
J. Indian Inst. Sci., Mar.—Apr. 1995, 75, 141-174. 

© Indian Institute of Science. 

A survey of solution concepts in multicriteria games 

L. ANANDt , N. SHASHISHEICHAR*, D. GHOSEI  AND U. R. PRASAD* 
tDepartment of Aerospace Engineering, *Department of Computer Science and Automation, Indian Institute of 
Science, Bangalore 560 012, India. 

Received on December 16, 1993; Revised on June 17, 1994. 

Abstract 

In this paper, a survey of the main results in the theory of multicriteria games is presented. The primary objective 
of the paper is to trace the major developments of the theory in four directions: (0 approachability—excludability 
theory, (ii) multicriteria cooperative games, (iii) equilibrium solutions in multicriteria games, and (iv) security 
strategies in multicriteria games. Potential applications of the thoery of problems of practical interest are also 
discussed. The paper also discusses several possible future directions of research. 
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1. Introduction 

Multicriteria optimization forms a substantial part of the general optimization theory. Its 
evolution was motivated by the need to model multiple objectives of a decision maker 
and identify acceptable decisions and solution concepts. Since the late fifties till present 
time this line of research has spawned an enormous number of books and research 
monographs, in addition to papers, special issues, and survey articles in scientific peri- 
odicals. The primary reason for the popularity of such a topic is that decisions in real 
life are seldom motivated by a single objective or goal. Usually, any decision has several 
different (and sometimes apparently incompatible) consequences and therefore has to be 
evaluated against several different criteria. 

Another important extension of optimization theory is known as the theory of 
games', which models and analyses conflict situations involving more than one decision 
maker each with his own objective function to optimize. This theory is motivated by the 
fact that many real-life situations are influenced by the decisions of more than one deci- 
sion maker. Perhaps the most obvious example of this kind of situation is the economic 
market place which is influenced by the decisions of several producers and consumers. 

The theory of multicriteria games (also known as games with vector payoffs) is a 
confluence of game theory and multicriteria optimization. It is applicable to a situation 
in which the system of interest in influenced by more than one decision maker (or 
player) each of them having more than one objective to fulfil. A general model of such a 
game will consist of n players, each having an i i -dimensional payoff vector with i = 1, 
2,... , n. The payoff spaces of the ith players (Pi) will be 1 1 -dimensional and may not 
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have any payoff in common with other players. The game could be zero-sum or nonzero- 
sum, cooperative or non-cooperative, and modelled in normal form or in extensive form, 
in the same sense as in single-criterion games, which is the domain of conventional game 
theory. Depending on the application, the theory of multicriteria games has evolved in four 

main directions: (i) approachability--excludability theory, (ii) cooperative games, (iii) equilib- 
rium solutions, and (iv) security strategies. Most of these developments have adopted a no r_ 
mal-form game as their basic model and proposed feasible solution concepts. 

The published literature of multicriteria game theory is somewhat scattered and im- 
portant contributions have appeared in journals of engineering science, economics, op- 
timization, statistics, and pure mathematics. Renewed interest in the theory of games 
(especially in microeconomics literature) in recent years has been triggered by the reali- 
zation that realistic game-theoretic models can explain, to a large extent, a decision 
makers' real-life behaviour and also many previously unexplained market phenomena. It 
is felt that the theory of multicriteria games, by the very fact of its realistic premise, can 
effectively embellish these results and make them more acceptable. Hence, collating the 
various developments in this area at one place will be of help to researchers in the area 
of multicriteria games. 

The objective of this paper is to trace the development of multicriteria games through 
each of the above approaches. One of the major objectives here is to identify links (if 
they exist) between the four different approaches and also with other branches of game 
theory which are of current interest. It is also attempted to identify potential future di- 
rections of research and some non-trivial open problems in this area. 

2. The approachability—excludability theory 

2.1. Introduction 

The intuitively appealing elegance of von Neumann's minimax theorem for single crite- 
rion zero-sum games had initially led researchers to welcome it as the long-awaited so- 
lution to general conflict-resolution problems. That it was not so became clear as the 
theory failed to give satisfactory solutions to most real-life problems modelled in the 
game-theoretic framework. Some researchers even went so far as to suggest 2  that the 
importance given to the minimax theorem has actually hindered developments in game 
theory. This set the stage for the emergence of the theory of nonzero-sum games and its 
general acceptability. However, the criticism levelled against the minimax theorem was 
somewhat unjustified since there is always some amount of pure antagonism between 
players in any game and this is the situation that zero-sum games attempt to 
this context, the minimax theorem can be considered to be one of the vital cornerstones 
in the theory of games. This conviction has led to several generalizations and extensions 
of the minimax theorems. 	

model. In 

One such extension is Blackwell's 3  approachability—excludability theory, which Was 
motivated by the desire to obtain an analogous result for multicriteria zero-sum game s.  
In recent times this theory has moved away from the confines of pure mathematical theorY 
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and has been applied to many practical problems. The essential idea behind this theory is to 
define a set (a desirable set) in the payoff space and say whether or not, through repeated play 
of a zero-sum game, a player can force the average payoffs to approach this set. Similarly, it is 
also required to know whether or not, through repeated play of a zero-sum game, a player can 
force the average payoff to approach this set. Similarly, it is also required to know whether a 
player can avoid a similar set (an undesirable one) in the payoff space. 

In repeated games with vector payoffs, the extent to which a player controls the trajectory 
of the average payoff (that is, of the centre of gravity of the actual payoffs) determines the 
control the player has over the game. In a scalar game, von Neumann's minimax theorem 
gives an idea of the control each player could have over the repeated game. 

In Section 2.2, we discuss Blackwell's definition of approachability and excludability 
and the sufficiency condition (which becomes necessary under certain conditions) for 
approachability. Blackwell assumes that the payoff space is bounded. Extending the re- 
sults to approachability this condition is relaxed in Section 2.3. In Section 2.4, the no- 
tions of weak approachability and weak excludability are introduced and the collection 
of sets that are weakly approachable are studied. Approachability and excludability the- 
ory in infinitely repeated games is now generalized to a stochastic game and discussed in 
Section 2.5. How the information available to the players influences the class of ap- 
proachable sets is discussed in Section 2.6. Section 2.7 provides a brief discussion of a 
few of the applications of approachability–excludability theory. 

2.2. The basic results 

A finite two-person zero-sum game is represented by an rxs matrix, M = {(mu) }rxs, each 
element of which is a probability distribution over a closed bounded convex set X in N- 
dimensional Euclidean space. The strategy for the minimizing player, PI, is defined as a 
sequence f = {in }, n = 0, 1, 2, •.. of functions where fn  is a mapping from the set of n- 

tuples (x1, x2, ... , xn), xi E X to the set p of vectors, p = (911 P21••• 9 Pr) with pi  0 for all i 

and gl i pi  = 1. Here p is a vector of probability measures on the set of pure strategies of 
Pl, with pi  denoting the probability with which the ith pure strategy is chosen by Pl. 

Similarly, the strategy for the maximising player, P2, is defined as a sequence g = 
n = 0, 1, 2, .. of functions, where 8,, is a mapping from the set of n-tuples (x1. x2, ..., xn), 

E X to the set Q of vectors q = (qi, (12, 	'is)' with qj  0 for all j and ri=i  qj = 1. Like 

p, q is a vector of probability measures on the set of pure strategies of P2, with qj  being 
the probability with which the jth pure strategy is chosen by P2. In the above formula- 
tion, obviously, the past actions of each player are known to both. 

Blackwell 3  raises the following question—"Given a matrix M and a set S in an N- 

dimensional space, can P1 guarantee that the average payoff is forced arbitrarily close to S, 

with probability approaching 1 as the number of plays become infinite?" He terms such a 
property of set S as approachability (by P1). Similarly, the property of ensuring (by P2) that 
the average payoff lies outside S by a certain positive distance, no matter how many times the 
game is played, is termed as excludability. These terms could be formally described as under. 
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Let S be any set in the N-dimensional space. S is said to be approachable in M, if there 

exists f* such that for every E> 0 there exists an No  such that, for every g, prob{5 > e forn 

some n > No } < E, where 4, is the distance of the point X„ =E7_4 (xin) from S, xl, x 2, Ex 

are the variables determined by 1*, g. On the other hand, S is said to be excludable in M if 

there exists a g* such that there exists a d> 0 such that for every E> 0 there is an No  such 

that, for every f, Prob{& ?_ d for all n No } > 1-E, where x l , x2, ... E X are variables deter- 

mined by f, g*. Approachability and excludability are the same for S and its closure and so 

without loss of generality we can assume, S to be closed. Clearly, any superset of an ap- 
proachable set is approachable and any subset of an excludable set is excludable. 

The payoffs, in general, are vectors belonging to the N-dimensional Euclidean space. 

When N =1, it reduces to games with scalar payoffs. In such a game with N- 1, associ- 
ated with every M are a number v and vectors p E P. q E Q such that the set S = ix > t} is 
approachable for t v with f : 	p and excludable for t 5. v with g gn  q. Here S is 
considered to be a convex set. The result that S is either approachable or excludable for S 
nonconvex also holds so long as N= 1. More of this will be seen later. It will also be 
shown that for N >1, S is either approachable or excludable, if S is convex. To reiterate 
the fact that it is not true for S convex when N> 1, Blackwell s  gives an illustrative ex- 
ample with N = 2 and S nonconvex. 

