  is the slope of the capacity cost 
function. S(j) is the set of plants that are operating in state j and Pi  is the probability that 
the system is in state j. Constraint (17) guarantees that the probability the system is in a 
state that can meet demand exceeds or meets the required reliability level, P,, defined as 
1 LOLP. Constraint (18) says that each state in which the capacities of plants are suffi- 
cient to meet system peak demand d will assign the value one to its state variable z. 
Constraint (19) restricts the maximum capacity of required plants. 

Since the calculation of the Pis is made with the a priori assumption that all plants 
will be built, the question arises as to whether a solution having fewer than n plants will 
be feasible. A proposition is provided demonstrating that a solution to the n-plant prob- 
lem, having n — m plants at zero capacity, is also a solution to the m-plant problem 
(formed by removing from consideration the plants at zero capacity in the ti-plant prob- 
lem, and recalculating the Pi  s), assuming independence of plant failures. 

The number of integer variables in the model grows exponentially with the number of 
plants considered. The number of variables can be reduced, however, by setting the val- 
ues corresponding to some of the states beforehand. For instance, it is unlikely that a state 
with relatively few plants operating will be able to meet the demand and those variables 
will be fixed at zero whereas the state with all plants up will definitely meet the demand 
(for well-formulated problems, at least) and its variable will be fixed at one. 

Bloom ig  presents a formulation with the goal of integrating math programming plan- 
ning models with probabilistic methods for measuring the reliability of the system, rather 
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than using a priori estimates of reserve margins. In this case, the reliability standard is 
expressed as the maximum demand which is allowed to be not served by the system. The 
problem is defined as follows: 

[81] 	 Minimize c'x + E EP:  (y1 ) 	 (21) 
x.y 	tz-zi 

subject to 

for ali t, 	 (22) 

y, cii x for all t, 	 (23) 

(24) 

where the decision variables are x, the vector of plant capacities, and y,, the vector of 
plant utilization levels in period t, with c the discounted capacity costs, EF,(y,), the pres- 
ent value of the expected operating cost in period t, EG,(y,), the expected unserved en- 
ergy, and el  the desired reliability level. The matrix 3, allows for temporal changes in the 
merit order caused by the addition of new plants and changing operating costs. While 
there are no integer variables, Bloom notices that the planning problem naturally decom- 
poses into two parts, namely, determining investments in new capacity and determining 
the operating cost and reliability of the system, and proposes to solve it using generalized 
Benders' decomposition. A master problem is defined which is used to generate a set of 
trial plant capacities. The subproblems calculate the minimum expected cost of operation 
and the reliability in each time period for the given capacity vector. For each period t, the 
subproblems are formulated: 

I 	(I i 
[B1-S) 	 i (Q) dQ 	 (25) 

y 	 i=3

Minimize EF;(y)=Efi pi  . G fue-, 
subject to 

EG 1 (y 1 ) = fu ,G +1 (Q) dQ E, 	 (26) 

0 5 y, .x, for all i, 	 (27) 

with / plants in merit-ordered index, i, plant utilization level y„ operating cost fi  and 
availability p i. G i  is the equivalent load duration function seen by the ith plant at level of 
demand Q and W is the cumulative capacity of the first i plants (also called the loading 
point), defined recursively by W = W -1 + xi , U 0 = 0. The plant capacities x, are fixed, 
provided by the master problem. The equivalent load duration curve is obtained by a re- 
cursive . relationship known as probabilistic simulation: Gi+ t (Q) = p iGi (Q) + (I -p 1) 
Gi (Q- I). Concisely, G i (Q) is the expected load duration function seen by plant i, considering 
the outage probability of the previous plant in the merit order. After solution of the T 
subproblems, cuts constructed from their dual multipliers are added to the master prob- 
lem. 