Example 2.1. Let r =s = 2; m(1, 1) = m(1, 2) = (0, 0), m(2, 1) = (1, 0), rn(2, 2) = (l, 1). 

S = I U 12, where / 1  is the set of points (4, y), 0 y 	and 12 is the set of points (1, y), 

< y < 1. Suppose fi  -s (0, 1) for j n so that i , = (1, u), 0 5 u 5. 1. If we consider the 

following strategy for Pl: for j > n, fi  (0 , 1) if u 4, else fi  -a (1, 0), then for u 

..72n  E 1 2  and for u < f, 12n e I I . So, given any No we can find some n > No  such that 

In  E S. So S is not excludable. On the other hand, let i, = (an , bn ) for some n. If P2 

employs the following strategy: if a n  ?_ j, gn  =7: (1, 0), else g n  a (0, 1), then, as n -> 
(an , bon) tends either to the line joining (0, 0) and (1, 1) or to the line joining 	0) and 

(1, 0) but never stays near S. Thus, S is not approachable. 

For the matrix Al, let M denote the matrix whose elements wi (1, j) are the respective 
means of m(i, j) of M. If p E P is a strategy of P1 then 14 -  1  puTz (i, j), 1 	s are the s 
expected pure-strategy payoffs for P2 when P1 plays p. The convex hull, R(p), of the S 

points is the region in which P2's average payoffs are expected to lie for any mixed 
strategy of P2 corresponding to the mixed strategy p of Pl. Similarly, we could define 
for q E Q. T(q) as the convex hull of the r points E si=1  quit (i, j), 1 < i < r. T(q) is the con- 

vex region in which Pi's average payoffs are expected to lie for any mixed strategy of 
P1 corresponding to the mixed strategy q of P2. 

Blackwell3  gives a sufficient condition for approachability, which under certain 
conditions also becomes necessary. 
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Theorem 2.1. Let S be any closed set. If for every x e S there is a p(x) E P 'such that the 
hyperplane through y, the closest point to x in S, perpendicular to the line segment xy, 
separates x from R(p), then S is approachable with the strategy f : f n , where 

p(in )if n>0 and  
fn = 

arbitrary if either n = 0 or in  E S. 

If )1, is the point in S closest to in  then we can define 8,, = Ii-y F. When the hypothe- 
ses of the theorem are satisfied, the sequence {S} also satisfies the following: 

E[ 5 , 811 325 	8n-11 5 (5n_1(1 — 2/n) + cln2 . 	 (1) 

058n <a, 	 (2) 

	

8, - ir5n .d  5 bln. 	 (3) 

where a, b and c are constants. To prove the theorem, we need to show that a sequence 
On } satisfying (1), (2) and (3) above, tends to zero as n becomes infinite. This follows 
from the lemma stated below. 

Lemma 2.1. A sequence of chance variables 8 1 , 32 ,...satisfying (1), (2) and (3) converges 
to zero with probability 1 at a rate depending only on a, b and c; that is, for every E> 0, 
there is an No depending only on e, a, b and c, such that for any {8„} satisfying (1), (2) 
and (3), we have Prob 	E for some n N o } < e. 

If a closed set S is approachable in the s x r matrix Anthe transpose of M) then any 
closed set S I  not intersecting S is excludable in M with any strategy with which S is ap- 
proachable in M'. Hence, it follows that the sufficient condition for approachability in 
Theorem 2.1 also results in a sufficient condition for excludability. 

The theorem gives only a sufficient condition for any closed set S to be approachable. 
Under certain other constraints, there could be a necessary condition too. 

Theorem 2.2. A closed convex set S is approachable by P1 if and only if it intersects 
T(q) for every q E Q. If it fails to intersect T(q o) for some q o  E Q, then S is excludable by 
P2 with g;g, -a go . 

Suppose S intersects T(q) for all q E Q; let xo  e S and y E S be the point in S which is 

closest to xo. For S convex, it is possible to derive the value of the game with matrix 
A = {(aii)}, au= (y — . X 0 ? 11  (11, j)) ((x, y) denotes the inner product of x and y), to be 

min max (y xo ,
s 

 q .m(t, j)) min (y xo ,$). 
q 	 seS 

Consequently, there exists a p eP such that for all r = E;1.1  pi  ,T, (i, j) E R(p), (y—x o, re) 

(y-x0, x0). It is thus possible to find a hyperplane (y—x 0, x ) = (y—xo, y) that separates xo 
from R(p). From Theorem 2.1, it follows that S is approachable. 
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On the other hand, No), for any qo  E Q, satisfies the hypotheses of Theorem 2.1 in 

M I  with f : l, ego  and so is approachable in M' with this f. Consequently, if S fails to 

intersect T(q 0) for some q o  E Q, S is excludable in M with g : ,g,, a go . 

From Theorem 2. 2, it follows that if S is convex, then S is either approachable by 

one player or is excludable by the other player. 

Corollary 2. 1. A closed convex set S is approachable if and only if, for every vector 

u E X, V(u) rnin(u, s), where = v(u) is the value of the game with matrix B = {(b u)}, 
ses 

b 1 = (u, IF (i, M. 
Using this corollary, a result is proved for the case N = 1 that even if S is nonconvex, 

S is either approachable or excludable. 

Theorem 2. 3. For N = 1, let v and v' be the values of the games with matrices M and 

M', respectively. If v'_ . v, a closed set S is approachable if it .intersects the closed inter- 
val v'v and excludable otherwise. If v' v, a closed set S is approachable if it contains 
the closed interval vv' and excludable otherwise. 

When the result of Corollary 2. 1 is applied to a closed interval AB, A <B. with 
u = ±1, it follows that AB is approachable if and only if v A and —v' — B. If V v, 
these conditions imply that AS has to intersect the closed interval v'v, and if v' v, the 
above conditions imply that AS should contain vv'. Thus, if V v, then any set S inter- 
secting with v'v is approachable in M, and if S does not intersect with Vv, it is exclud- 
able in M'. If V v, any point in vv' is approachable in M so that any closed set not 
containing vv' is disjoint from the approachable set in M and hence is excludable in M. 

In the example of Blackwell discussed earlier, for N = 2, it was seen that S is neither 
approachable not excludable, because of the nonconvexity of set S. If the definitions of 
approachability and excludability are relaxed to weak approachability and weak exclud- 
ability, respectively, then for N 1, any set S(whether convex or not) is either weakly 
approachable in a matrix game M or weakly excludable. This is discussed in Section 2.4. 

2.3. Extensions of the basic results 

Blackwell 3  assumes that the entries (m u) of the matrix M are probability distributions 
over a closed bounded convex set X of the N-dimensional Euclidean space. Hou 4  relaxes 
the constraint of boundedness of X, clamping instead the weaker constraint that the 
means of the distributions (mu)u  are finite (that is, for 	E[ • l a  is bounded by some 
K'< 00, for some a> 1). He states and proves that for a game with matrix M, the class of 
approachable sets for a player depends only on re t . Sackrowitz 5  confirms these results 
subject only to the condition that the mean vectors exist. 

Let £2 be the convex hull of the rs elements of A? , and K, its bound. Given a set S, B 
is defined to be an insufficient subset of S if 

(1) there exists an open set U(B) such that S 11 U(B) = B. 
(ii) a d can be found such that if x„ e U(B) for some n > 10 Kld, theftt there is a series 

of strategies q,, i , qn+2,... for the second player such that irrespective of the strat- 
egy of the first player, for some integer m > n, Prob{8(x„,, S) > d} = 1. 
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lithe first of the above condition is to be satisfied then, if BC int(S) (where int(S) 
denotes the interior of the set S), then B is open; else, that part of B which is contained 
in int(S) is open and for the remainder we can find some open set U(B) that contains 13 
and satisfies the second condition. According to the second condition, whenever the 
centre of gravity, in , enters U(B), the second player has some strategy, irrespective of 
the strategy adopted by the first player, by which 1m  can be moved away from S such that 

nt  s)> d for some m n and d > O. 

If B is the collection of all insufficient subsets B of S, let 13* 
= U Be, 

B. Then a set 

Es.  = SIB* (that is, the set of all elements in S but not belonging to 13*) is called the sufficient 
subset of S. S does not contain any insufficient subsets. Note that, using Blackwell's 3  nota- 
tion, a sufficient subset should be such that it intersects T(q) for every q e Q. Hou4  gives the 
necessary and sufficient condition for approachability through the following theorem. 

Theorem 2.4. A set S c R N  is approachable by player P1 zf and only if , the sufficient 
subset of S n n, is nonempty. 

Without loss of generality, S can be considered to be a closed subset of D (see Hou 4) and 

hence 	= S. From the theorem and the earlier definitions it follows that if gis 

nonempty then gi  c int(S), for if S 	int(S) then there is no way of approaching S. 

thereby making Ss  and hence S unapproachable (if c int(S) then I is surrounded by 
B*, which means that whenever S is to be approached, i n  must pass through B*, thereby 
making S unapproachable). 

The following examples illustrate sufficient and insufficient subsets and the condition 
for approachability. For the following set of examples, the matrix Ki considered is 
Fitt = ( 1 : 1 ): 171 21 = (11 0): iT1 12 = /7 22 = (0, 0). The average payoff lies only in the closed 
region enclosed by the triangle (0, 0), (1, 0) and (1, 1). 

Example 2.2. Let /11  be the line segment OA and e be AB as in Fig. 1(a). Let a set S i  be 

defined as S i  = 111  U /12  . It can be seen that ft is an insufficient subset of S i  and the sufe 

13(0,1) 	0 (j.,1 ) 

\ B2 	( 1.4 
e 

	 S7  
(0,i) 	 -") 12 3 

d(0,0) 	 e(1,0) 

(a) 
	

(b) 
	 (c) 

Fla 1. Examples (a) 2.2, (b) 2.3, and (c) 2.4. 
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ficient subset §; is sec1  = //I . Since K11  is nonempty, S i  is approachable. /: is R(p) for  the 

strategy p = (1, 0) of the first player. So /1 is approachable and every superset S 1  of i t i s  

approachable. 

Example 2.3. Considering 1 1 , /2  and 13  as shown in Fig. 1(b), let S2 = 11 U 12. 12 is an in - 

sufficient subset of 52 while 1 1  is again an R(p) for the strategy p = 	-1) for the first 

2 player and is a sufficient subset of S2. Hence, S2 is approachable. Define S3 = / U 13. 513  

is approachable and contains no insufficient subsets. 53 does not satisfy the sufficiency 

condition of Blackwell 3  but is still approachable (for any In  above 53, the sufficiency 

condition is not satisfied). 

2.4. Weak approachability 

According to the definition of approachability, a set S in R N  is approachable if there ex- 

ists an No  such that the trajectory of the centre of gravity, i n , remains within the e- 
neighbourhood of S for all n > Nn. On the other hand, if we could relax this condition by 
requiring the trajectory of i n  to be in the &neighbourhood of S at least for some n > .N0, 
then S is said to be weakly approachable. Formally, weak approachability and weak ex- 
cludability are defined by Slackwell 3  as follows. 

A set S is said to be weakly approachable in a game with matrix M if, for every e> 0, 
there is an No such that for every n No  there is a strategy f for P1 such that, for all g, 
Prob {5, > s} < E, where 6,2  is the distance of i n  from S. Similarly, S is weakly exclud- 
able in M if there is a d> 0 such that for every n No  there is a strategy g for P2 such 
that, for all 1 Prob{5„ < d} < E. 

As with approachability, weak approachability and weak excludability for a set S are 
the same for its closure and hence, without loss of generality, S can be considered to be 
closed. Any superset of a weakly approachable set is weakly approachable and every sub- 
set of a weakly excludable set is weakly excludable. No set which is weakly approachable 
by a player can also be weakly excludable by the other player. For two sets S and S'Lliat 
are disjoint, if S is weakly approachable by a player, then S' is weakly excludable by the 
same player. So, any condition for weak approachability implies a condition for weak 
excludability. Hou6  studies the collection of sets in two-dimensional Euclidean space that 
are weakly approachable by Pl. These ideas could be extended to any N-dimensional 
Euclidean space. For the following discussion let the 2 x 2 matrix M be WI 
m12 = b, in 21  = c, W1/2 2  = d. Let 12* denote the convex hull of the points a, b, c, d and 

= Up R(p). 12*, in general, is the convex hull of O. If 0= 17*, then every set in 2- 
space is either weakly approachable by one player or weakly excludable by the other. The 
following example illustrates a weakly approachable set. 

Example 2.4. Let a = (1/2, 1), b = (0, 1), c = (1, 0), d = (0, 0). Every continuous graph 
from bd to ac in the trapezoid abdc is weakly approachable by player P1 (see Fig. 1 (c) ) * 
Besides, many nonconnected graphs are also weakly approachable. One such noncom 
nected graph is B 1  U B2, where B i  is the segment (1,1/3)(7/12,1/3) and 82 is the seginey

( 

 
(114, 2/3)(2/3, 2/3). It can be very easily verified that, for every N, 13N e B i  U 82 with 
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the following strategy: p n  = (0, 1) for 1 5 n N and p„ = (1, 0) for N < n < 2N so that 
12N  = (4, 1 / 2); if u 3/8, pn  = (0, 1) for 2N < n 3N, in which case I3N  e 8 1 ; else, if 
u> 3/8, p„= (1, 0) for 2N < n 3N, whence 13N E B2. 

As already mentioned, if 12= 12*, every set is either weakly approachable by one 
player or weakly excludable by the other. In such a case, without loss of generality, we 
can assume that d = (0, 0), b = (0, brY), btY ?.. 0, a', CX > 0, where wE and 	are the x and y 
coordinates of w = 

Let F be the graph of a continuous function f with one terminal point on T(0) and the 
other on T(I) and the slope of any chord of the graph (the linear joint of two points on 
the curve) be between the slopes of the diagonals bc and da of the quadrilateral abdc. 

Let 	denote the collection of all such subsets F on .Q. Since every continuous graph 
that has its terminals points on T(0) and T(1), respectively, is weakly approachable, if a 

set S in 2-space contains an F L j, then S is weakly approachable by Pl. From Example 
2.4 it is to be expected that certain nonconnected graphs are also weakly approachable. 
We shall construct a collection of the nonconnected sets which are weakly approachable. 

For each closed set S c  12, let of = 8(s, T(0)), 8 = 8(5, T(1)) and Is , r, be the points in 

S closest to T(0) and T(I), respectively. Let u1 = (4, f(4)) E T(1) and E i  = {B:B = {(x, 

f(x)):1315..a5.xj3 5 u; for some F t j and some 0 5 a 5 0 5 14; }}. We can now define 

• 
1  iins

Em = CD= U B i, B i  € E i  for all i = 1, 2,...,m, iBi E T(0), rBm eT(1), and for any 
i=1 

1 < i < m 1  8' < 8'B 9 
S r  >S } • 	 m 

Let E= LI =i Es If a set S in 2-space contains a set — 	m •  , 	13,_1 	Bi   
of E, then P1 has a pure strategy such that S is weakly approachable by hint 

Let E* = {D*} be the collection of sets in 2-space generated by E such that for each D* e 
E* there exists a sequence of sets {D} belonging to E, with 8*(D8) —> 0 as n -* 00, where 

max (w, D*). 
we DID* 

If a set contains a D*, then S is weakly approachable by P1 and has a pure strategy. 

Theorem 2.5. A set S in 2-space is weakly approachable by P1 if and only zf S contains a 
set belonging to E*. 

When 12 Qic, then 12 is no more convex. If a set f is defined such that it intersects T(q) 
for all q Q and is continuous from T(0) to T(1), then F is weakly approachable. Any S which 
contains such an F is weakly approachable. So, to ensure weak approachability the graph of F 
has to intersect T(q) for every q 2 Q. We shall discuss this for the following three cases: 

(1) a=dorb=c; 
(2) R(0) n R(1 )  0 or T(0) n T(1) 0; 
(3) R(0) n R( 1 )  = T(0) n T(1) = 0. 
Case 1: 	C2*,a=d or b=c. 

Let a = d= (0, 0). By a simple transformation we could have bx  < 0 cx  > 0, 	lb' = cji  e 

T(q) are lines from ab to cd, with T(0) = bd and T(1) = ac, shown in Fig. 2(a). 
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FIG. 2. Cases (a) 1, (b) 2, and (c) 3. 

T(q) are tangents to some nonlinear curve A. If F should cut T(q) for every q EQ, F 
should have an intermediary point on A. So, an F that is contintous from T(0) to T(1) with 
an intermediary point on A is weakly approachable. 

Case 2: .0* fl*, R(0) n R(1) * 0 or T(0) fl T(l) # 0. 

Let R(0) n R(1) # 0 and let R(0) and R(1) intersect at (0, 0). Without loss of generality, 
we assume that d', e > 0, b' < 0, ax/(ax-bx) el(e-dx ) and that the absolute values of the 
slopes of R(0) and R(1) are equal. T(q) for all q E Q is shown in Fig 2(b). If F should cut 
T(q) for every q E Q, then F should be continuous with an intermediary point on A*. If in 
addition, (11(ax-V) = e/(e-dx ), then it can be shown that p.' = ,u" (see Fig. 2(b)) which 
means that A* is just the point (0, 0). Then every set in 2-space is either weakly 
approachable by one player or weakly excludable by the other. It is also possible to 
construct a collection of sets E* in 2-space such that a set S is weakly approachable by Fl 
if and only if S contains an element of E*. 

Case 3: 12 * 12*, R(0) n R(1) = T(0) n T(1) = 0. 

In this case one element of M is an interior point of the convex hull of the other elements 
of M. Let a be this point and d =(0, 0), b = (0, bY), b> 0, e > 0. A*, as in earlier case, is 
the nonlinear curve that bounds T(q) for all q E Q that lie outside £2. Any F that is 
continuous from bd to ac with an intermediary point on A* cuts T(q) for every q E Q (see 
Fig. 2(c)). 

An important recent contribution in this area by Vieille' defines weak approachaby 
in the setting of a fixed-duration differential game. A game G, repeated n times, is 
considered on an interval of fixed duration r, such that each stage k corresponds to the 
subinterval [(k-1) tin, kiln] and the players P1 and P2 are allowed to choose actions l and 
j, respectively, only at the beginning of each subinterval. The average payoff function in 
such game is obtained as a discrete version of the differential game associated with ihe 
differential system 

di 
—
dt 

= p(t)Mq(t), 
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with the initial condition that ..7(0) = x0. Using results from the viscosity solutions of 
differential games with fixed duration, Vieille proves that every set is either weakly 
approachable or weakly excludable (but not both). This settles a conjecture on such sets 
first proposed by Blackwel1 3 . 

2.5. Extensions to stochastic games 

In the discussion so far, it has been implicitly assumed that a game represented by a 
matrix M is repeatedly played by the two players. Instead, if we allow the players to play 
a different game at each stage, then the treatment becomes slightly different and we en- 
ter the realm of stochastic games with vector payoffs. 