60 	 S. A. MALCOLM AND G. ANANDALINGAM 

The subproblems are written in the form of nonlinear optimization problems. How- 
ever, an approach is developed which does not require the use of optimization algorithms 
to solve the subproblems. Since merit order minimizes operating costs, plants are loaded 
according to merit order until the reliability constraint (26) is satisfied or the subproblem 
is found to be infeasible. A method for calculating the dual multipliers is described re- 
quiring computation and manipulation of the load duration functions. Using a similar ap- 

proach, Cote and Laughton 19  developed a mixed-integer program which uses stochastic 
production costing to solve the operational subproblems. Li and Billinton w  deal with reli- 
ability in a linear programming framework. They incorporate customer damage functions 
to represent the cost of unserved energy into the cost minimization objective, rather than 
a system aggregate value. Monte Carlo sampling is used simulate these damage functions 

over different load levels. 

3.3. Uncertainty in demand and model parameters 

In the previous studies cited the issue of primary concern, along with cost minimization, 
is system reliability. Another issue which has received considerable attention has been 
resolving the uncertainty inherent in model parameters, most notably uncertainty in 
demand. Uncertainty influences many aspects of power system planning. This includes 
factors normally considered in planning models, such as fuel prices and plant availability 
as well as factors not normally considered such as climate and regulatory requirements. 
Uncertainty manifests itself in many ways in power planning, but the most important 
of these is simply the unpredictability of the future. Models require data representing 
demand, cost, availability, and so on, for every period in the planning horizon. Several 
methods have been proposed to incorporate uncertainty into capacity planning 
problems 21-23 . In the deterministic equivalent method, the best available forecast, or 
the expected values from forecast distributions of parameters are used. New inform- 
ation is incorporated as it becomes available. However, optimality for a particular period 
is dependent on the future unfolding as predicted. The scenario analysis method handles 
uncertainty by identifying a range of values for the uncertain variable of interest 
(e.g., low, base and high). Often the base case is recommended without further analysis. 
More sophisticated approaches to scenario analysis subject the optimal solutions of 
each scenario to other scenarios to assess their sensitivity and performance, and to 
determine plants which appear in all, or many, solutions (so-called 'robust' plants). 
However, a solution which is best, in some sense, over all the scenarios is difficult to 
determine. The method also may require solving a large numbers of problems, depending 
on the number of scenarios considered. Stochastic programming has also been prop- 
osed as a tool to address this challenging problem facing system planners. In stochas - 
tic programming, parameters are allowed to take on a range of values corresponding to 
particular scenarios that reflect possible futures which the system may have to oper - 
ate under. As each scenario has a certain probability of occurring, optimization of the 
objective function is made with respect to the expected value of the capital and operating 
costs. This provides the solution that is 'optimal' in this sense over all scenarios. Other 
methods are also used, such as Monte Carlo simulation and options valuation, but are 
not of direct concern in mathematical programming approaches. 
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In the paper by Murphy et al. 24 , two alternative models for incorporating uncertainty 
in demand are compared. The first is a two-stage stochastic program with recourse while 
the second is a linear program using an expected load duration curve constructed from the 
individual scenario curves. If there are S possible realizations of demand, each with a cor- 
responding load duration curve and a probability of occurrence las , the two-stage program 
can be written as (only over one period, for clarity): 

N S 

[m] Minimize lc .x +E E Epsfi e n  yjns  
J J x,y, 

jel 	jeJ n=1 s=1 

(28) 

subject to 

x • — E yins  0 for all j, s , 	 (29) 

n=1 

n Eyins  ?_dn, for all n, s, 	 (30) 

(31) 

where the notation is the same as in Section 2. Constraints (29) and (30) require that gen- 
eration restrictions and demand are met for each scenario. The xs are the first-stage deci- 
sion; when a particular scenario is revealed, say r, then second-stage recourse operating 
strategy y fra. is followed. 