A stochastic game is played in stages, such that at each stage the game enters one of 
the finitely many states and every player observing the current state, s, chooses one of 
the finitely many actions. The pair of actions at stage i, together with s, determines the 
payoff xi  at stage i, and the probability distribution, using which the next stable state s 
is selected. Each state consists of a matrix game. The choice of the next state is inde- 
pendent of the past and depends only on the current state and the actions in the current 
state. Such games can be modelled as discrete parameter Markov chains. The concepts 
of approachability and excludability have been extended to such stochastic games by 
Shirnkin and Shwartz 8 . The basic assumption underlying their approach is that a fixed 
state (say state 0) has certain uniform recurrent properties. Under such an assumption, it 
is possible to obtain results similar to the repeated matrix games, except that the strate- 
gies in the one-shot matrix game are now replaced by stationary substrategies which are 
employed between subsequent visits to state 0. Thus ;  the basic idea in the construction of 
approaching strategies is to use a fixed substrategy between visits to state 0 and modify 
this substrategy according to the current average payoff whenever state 0 is reached. The 
game, modelled as a controlled Markov chain with a countable state space S, has two 
players P1 and P2, each with finite action spaces A 1  and A2, respectively, who together 
determine the payoft~as given by an R N-valued function r. The state transition is gov- 
erned by a probability distribution law, p. At each stage, n = 0, 1, 2, ... , the current 
state, s, is observed and the two players simultaneously and independently choose ac- 
tions a l  e A i  and a2  EA2, respectively. As a result, a payoff vector r(s, a1 , a2 ) is collected 

and the next state s' is chosen according to the probability distribution p(. Is, a', a2 ) on 

S. Let rn  = r (Sr , a, a,n be the payoff vector at the nth stage and let 	= Enntio  (rm  n) 

denote the time-averaged payoff vector up to stage n. A randomized, history-dependent 

strategy zi  for Pi (i = 1, 2) is a sequence g, = 	 g re 	—> P(A i ), where P(A i ) is 

the set of probability vectors over A i  and lin  = S X (A 1  x A2 X Sr is the set of possible 

histories up to stage n. Let II, denote the class of all such strategies for the ith player. A 

stationary strategy for P1 is specified by a single function f: S —> PA,) so that 

4(h.) = f(s,), n O. Let F be the class of stationary strategies for P1 and G for P2. 

For every vector u e RN  and initial state s, if we consider the game with a scalar 
payoff function r" = (r, u) with PI maximizing the average expected payoff and P2 
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minimizing it, the model becomes a zero-sum stochastic game, denoted by nos). rdo  is  
the projection of the game with vector payoff function r on to the vector u. From the mi nimax  
theorem for scalar games, it follows that the value of fl(u), if it exists, is given by 

val F s (u)= sup inf lim n  inf.  E: 1 ,, 2 [0.-„,u)1 
tr i 	7r2 	

(4) 

s = inf sup lim n  sup E„2 [(7,„ 
x2 	A l  

u)]. (5) 

A strategy rci E El {7r2 E 112} is optimal in Fr(u) if it satisfies the sup in (4) [the inf .  in 
(5)]. Let U denote the set of all unit vectors in R N. As mentioned earlier, the basic as- 
sumption involves recurrence conditions for a fixed state 0. Let T denote the first pas- 
sage time to state 0: 

inf In 	1: s„ = 0}. 

A strategy n i  e1T is said to be stable if there exist positive constants M2 and R2 such that 

E0 	[T 2 1 < M2 for all /r 2  Ira 	— 	 (6) 

E,r
! , 71. 2 Ir. I) 	

R2  for all r 2 E 	• 	 (7) 

A set I1 	is uniformly stable if (6) and (7) are satisfied for every 7r 1  E fill  with the 
same constants M2 and R2. 

The following conditions are introduced into the model: 

(C1): For every unit vector u E U, the game F0(u) has a value and P1 has a stationary 
optimal strategy fi(u) in this game. Moreover, the set {f*(u):u E U} is uni- 
formly stable. 

(C2): Condition (Cl) holds. Furthermore, for each U E U, P2 has an optimal strategy 
g*(u) in F0 (u) which is stationary and stable. 

It can be shown that if the following hold then (Cl) and (C2) are satisfied and, more- 
over, the entire strategy sets H i  and 172  are uniformly stable: 

(i) The payoff function r is bounded. 
(ii) There exists a number M such that EL [7] M for every S E S and all stationary 

nonrandomized strategies f E F and g E G. 
Let {X„, n 0) be a sequence of random variables over some measurable space (a 

d Q) and let (P,, V E V) be a collection of probability measures on (O, c). For a  fixe  
V EV, X„ -4 0 Pv_almost-surely is equivalent to 

lirn Py i sup 1Xn l> 	= 0, for all € > 0, 	 (8) 
N—koo 	n2141 

X„ -4 0 Py-almost-surely, at a uniform rate over V if convergence in (8) is uniform over 
V, that is, 
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lim sup 1),, (sup IXI > E) = a 

Let the initial state, s, be fixed. 

a B-approachable strategy 74 c 

every 72 E 112 at a uniform rate 

excluding strategy 74 E 112  sucl 

A set B c  R N  is approachable from s by P1 if there exists 
Il such that d(F, only B) tends to 0 P-almost-surely for 

over 112 . B is excludable from s by P2 if there exists a B- 
1 that for some 5 > 0, d(7, BD tends to 0 P-almost-surely 

for every Ai c Hi  at a uniform rate over /11, where B,;.  = {b E R N : d(b, B) 8). An impor- 
tant aspect of the definition is the uniform rate of convergence. This requirement is es- 
sential if the infinite-stage model is considered as an approximation to the model with 
very long but finite time horizon. Let 

v —1 
E°  

ir2  [

T

Zedn=0 
 ten 

OUri,n2)= 
E° 	rTi 

x 1 .21. 2 1-I -I 

denote the average payoff per cycle from state 0 and back. 0(7r 1 , 7r2) is well defined if 
either 7r !  or 7r2  is a stable strategy. 

To the closed set B g le, from any point x e B, let cx  denote the closest point in B to 
x. Let H1  be the hyperplane through ci  which is perpendicular to (cx  x) and let kr  be a 
unit vector in the direction of ((b., — 

Theorem 2.6. Assume that the following condition is satisfied (SC refers to sufficient 
condition): 

(SC!): For every x E B, there exists a stable strategy it2  $ rh (equivalently, 0Or1 (x), 

112) is weakly separated by kl x  from x). Furthermore, the set {ff i (x):x e B} is uniformly 
stable. 

Then B is approachable from state 0 by P1 and a B-approachable strategy is given as 
follows: Let 0 < T(1) < T(2) < ... be the subsequent arrival instants to state 0. Let ff be 

some fixed stable strategy for Pl. Then 

(i) at stages 0 n < T(1) use 
(ii) at stages T(k) n < T(k + 1), k 1, if FT( k )  $ B then use 	(Fruo  ) started at T (k), 

else use ff started at T(k). 

Corollary 2.2. Assume that the condition (SC1) of Theorem 2.6 is satisfied. In addition, 

assume that for some strategy a E fi b  

sup  
/12 

and 
T-1 2 

< 00. sup Eas . ,, 2  [ 	
]

Iin=0  r„ 



154 
	 L. ANAND et al. 

Then B is approachable from state s by Pl. An approaching strategy is given as in 

Theorem 2.6 except that up to time T = T(1) the strategy a is used by Pl. 

It can be clearly seen that Theorem 2.6 is the generalization of the sufficiency condi- 
tion given by Blackwell 3  for repeated games. Similarly, when set B is convex, it is pos_ 
sible to obtain a complete characterization of approachability. 

For every stable g E G, let R(f, g) = 	. g [7,7  f E F. Define R(F, g){RV, g): f E 

and (f, g) = cony R(f, g), where cony denotes the closed convex hull. Similarly, we can de- 

fine R(f, G) and K(f G) for any stable f E F. For each convex set B in RN define the set U(B) 

of unit vectors: U(B) = {u, E U:X e B). U(B) represents all the directions in which a point 

outside B might be projected on to B. If B is bounded, then U(B) = U. 

Theorem 2.7. Assume that (C2) holds. Let B be a closed convex set in RN, and let the initial 

state so = O. 

(1) B is approachable if and only if either one of the following equivalent conditions 
are satisfied (NSC refers to necessary and sufficient condition): 

(NSC1): There exists a uniformly stable set (f(u): u E U(8)) of stationary strategies for 

P1 such that every x e B is separated from R(f(usi), G) by Hx , that is, 

inf„G  (R(Aux), g), ux) (cx, 

(NSC2): The separation condition in (NSC1) holds for f(u) fig(u), the optimal 
strategy of P1 in Fo(u), u E U(B). 

(NSC3): val Fo(u) min b " (b, u) for every u E U(B). 
(NSC4): (F, g) intersects B for every stable g 6 G. 

(ii) If B is not approachable, then it is excludable by P2 with a stationary strategy. 

An excludable convex set B may be excluded by a stationary strategy of P2. Thus, an 
excludable convex set will remain so even if P2 is restricted to stationary strategies only 

(or any superset thereof). 

The assumption that the approaching strategies are adapted to the history of the proc- 
ess (that is, the relative position of the average payoff with respect to the set to be aP - 
proached) only when the fixed state 0 is reached may have the undesirable effect of in- 
creasing the variance of the payoff if the recurrence times are far apart. So it would be of in- 
terest to construct approaching strategies, which adapt to the current payoff more frequently. 

It is clear that some recurrence conditions are required to preserve the basic approach 
discussed here. But the condition of recurrence of a single fixed state for all relevant 
strptegies is not the only possibility. We could, for example, consider the condition when 
the recurrent state is allowed to depend on the strategies, within a finite set of states. 

2.6. Information aspects 

Since a sequence of games is considered, the rules of play must specify to what extent a 
player's decision at any stage may depend on past plays. This leads to the natural quo- 
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non of how the class of approachable sets depends on the type of information available to the 
players. In the following discussion, we are interested only in the information that Fl gets. 

Suppose P1 receives no information about P2. Then a closed set S is approachable if 
and only if there exists ap EP such that R(p) c S. This result is independent of whether 
PI receives any information about his own past play or not. 

If P1 is informed of the complete history of P2's choice but receives no information 
concerning his own past plays, the class of approachable sets is greatly increased. Sup- 
pose P1 receives complete information pertaining to his past and to P2's past plays, then 
Katz9  shows that the class of approachable sets is not increased. This happens since, in 
the previous case, PI can actually construct his past history from the strategy he adopts 
and his knowledge of P2's past history. The result obtained in this case is identical to 
that of Blackwell s . 

2.7. Applications 

There are several problems of practical interest which can benefit from the approach- 
ability-excludability theory of Blackwell. We will discuss some of them below. These 
discussions also attempt to identify future research areas having definite applications. 

(a) Individually rational payoffs: Vector payoffs become relevant in games with in- 
complete information. This can be illustrated by a one-sided information game. Let us 
suppose that two players have to repeatedly play a game picked out of a set H of matrix 

games, following a distribution known to both players. The exact element h E H, chosen 
at the start, is told to P1 but not to P2 and we assume that both players have perfect re- 

call. P1 computes his payoffs in each possible state h E H, whereas for P2 only his expec- 
tation over H matters. In other words, Pi has a vector payoff whereas P2's payoff is a 
scalar. In such a game, individually rational payoff (to be understood in the sense of 
what each player cannot be prevented from obtaining) can be defined as .  elements of sets 
which are approachable by P1 and P2, respectively. 

(b) Finitely repeated games: In the literature on approachability-excludability theory, 
only infinitely repeated matrix games (with non-cooperative play) have been considered. 
In the mathematical economics literature finitely repeated games have been studied in 
recent times and certain interesting results have been obtained (see Benoit and 
Krishnal°). In finitely repeated games cooperation is enforced by defining punishments 
for deviations by players. In such games, the desired payoffs (which are not obtainable in 
non-cooperative play) may be considered to constitute sets S i  and S2 for players PI and 

P2, respectively, such that S = S1 n S2 # 0. Si and S2 are excludable by P2 and P2, re- 
spectively. The payoffs of P2 in S13 and PI in 522 are worse than their respective payoffs 
in S. Then S22 (Su) could be used as P2's (Pi's) punishment strategy on Pi (P2) for de- 
viations from agreed play. Thus, by introducing such punishment sets, we can try to 
make some sets approachable, which are otherwise excludable (and which give better 
payoffs to both players than their respective approachable sets). This way, using pun- 
ishment schemes, we may be able to enlarge the class of approachable sets. 
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(c) Nonzero-sum games: In most literature on approachability—excludability theo ry  
only zero-sum games are discussed. Instead, if we consider a nonzero-sum game, then 

we could have the payoff space 12 1  c Rm  and 122 g R for players PI and P2, respec _ 

tively. Given some S c 121 and S2 g 122, we could discuss, for example, excludabilay of 

S 1  and S2 by PI means that P1 (excludability of 52 by PI means that P1 tries prey( fling 

P2's payoff from entering 5 2 ). P1 may use the same strategy or different strategies to 

exclude S i  and S2. We could study the collection of pairs of sets in 12 1  and .(22, respect. 
tively, which are excludable by one player with the same strategy. In similar fashion we 
could consider other classes: S i  and S2 both approachable; SI approachable and S2 ex- 
cludable; and 5 1  excludable and S2 approachable, by one player with a single strategy. 

(d) n-person games: Approachability—excludability theory so far has been considered 
only for two-person games. If we consider n-person zero-sum games, then a simplistic 
approach would be to concentrate on the approachability/excludability aspects for the 
player we are interested in and model the remaining n-1 players as a single antagonistic 
player. But in the realm of nonzero-sum game the approach becomes more complicated 
since we now have n different payoff spaces to consider. Then we could consider pairs of 
spaces in which we could investigate the collection of pairs of sets that are excludable 
(or any other combination discussed above) with a single strategy of the player under 
discussion, or we could consider three or more spaces (and, therefore, groups of three or 
more sets, respectively). 

3. N-person multicriteria cooperative games 

3.1. Introduction 

The theory of cooperative games is quite well developed in the literature. Its motivation 
arises from the fact that when there are several players playing a game, some of them 
may sense the possibility of additional be nefit by forging an alliance (or a 'coalition', in 
game-theoretic terms). The paradigm of cooperative games attempts to explore the pa- 
tential of such alliances. 

In the literature, most of the cooperative-game theory is concerned with several play- 
ers, each having a single criterion to optimize. The theory of multicriteria cooperative 
games relaxes this condition and makes it possible for each player to have more than one 
objective. The discussion in this section is based mainly on the paper by Bergstresser 
and Yu". 

3.2. The normal-form game 

A general formulation of the N-person multicriteria game in normal form would associ- 
ate a vector-valued payoff (multicriteria) function to each player, defined on a joint de- 
cision space W. Essentially, W can be considered as a probability distribution on all pos - 
sible pure-strategy combinations of the players. Player Pi's criteria are indexed by ly 
2,..., I, and his payoff function is .11 :W -> Rli . Each of the other players may share none: 
all or some of Pi's criteria. The payoff space of player i, denoted by Pi  =PM has di- 
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mension 1i  and Pl  c Rte. The full payoff space, denoted by PF, is the space of dimension 
E7 1 4 and is given by 

PF  = J(W) = 	If) (W) 

= {[J I  (w)),(J 2  (w)), 	, (J"(w))], w E 

Example 3.1. Consider the following multicriteria matrix game played by three players: 

B

A
[[(5, 1), (1, 2), (2,4)1 [(3, 2), (1, 1) , (4, 

= 	
4)1 

[(2, 0), (3, 3), (5, 5)] [(5, 2), (4, 1), (1, 3)] 

[[ (1, 1), (1, 2), (2, 4)] [(1, 1) ,(l, 2), (3, 6)] 
= 

[(2, 3), (2, 1), (5, 5)] [(1, 0), (0, 0), (5, 4)] 

In this game P1 chooses rows, P2 chooses columns, and P3 chooses one of the two ma- 
trices A and B. The first element in a full payoff vector (six-dimensional) is the payoff 
vector (two-dimensional) of P1. Similarly, the second and third element are payoff vec- 
tors of P2 and P3, respectively. Note that here l = 2, i = I, 2, 3; the number of possible 
pure-strategy combinations are eight and W is a probability distribution on these eight 
combinations, which are given by the total number of elements in the two matrices. 

Before we discuss relevant solution concepts, we will introduce the notion of domi- 
nation structures 12 . One of the important elements in multicriteria decision-making con- 
cerns the preference ordering (partial or total) on the criteria (or payoff) space. Given u l  
and u2  in U, we write u l  > u2  if u l  is preferred to u 2. With each point u°  E U, we can as- 
sociate a set D(1/ °) so that 	+ D(u°) = {u°  + di d e D(2)}and u /4°  if and only if 
uo+ > u. We will assume that D(u) is a convex cone. This is called the domination cone 
for u. The family {D(u) V u E LIE denoted by D(.), is called the domination structure 
associated with the problem. Thus, given a set U, a domination structure DC) defined on 
U, and u 1 , u2  U, we shall say that u 2  is dominated by u l  if and only if u 2 	+ 
and u2 * u l . A point u°  is a nondominated solution (or nondominated outcome) if and 
only if there is no u l  E such that u 1  * u°  and u°  E + D(u 1 ). This u°  is nondominated 
if and only if it is not dominated by any other outcome in U. 

Similarly, in the decision-making space W, a point w °  e W is a nondominated solution 
(or _a nondominated decision) if and only if there is no w' E W such that J(V)* JO") and 
AO) CAW) + D J(W)). Here J: W -> U is the payoff function. The set of all nondomi- 
nated solutions in the decision space and the payoff space are denoted by Nw (D(.)) and 
Nu(D(.)), respectively. When the domination structure is obvious, we wilt use the nota- 
tion Nw  and Nu  only. 

Based on the above formulation we can propose a number of solution concepts. 

(a) Solution concepts in P F: In a cooperative model, all players may jointly agree to 
apply a solution concept to PF  , the full payoff space. It is assumed that each player im- 
plicitly respects and considers all of the criteria for all the other players. This is the 
same as considering e as the payoff space for a single-criterion normal-form game with 
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rii  1  /i  players. Or, it may also be thought of as a problem with a single decision make r  

having E7 1  /i  criteria (that is, a single-player multicriteria problem). With this kind of 
formulation one can use the available solution concepts of multicriteria optimization13 to 
solve this game. In general, the players may jointly decide to use a certain domination 

structure in PF  and select the final solution from the set of nondominated solutions. Note 
that a domination structure used jointly by the players is also a measure of the power 

held by individual players. 