A method for constructing the parameters for the expected load curve from the break 
points and probabilities of the individual scenario curves is given and a deterministic 
equivalent program identical to [LP] is derived, with demand and load duration parame- 
ters d„ and 0„ replaced by the corresponding parameters of the expected load duration 
curve. It is then shown that under fairly general conditions the optimal first-stage solution 
to the program using the expected load curve is equivalent to the stochastic programming so- 
lution. This equivalence does not hold if the operating costs of the generating technologies are 
load-dependent; that is, if the costs vary according to which segment of the load curve is being 
served. An important implication is that a stochastic program having S possible demand curve 
realizations (scenarios) can be transformed into a linear problem having a factor of S fewer 
capacity constraints, although the number of demand constraints remains the same. 

A more general approach to solving the capacity expansion problem under uncertainty 
is developed by Borison et ai. 25 . The method, called the state-of-the-world (SOW) de- 
composition, solves the dynamic probabilistic problem by breaking it down into a set of 
static deterministic problems which are linked dynamically. The linkage is enforced by 
Lagrange multipliers. The paper first gives the SOW decomposition accounting only for 
the dynamic interaction, and follows with an equivalent decomposition for dealing with 
uncertainty. Each state-of-the-world is identified as a time-period/outcome pair. The de- 
composition for accounting for both dynamics and uncertainty is then developed. In the 
joint formulation, each technology is indexed by type, installation date and information of 
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past outcomes. This allows for the possibility of contingent decisions and is a main fea- 
ture of the model: an ability to identify optimal purchase strategies as future uncertainties 
are revealed with time. The problem is formulated as: 

T U 

[SOW] 	 Minimize 	ci x i  + 	IW tu (y i (t, u)) 	 (32) 
JEJ 	tr-1 Le=1 

subject to 

yi  (t, u) 	j 	for all j, 	u) € Li , 	 (33) 

yi  (t, u) xi 	for all j, (t, u) E 	 (34) 

yi  (t, u) = 0 	for all j, (t, u) e Li , 	 (35) 

where W 	(t, u)) is the probability-weighted discounted operating cost incurred under 

state-of-the-world (t, u), and Lj , the set of states-of-the-world in which technology j is an 
option. Constraints (33) and (34) together restrict generation to installed capacity and 
keep installed capacity below the allowable upper bound. If technology option j is not 
allowed in a particular state of the world, its generation is fixed at zero (constraint (35)). 
Demand is implicitly satisfied via the operating cost function. From this problem, the La- 
grangian dual problem is formed and simplified. An algorithm is proposed to solve the 
problem which, in summary, iteratively solves the Lagrangian dual problem for each 
state-of-the-world using dynamic programming and updates estimates of the Lagrange 
multipliers until the projected gradient at the solution is zero. A nondegenerate solution 
will result only if the operating cost function W is convex. 

An example is provided which illustrates the procedure and shows that it produces 
reasonable contingency plans. There are two time periods with uncertainty in nuclear fuel 
costs. Reproducing the results in Table I shows that the uncertainty in nuclear fuel cost 
discourages the purchase of nuclear capacity in the first period, but different plans are 
recommended in the subsequent period, depending on the outcome of the uncertain event. 

Another decomposition method which has been used in investment planning under un- 
certainty is the Dantzig—Wolfe decomposition. This approach is used by Sanghvi and 
Shavel 26  to solve a very-large-scale model for hydrothermal system expansion for the US 
Pacific Northwest. A unique feature of the model is that conservation of energy through 
demand-side management is explicitly included as a supply option. Uncertainty in hydro 
energy availability, along with load growth uncertainty, are considered. 

Table I 

Purchase decisions from state-of-the-world decomposition 

1990 	 2000 Nuclear fuel cost 
Low 	 High 

5000 MW Coal 	 4000 MW Nuclear 	4000 MW coal 3000 MW Oil 
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Other models using techniques of stochastic programming have been proposed as well. 
Louveaux" presents a general method for solving multistage stochastic programs which 
is applied to the energy investment problem. Dapkus and Bowe" use a stochastic dy- 
namic programming approach incorporating uncertainty demand, availability of new 
technology, and possible loss of service from failure, regulatory action or lack of fuel. A 
stochastic program with recourse to handle uncertain demand and fuel costs is developed 
by Janssens de Bisthoven et al. 28 ; a technique based on nested decomposition and cutting 
plane methods is proposed for its solution. Bienstock and Shapiro 29  developed a two- 
stage mixed-integer, stochastic model for resource acquisition that includes the ability to 
model complex features such as supply contracts contingent on future outcomes. Goren- 
sun et a/. 23  minimize the maximum regret associated with each scenario, rather than the 
expected cost. The regret of a scenario is the difference between the actual cost (as de- 
termined by the model) and the cost optimal for a given scenario. Malcolm and Zenios" 
present a stochastic formulation which produces solutions that are robust to uncertain 
outcomes by weighting deviations from the expected value. 

3.4. Environmental considerations 

Environmental impacts from power generation range from local (e.g., particulates) to 
global (e.g., climate change), and have clearly been recognized as an important part of 
power system planning. While many models have acknowledged this, few actually in- 
clude such considerations nor do they discuss the implications of such considerations on 
the model. There are several methods that have been used to integrate environmental 
considerations with power systems planning models 31 . One is to include in the constraint 
set equations limiting emissions of pollutants. In many models which use this method, 
these constraints are nonbinding; they have no effect in determining the optimal plan and 
simply aggregate total emissions. Also, in order for this method to be compatible with the 
existing models, such constraints must be linear. Linearization is a crude approximation 
to pollution production and transport phenomena, and thus will fail to capture impacts 
accurately. Alternatively, a (weighted) term reflecting environmental costs can be added 
to the objective function. This method requires estimation of mitigation cost on technol- 
ogy-by-technology basis. A survey of these methods and their application in many widely 
used models is provided by Markandya 31 . 

A few models have been developed which explicitly include environmental factors in 
their formulations. Remmers a ali2  implemented the first method described above by 
including constraints representing emissions restrictions. The system is modelled as a 
network, with primary energy ;sources as inputs to conversion technologies and end users, 
with a set of emission reduction technologies assigned to each energy conversion tech- 
nology. Decision variables xi, thus denote the flow of energy through various branches in 
the system. The model is fundamentally the same as LP, with the following additional 
constraints: 

I ejkt Y it Lkt 
	for all k, t, 	 (36) 

jEEET 
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01k Iejki Y jt 	 yfi  0 for all k, l i t , 	 (37) 

je FULe 	le ERTit  

with Oa the reduction efficiency of emission reduction technology I for pollutant k, and 
eiki , the emission factor. The summation in eqn (36) is made over all emissions and emis- 

sions-reducing technologies, EET. This constraint limits the aggregate emission of pollut- 

ant k over time t to Lk,. In eqn (37) the first summation is made over all primary energy 

sources feeding energy conversion technology i, while the second is over the set of emis- 
sions-reducing technologies. The model was run under scenarios requiring different 
emissions reduction targets to forecast long-term primary energy consumption. 

Environmental concerns such as air pollution, acid rain and global climate change 
have caused regulatory agencies in the US to develop an interest in incorporating envi- 
ronmental externalities into the planning and regulatory process 3334 . Nearly half of all the 
US states require incorporation of environmental externality costs in either the planning 
and acquisition or rate-making process. The goal of these methods is to increase the like- 
lihood of less environmentally harmful technologies appearing in the generation plan, 
even if their economic costs are higher than least-cost alternatives. On the rate-making 
side, a greater rate of return is often allowed for construction and use of environmentally 
sound resources. Several methods of incorporating environmental externalities are being 
used by state Public Utilities Commissions in the planning/acquisition process. These 
include34 : 

Qualitative treatment of environmental concerns, such as giving preference to more 
environmentally sound technologies. 

Direct quantification of costs as a part of integrated resource planning. 

Percentage adder/subtractor applied to the cost of supply/demand-side resources. 

However, to our knowledge, no math programming models which directly incorporate 
any of the above methods have been published. 