(b) Solution concepts in P i : If each player Pi individually decides upon his own 

domination structure Di(.) in his own payoff space Pi, then we have a different solution 
concept. Let WO g W be the set of decisions such that, for every w e Wo, 1(w) is non- 

dominated with respect to M(.) for all values of i = 1, 2,... , n. Thus, any decision in Wo  
should be acceptable to all players. Quite naturally, Wo  may be empty and there may ex- 

ist payoffs p E PT  which are greater than the minimally acceptable payoff level vector, in 
which case there will be an incentive for the players to cooperate. 

(c) Reduction of each player's payoff to a single criterion: Here each player Pi de- 
fines a real-valued utility function ui  on his payoff space. Using this function for each 
player, the multicriteria normal-form game is reduced to a single-criterion normal-form 
game and the solution concepts applicable to N-player single-criterion games become 
relevant. One way to define such a utility function would be to specify a weight vector of 
dimension / i, thus reducing the multicriteria game to a single-criterion game. A player 
may not be able to specify a single weight vector since other weight vectors close to it 
may be equally acceptable to him. In this case, it is reasonable to adopt a convex cone A 1  
of weight vectors. Then each choice of n weight vectors iti  s it,, I = 1, 2, ... , it yields a 
single-criterion n-person normal-form game. Suitable solution concepts can now be ap- 
plied to this set of induced single-criterion games. In the case when li  = 1 for all i, the 
players may agree (cooperate) to choose a single A e A. 

3.3. The characteristic (or coalitional) form game 

A multicriteria n-person game in coalitional function form has a player set N = {1, 21 ..-1 
n,) and a vector-valued characteristic function v = (v b  v2, ... ,v i). Each v k, k = 1, 2, ..- '1 
is a real-valued function, v k  = 3V-  --> R, where ..Tr = {S I S g N} such that vk (0) = 0. 
Each element S e W represents a coalition and v(S) is the total payoff guaranteed to the 
players in the coalition if they cooperate. The characteristic function may or may not 
have been derived from the underlying normal-form game. 

b  the For ease in analysis we usually (0, 1)-normalize a game. Two games giveny  
characteristic function v and v' are strategically equivalent if there exist real numbers 
k > 0 and ai, i = 1, 2, ... , n such that v' (S) = lcv(S) + Z its  ai  is satisfied for all S E "( 1: 
game v is (0, 1)-normalized if v({i}) — — 0 for all i e N and v(N) = 1. A given game v ls 
strategically equivalent to a (0, 1)-normalized game v' if and only if I? I v® < v(b)- 

In an n-person multicriteria game, we separately (0, 1)-normalize each vk  and obtain 
the corresponding multicriteria characteristic function as V = (14, vk ... 4). 
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Example 3.2. Consider the game in Example 3.1. The multicriteria characteristic function 
is given by v = (v i , v2) and v(1) = (I, 1), v(2) = (1, I), v(3) = (2, 4), v(12) = (4, 3), 
v(23) = (5, 6),v(13) = (7, 6) and v(123) = (10, 9). Then by (0, 1)-normalization of each 
criterion, we get v'(1) = v'(2) = v'(3) = (0, 0), v'(12) = (1/3, 1/3), v'(23) = (1/3, 1/3), 
v'(13) = (1/3, 1/3), v' (123) = (1, I). 

In this example, the underlying normal-form game was such that all players had the 
same set of criteria. With this assumption on the underlying normal-form game, a 
multicriteria characteristic-function-form game can be naturally induced. Later we will 
relax this assumption. 

With every multicriteria function v = (v 1 , v2, ..., v1), we can associate the following 
single-criterion characteristic functions: 

(i) 7 defined by 7 (5) = max vk(S)  for all S E AC 
15k51 

(ii) The (0, 1)-normalization of 7, denoted by (1)'. 

(iii) (7) defined by (7) (5) = max v(S) for all S E A I. 
15kSI 

(iv) v defined by v(S) = max v(S) for all S E _AC 
15k51 

(v) The (0, I)-normalization of v, denoted by (10. 

(vi) OD defined by (y") (5) = max v;(5) for all S e .2V: 
15kSl 

(0400 alone will be used in our later discussion of various solution approaches. 

(a) Parametrization of multicriteria characteristic function: To reduce the 
multicriteria characteristic function to a single-criterion function, the players may 
cooperatively determine a real-valued utility function on v(s7V). One way of doing this 
would be for the players to agree on a weight vector, A , or a set of such weight vectors, 
Qg L= {X E RI  1 A. _.> 0 and E lk.z i Ak = 1 ) , which would be used to parametrize the 
characteristic function and obtain a single-criterion characteristic function. We will 
discuss two different methods of parametrizing a characteristic function v = (v f , v2 , ...,v1). 
One method of parametrizing a characteristic function and the other is through a 
parametrization of the underlying normal-form game (as in Section 3.2(c)). 

Given A. E L, we can define the parametrized game VA  (the superscript c denotes 

parametrization directly on the characteristic function) by VA  (5) = X • v(S) fk,i  Ak vk(S) 
. 

for all 5 E Ai. We will denote the (0, 1)-normalization of VA  by (4) . On the other hand, 

we might first (0, 1)-normalize v to obtain v' = (4, v;,... , 4) and parametrize as above to 
I 	I 

obtain (vt.  A • 	 , Clearly (v' ) is in (0, 1)-normalized form. In general, (4) *(4) . A  

In the parametrization approach through the underlying normal form, we first use a 

given weight vector A. to parametrize the underlying normal form (as in Section 3.2) and 
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then induce a single-criterion characteristic function. Specifically, given A s Le, we  

parametrize Pi's normal-form payoff function p' to obtain a real-valued function 

El i 	
i as his payoff. We denote the characteristic function derived from this 

k= --kPk 
parametrized normal form by vr (the superscript N denotes parametrization throul h the 

underlying normal form). 

The fact that, for each S elM, V 12%.1  (5) is defined as the maximum of an aggregated 

parametrized payoff function, where the maximum and minimum are taken over com- 

pact sets of mixed strategies, allows us to show that v AN  is a continuous function of A. 

With each multicriteria characteristic-function-form game v = (v ) , v2 , 	, v i) derived 
from a normal-form game, using the parametrization process just described, we define 

the single-criterion characteristic function v* by v*(S) is max A EL 	(S) for each coali- 

tion S e N. It can be seen that v* will be somewhat simplistic if we replace v AN  by VA  

since in that case we would have vik = T. It is possible to have v*(S) > (S) for some 

S e N . This can be shown through a simple example. We denote the (0, 1)- 

normalization of v* by (v*)'. 

For each A. EL, we could also (0, 1)-normalize visi  to obtain (4) if E7... 1  v(i) < 

v (N). Then we similarly define v 	v** (S) A max, E L viv  (S). Note that v** is in 

(0, 1)-normalized form. It is evident that (v*)' may not equal vs* .The relationships be- 

tween these games and between v and (vN) /  are worth investigating. 

(b) Solution concepts yielding a set or sets of many solution points: In this section 
we focus primarily on an extension of the core concepts to multicriteria games, which we 
call the multicriteria core. 

Suppose that each criteria v 	a multicriteria (0, 1)-normalized characteristic - 

function-form game, v' = (vc, 	, vf), represents the coalition values for a different 
outcome of some future uncertain event. Given any outcome of this future event, no 
coalition will object to an imputation in the core of every characteristic function. Conse- 

quently, we define the multicriteria core of the game V, denoted by MC(v), to be the 
intersections of the cores of the coordinate function, that is MC(v')-= 1 coo In the  k= 

next lemma, we shall see that v' has a close relationship with multicriteria core. 

Lemma 3.1. For a (0, 0-normalized characteristic-function-form game v` = 	v 12, -..? 
v;), MC(V) = C((v'). 

Proof. x E MC(V)=nik=,C(v ik ) if and only if x(N) = 1 and x(S) vik  (5) for k = 1, 29 ' 
and for all S E 1W. This is equivalent to x(N) = 1 and x(S) > max i .ckci  v;(5.) = (V)(S) fcn.  
all S E N, which is equivalent to x E C((vi)). 
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FIG. 1(a) C(V; ) * 0, C(1);) * 0, MC(V)* 0; (b) C(v; )* 0, C(V2) * 0, MC(V)* 0; (c) C(v; ) * 0, C(v) 

*0, MC(V)* 0; (d) the domination structure D(vc ; 14). 

In Figs 3(a)-(c), for the case of two criteria, we illustrate three possible locations of 

the game points vc, v; in Y with respect to G„, where G, is the n-dimensional simplex in 
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, 	d 

the coalition space Y. We represent Y as a two-dimensional space. In case MC(V) = 0 (as i n  

B and C) another solution approach would be required. Lemma 3.1 provides a way to define a 

domination structure on I, the imputation space, a (0, 1)-normalized game V = (v;,v;, ... , 
v()which yields the multicriteria core. Using the notation of the domination structure 13  an  

given a coalition S E N, we define the following core of each x E I: 

A< if x(S) 5_ max {iik(S)} 	
. 