In the past, the planning process was dominated by utilities, or central planning 
authorities, with economic or social equity goals being the main concern. Today, how- 
ever, there has been an increasing involvement of many diverse interests with different 
and often conflicting objectives. The objective nature of optimality also changes under a 
multicriteria regime; the values and biases of the decision makers affect the solution. The 
advent of multiobjective programming has led to many model formulations which include 
planning goals in addition to cost minimization and explicitly account for the tradeoffs 
between conflicting goals. 

A representative multiobjective model, developed by Kavrakoglu and Kiziltan 35, con- 
siders the following three criteria: economic cost (F 1 ), environmental impact (F2) and risk (F3 ). These are described mathematically as : 

"I I t.it 	4t 41 • 	 (38 ) 
jei titT 
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F2 = E 	yi, , 	 (39) 
jeJ reT 

= E Rif Exit 	 (40) 

jEJ teT 	r=0 

subject to the constraints of [LP]. The quantities l and RE  are values which represent the 
environmental impact and risk associated with technology j. To obtain solutions to the 
multiobjective model weights w„ with E i w, 1, are assigned to each of the objective cri- 
teria functions and the reulsting linear program solved for various combinations of w,. 
The object is to find the efficient frontier of solutions, i.e., a solution z* = (x*, y*) is said 
to be efficient if, for all objectives I, Fi  (z*) 5 F, (z) for all solutions z. Techniques exist 
for varying the weights w, so that efficient solutions are obtained. From this set of effi- 
cient, or noninferior, solutions the 'best compromise' solution can be found, or some sub- 
set of these solutions chosen for ultimate consideration by the decision makers. The 
model was applied to the Turkish electric power system. Amagai and Leung 3 6  use a simi- 
lar compromise programming approach on the objectives of minimizing cost, emissions 
and fuel supply risk for the Japanese power sector. 

Many other approaches which have integrated multiple objectives with traditional lin- 
ear and dynamic programming tools (such as WASP) have been developed. Evans et al. 37  
use multiattribute utility theory to measure the utility's objectives and dynamic pro- 
gramming to choose the expansion plan. Yang and Chen 38  integrate a multicriteria deci- 
sion procedure based on the analytical hierarchy process with a dynamic programming 
method. Kim and Ahn 39  integrate a preference-order ranking scheme with WASP to de- 
termine the relative desirability of expansion plans. A two-stage solution procedure is 
developed by Climaco a al. 40 . 

In the first stage, solutions to the multicriteria problem are 
generated, with some being retained for further consideration. In the second stage, the 
coarse solutions of the first stage are fine-tuned by evaluating them against a second set 
of criteria. A review of a variety of multiobjective programming techniques and their 
application to power systems modelling is presented by Psarras et a1. 41  

4. Conclusion 

Over the past three decades, the electric power industry has been a rich source of applica- 
tion for the state-of-the-an mathematical programming approaches, particularly in the 
area of capacity expansion. We hope that the reader has acquired an appreciation of the 
variety of mathematical programming applications to the electric power sector. This paper 
has described how mathematical programming methods and models have been used to 
address some of the issues critical to planning electric power capacity expansion. Primary 
among these issues have been reliability of supply, uncertainty in demand and environ- 
mental externality costs in planning models. However, as the regulatory, financial and 
technical structure of the utility industry changes, more issues have arisen which compli- 
cate the planning process. Several of these issues stand out 42 . Demand-side management 
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has become an important concern of utilities, extending beyond traditional policies such 
as encouraging conservation. Nonutility generation (independent power production) si g- 
nificantly increased in the US following the Public Utility Regulatory Policies Act of 
1978, and is sure to affect future generation plans of utilities in many ways. As transmis- 
sion networks become more extensive and interconnections between systems become 
stronger, the possibility of inter-regional trade and the formation of power pools are vi- 
able alternatives for most utilities. Not least importantly, deregulation and privatization of 
utilities is taking place throughout the world; state-owned, centrally planned institutions 
are being replaced by enterprises governed by market forces. Each of these issues has 
features which will pose challenges to modellers who wish to investigate their effects in a 
mathematical programming environment. 
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