I)5 (x) = 	 15kti 

{0} otherwise 

m 
Then we can obtain MC(V) = n 141( Ds) .  

j=1 

We will show that the multicriteria core induces general domination structures in the 
coalition space Y. Given the (0, I)-normalized multicriteria game V = (vc,v;) we treat 
v; as a reference game point and enlarge the core D(vc) = (Y\A=)(1{0} to form the core 

D(v; ;14) as follows: To D(v) we add rays induced by imputations which are objection- 
able to any coalition at the other criteria (game point), 14. More specifically, given an 
imputation x, if x(S) < 14 (5) for some coalition S, then we adjoin the ray {a (0(x)- 
v' 1 ) I a 0} to D(V). This can be seen in Fig. 3 (d). It is apparent from the figure that 
MC(V) is not dominated by V 1  under D(V i ; V2) = {x el I 0(x)- E v'1 + DO/ 1; V 2n. 
DO,  1; V iDc  is the complementary one of D(V i ; V2)). Clearly, if we reduced the multicri- 
teria game to a single-criterion game V 1  and used the classical domination structure, we 
would lose some crucial information from the game point of V 2. Consequently, to avoid 
this loss of information we must use the more general core D(Vh; vf2)- 

In general, given a (0, 1)-normalized multicriteria game V = (V I , v'2, ... , Vi) for 

each k = 1, 2, ... , I we define the following core: D(Vk; Vb. lif2, ... , 14_1, ik.i, ... i > 
V 1) = (Y\A' ) U {0}U {a(0(x)- v' k) I a > 0, x E 1 such that x(S) < v/S) for some S EN 

and some j = I, 2, ... , 1, 1 * 4 As above, this domination core can be used to generate 
MC(V). Similarly, for each weight vector A, we can define the domination structure 
Nv ini  ; vi i, 112, ... , vf/), which generates MC(v') using (y in' as the reference point. 

If all the players agree on a probability distribution A over the possible outcomes, it 
would be reasonable to apply the core and other solution concepts to (vr )'. By the conti- 

nuity of vr and of the (0, 1)-normalization process, one can show that if C((vr) i) $ (25 / 
then c((vr)') is a continuously varying set function of A. In fact, this continuity property 
holds over the parameter space for vi. 

Instead of agreeing on a unique distribution, it is more likely that the players would 
agree on an interval estimate of the probabilities for each possible outcome. Thus, the 
players might agree to use a set 12, of probability weight vectors. Then each imputation 
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in (t at C((vAN Y) has the property that has no coalition will object no matter which A. E 12 

is the actual distribution for the future event. We might also use n A t 12 CI(VDC A  or 

fl C((vc,)') depending upon the particular application. On the other hand, the players 
Ac t? 

might want to consider imputations in UA  c a(viv  Y), which gives all nondominated im- 

putations under each possible probability distribution in the estimate set D. 

Further, the core and other solutions concepts could be applied to the associated sin- 

gle-criterion games (i7)', (v*)' or v**. These games indicate the best that a coalition can 
do under particular circumstances. Thus, the coalitions may agree to use one of these 
game points in determining the final solution. 

An additional solution approach can be obtained by using the full payoff space of the 
underlying normal-form game. Assuming that each player has the same I criteria, we can 
view the normal-form game as a single-criterion game with In players. In other words, 
each criterion for each player is associated with a different player in a game with an en- 
larged player set. Then the characteristic function for the game with In players could be 
derived. A reasonable solution would be relaxed core where the only permitted coalitions are 
those which do not split up each player's criteria set in the original game. This approach 
implicitly assumes that for each imputation each player in the original game receives the sum 
of the coordinates associated with each criterion under his control. Other solution concepts 
would be applied to this characteristic function derived from the full payoff space. 

(c) Solution concepts yielding a unique solution point: Arbitration schemes such as 
the Shapely value, nucleolus and convex nuclei can be applied to all of the single- 
criterion game points associated with a multicriteria game v = v 1 „ v2 , 	, vo. For ex- 
ample, as in the preceding section, (1)', (v*) or v** would be reasonable game points that 
the players might agree to use. 

If the players can agree to a set of probability weight vectors 12, then each arbitration 

scheme generates the set of solution points for the games parametrized by all A e D. In 

view of the continuity of v AN  and VA, and continuity property of the arbitration schemes, 

one can show that the Shapley value, nucleolus and convex nuclei are continuous func- 

tions of the parameter A... As in the preceding section, we may consider the characteristic 
function induced by the full payoff space of the underlying normal form. Then arbitra- 
tion schemes can be applied to this single-criterion characteristic function. Again, the 
assumption is that at the final solution point, each player receives the sum of the coordi- 
nates associated with the criteria under his control. 

We can also derive a number of new arbitration schemes using the parametrization 

process. For example, if C((v'))) = 0 or C(v**) = 0, the players may treat (v') or v** as 

a kind of 'utopia' game point. Both (vp and v** represent the best value a coalition can 
have under certain conditions. Therefore, the players may agree to use the imputation x 

whose game point image, 0(x), best approximates (v2) or v** in the sense of some dis- 

tance measure, such as an 4-norm. 
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Another arbitration scheme using the parametrization process involves using the 
parametrized games  (vin'  and (v 1)1 to approximate v** and (v 1), respectively. In other 

words, the players would agree to use the parameter A 0  for which the distance d((vig )', 
v** or the distance d((vpl, (v 1)) is minimal. Then after A o  has been located, solution 
concepts from the previous section could be applied to (vr o  )1  or (v 1)1 0  . 

(d) The general case: Here we shall discuss the various formulations in which the 
players may have different criteria. For the first approach we consider a (0, 1)- 

normalized multicriteria game v = (v 1 1, v12, 	, 111  1) where each proper coalition of more 
than one player, Sj, j = 1, 2, ... , m, determines an index set C./  c {1, 2, ... ,1) containing 
the indices of the criteria which are of concern to S as a coalition. In this case we would 
expect that each coalition Si  will object to potential distribution laws only on the basis of 
the criteria indexed by CI  

A natural solution approach would then be to use a relaxed multicriteria core, 
namely, 

5 11 N •(v' ) k 
j=1 ke 

the imputations which are nondominated under the classical domination structure for 

any coalition Si  with respect to an criterion indexed my Cj. We use Nj(vik)  to denote the 

imputations which are nondominated via coalition Si  on criteria lit  k. 

In Fig. 4, there is a set of 'levels' (copies of 1) for each coalition. Given a coalition Sj , 
there is one level for each criterion indexed in C. We project all the levels on to a single 
copy of 1 and take the intersection to obtain the relaxed multicriteria core. 

Now, given a normal-form multicriteria game where not all of the players necessarily 
have the same criteria, we consider the methods for inducing a characteristic-function- 
form game. Each coalition will have as its criteria set, the criteria which are of concern 
to at least one of the members of the coalition. Intuitively, an individual player would 
not join a coalition unless the coalition pays some attention to all of that player's crite- 
ria. For each criterion for a given coalition, we could compute the maximum value by 
ignoring all of the other criteria. Clearly, a coalition would not necessarily obtain the 
maximum values thus derived on all of its criteria simultaneously, but these values could 
serve as a basis for bargaining or arbitration. If a given coalition is not concerned about 
a particular criterion, one may assign that coalition a value of zero on that criterion. In 
this way we construct a characteristic function where each coalition has a value for every 
criterion in the game. We then take the (0, 1)-normalization and proceed to use the ap- 
propriate solution approach. 

A similar, but intuitively less appealing, approach is to assume that each coalition 
considers only those criteria which concern all of its members. In this case, we could 
assume that there is at least one criterion common to all the players. 
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Yet another approach would be to induce a characteristic function from the f ull 
payoff space by viewing that space as the payoff space for a single-criterion game Wi th  

an enlarged player set (for a given Pi, there is one 'fictitious' player controlling each of 
player i's criteria). As in Section 3.3, we would place a restriction on the coalitions that 
are permitted to form. No group of fictitious players associated with the criteria set of 
one player in the original game could be split among more than one coalition in the fic- 

titious game. 

3.4. Discussion 

A variety of problems remain unsolve 
structures and multicriteria concept to 
cussed here. These could be games in 
payments 15-17 , constrained games 18  and 

d. One of them is the extension of domination 
various categories of games which are not dis- 
partition function form 14 , games without side- 

differential games 1. 9 . 

4. Equilibrium solution in multicriteria games 

4.1. Introduction 

In game theory, the word 'equilibrium' connotes a situation where a player cannot im- 
prove his outcome by acting unilaterally. If the game has N players then an N-tuple of 
player strategies (belonging to the product space of the individual strategy spaces) is said 
to constitute an equilibrium solution if it results in an equilibrium in the above sense. 
The component strategies of the N-tuple are called the equilibrium strategies of the re- 
spective players. It has to be emphasized that an equilibrium strategy for a player cannot 
be specified in conjunction with the equilibrium strategies of the other players. In single- 
criterion games common solution concepts are the Nash solution (non-cooperative 
games) and the Panto solution (cooperative games). For multicriteria cooperative games 
the Pareto solution remains a viable solution. For multicriteria non-cooperative games 
an equilibrium solution was first proposed by Shapley 20 . His definition was motivated by 
a problem from a combat situation. Since then there have appeared a number of pa- 
pers21-27 

on, and related to, this topic. In this section we survey some of these articles. 
We begin with the definition and characterization of equilibrium solutions in multicri- 
teriagames, then we look at the relationship between equilibrium and minimax in the 
multicriteria case, and finally we view some applications. 

4.2. Equilibrium solutions—Definition and characterization 

As mentioned in the introduction, Shaple9 °  was the first to provide a definition of eckui - 
librium in multicriteria games. His definition was for zero-sum games. Here, following 
Ghose and Prasad26 , we present a generalization of Shapley's definition to nonzero-sum 
games. Before doing that we shall formulate the game and establish the terminology. 

We consider a two-person nonzero-sum multicriteria game (referred to as the hi 

game) with strategy spaces X and Y and cost 	X x Y --->R , i = 1, 2, with componen t  
functions Pi : X x Y --) R, j = 1, 2, ... , p. We also define, for future use, a scalarized 
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game S(a l , a2) derived from the M-game. The game S(a l , a2) is a two-person nonzero- 
sum single-criterion game with strategy spaces X and Y and cost functions i i : X x Y—>R, 

A i 	 p 	i ri 
given by 1 (x, y) 4 Ei=1  af .li  (x, y), al  ele, i=1, 2. We assume the players to be 
minimizers. 

The following notation will be used in this and the following section. We use the 
symbol < to denote the natural order on le, that is, for x, y E RP, x < y if and only if xi  < 

y i  for all i = 1, 2, ... , p; also x .<-y if and only if x 5_ y and x * y; and we define 

/(P, = {z e RP I z a 0}. 

A pair of strategies (x*, y*), x* E X, y* E Y is the Nash equilibrium solution of the 
nonzero-sum At-game if and only if 

(i) .1 1 (x*, y*) z .1 1.  (x, y*) for all x E X, and 

(ii) J2(x*, y*) / J2(x* y) for all y E Y. 

If the M-game is zero-sum, then (x*, y*) is an equilibrium solution if and only if 
J1 (x*, y) / .1 1 (x*, y*) 1 J' (x, y*) for all x E X and for all y E Y. Such solutions are also 
known as generalized saddle points 22  or vector saddle points 28 . We now consider the 
existence and characterization of equilibrium points in the M-game; as before, we follow 
the notations of Ghose and Prasad 26. But first we make the following assumptions: 

(i) X c r and Y c le are non-empty, convex and compact. 
(ii) The functions J.; are strictly convex in x for a fixed y and the functions 4 are 

strictly convex in y for a fixed x; j = 1, 2, ... ,p. 

OW The functions J ii  , i = 1, 2, ... , p are jointly continuous in (x, y). 

The following theorems (4.1-4.4) are stated with the above assumptions. 

Theorem 4.1. If (x*, y*) EX x Y is a Nash equilibrium solution for the S(a l , a2 ) game 

with some al  > 0, a2  > 0, then (x*, y*) is also a Nash equilibrium solution for the M- 
game. 

Theorem 4.2. For every a' >0, Ei; 1  aii  = 1, i =1, 2, the S(a l , a2) game has a Nash equi- 

librium solution. 

• Theorem 4.3. There exists a Nash equilibrium solution for every M-game. 

Theorem 4.4 (Necessary condition). If (x*, y*) Exx Y is a Nash equilibrium solution for 

the M-game then there exist vectors ai  >0, Eli 1  aii  = 1, i = 1, 2, such that (x*, y*) is 

also a Nash equilibrium solution for the S(a l , a2) game. 

For the zero-sum case, Chan and Lau28  have proved general results on the existence 
and characterization of equilibrium solutions (vector saddle points). They consider the 
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strategy and criterion spaces to be subsets of locally convex topological spaces with th e  
criterion space being partially ordered by a closed convex cone. Their results invol ve  
sub-differentials or Gateaux derivatives of the cost function. Some other results on thi s  

topic are found in Corley23  and Tanaka29 . Hannan n  and Zeleny24  have given some re-  
suits on equilibrium solutions in matrix games: they also describe the computation of 
equilibrium solutions by conversion to a linear programming problem. 

4.3. Equilibrium and minimax 

Consider a two-person zero-sum single-criterion game with strategy spaces U and V and 
cost function L:Ux V --) R. Then it is a well-known fact that this game has an equillb. 
rium solution (saddle point) if and only if 

min max L(u, v) = min max L(u,v). 
uEu vEv 	vev ueu 

There have been several attempts to extend the definition of minimax and maximum to 
the multicriteria zero-sum case and to investigate the connections between minimax and 
equilibrium. Nieuwenhuis 27  has generalized the definitions of minimax and maximum 
solutions to static multicriteria games and has also proved some minimax theorems. 

3  has addressed the issues of minimax, maximum and equili Corley2 	 brium solutions in 
multicriteria matrix games. Tanaka 29  has defined weak saddle points for static multicri- 
teria games and has investigated the relation of inclusion among the set of minimax, 
maximin and weak saddle points. Ferro" provides some minimax theorems for vector- 
valued function. We refer the reader to these sources for detailed expositions. An inter- 
esting fact is that in the multicriteria case a solution which is both a minimax and a 
maximin is also an equilibrium solution. 

4.4. Applications 

As mentioned in Section 4.1, Shapley2°  was motivated to define equilibrium strategies in 
multicriteria games by a real-world problems. This was to analyse a combat situation in 
which movement of forces and the inhibition of such movements played a critical part- 
Chan and Lau 28  have discussed the application of equilibrium solutions (vector saddle 
points) in distributed-parameter differential games. Undaneta and Chankong 31  have 

employed a solution concept similar to the equilibrium solution to obtain controller set- 
tings for systems running under disturbances. They mention tuning power system stabi 

from lrzers and the coordination of directional overcurrent relays taken 	the power system 
field as typical applications for each solution concepts.  

5. Security strategies in mu1ticriteria games 

5.1. Introduction 

laYer The concept of security in a game is based on a worst-case scenario in which a  p  
assumes that all the other players choose strategies, in response to his chosen stratl 
so as to yield the worst possible value of his criterion. The player's criterion value l e- 

such a situation is called the security level corresponding to the player's strategy. A s 
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curity strategy for a player is that strategy which yields him the 'best' security level. 
There are thus two fundamental notions involved in the definition of a security strategy 
for a player. 

(1) guaranteed criterion value, or security level, of a strategy, and 
(ii) selection of the strategy (or strategies) which yield the best security level, 

Security strategies, therefore, have the desirable property of yielding a guaranteed crite- 
rion value irrespective of the other player's strategies. They are intended to cope with 
situations where a player is uncertain as to the strategies employed by the other players 
and wants to adopt a 'safe' mode of play. 

In single-criterion games security strategies are defined as min sup or max inf 
strategies 32. However, in multicriteria games, the situation is not quite so straightfor- 
ward. This is due to the fact that different order relations can be specified on the crite- 
rion space such as the natural order and the lexicographic order. The concept of opti- 
mality commonly used with the natural order is Pareto optimality. Haurie 33  has provided 
a definition of security strategies in mulcriteria games based on Pareto optimality. This 
definition is consistent with the two fundamental notions underlying security concepts 
mentioned earlier. Before considering the definition, we introduce some terminology and 
notation which we will follow throughout the present section unless otherwise stated. 

We shall consider, without loss of generality, a two-person (PI and P2) zero-sum 
multicriteria game M, with strategy spaces X (for PI) and Y (for n). The cost function 
is f: X x Y RP; P1 is the minimizer and P2 the maximizer. We define an index set 
I = (I, 2, ... , pl. We shall, without loss of generality, consider security strategies for PI 
only. We define the auxiliary cost function for Pl, v : X --) RP as 

v(x)=(sup fi (x, y))) 
y e Y 	lel 

and assume that v is well defined. Also, for situations where the supremum is attained in 

the above, we define Mx) = 	Y Ifj  (x, ) = v i(x)}. We no' Ar proceed to define, fol- 
lowing Haurie33 , a security for PI in game M. 

A strategy X* EX is a security strategy for P1 if and only if, for all x E X, v(x) < 
v(x*) 	v(x) = v(x*). Ghose 34  has called such strategies Pareto optimal security strate- 
gies (POSS). 

In this section, we first survey characterization of security strategies based on sm- 
. larization and directional derivative techniques. We then briefly survey some results on 
dynamic games, and finally, we discuss some applications of security in the multicriteria 
game context. 

5.2. Characterization of security strategies 

(a) Results based on scalarization: The scalarization process is a commonly used 
technique in vector optimization problems. Goffin and Haurie 35  have obtained results for 
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security strategies based on this technique. As before, we consider the game M; w e  fi rst  

state the following sufficiency conditions. 

Theorem 5.1. Let a1  >O, i E x* e X be such that for all x* E X Er_ l aiVi (x.) < ictivi  

(x). Then x* is a security strategy for Pl. 

Corollary 5.1. Let ai  > 0, i E I, and x* e X be such that for all x E X , 

P P 

sup 	24 , aif(x*, yi) 

hi Y2 ,  yp E y 	

sup 
Y2 '0 yp  E y 	1=3 

Then x* is a security strategy for Pl. 

For a necessary scalarization condition to hold, a convexity assumption is needed. 

Theorem 5.2. If v(X)+Rf is convex and x* is a security strategy for Pl, then there exist 

oci  >0, for all i and oa k > 0, for some k such that, for all x E X, Eft '  a ivi (x*) 	VA ai vi (x). 

Schmitendorf36  has provided scalarization results similar to those of Goffin and 
Haurie35 . Ghose37  has obtained results on security strategies in multicriteria matrix 
games. He shows their existence and also provides necessary and sufficient scalarization 
conditions. He also proves that a finite number of scalarizations are sufficient to obtain 
all security strategies. Results similar to those of Goffin and Haurie 35  for a static con- 
tinuous kernel multicriteria game are proved in Ghose and Prasad 26 . 

(b) Results based on directional derivatives: The first results in this area were re- 
ported by Goffin and Haurie35 . Using Danskin's38  and Bram's39  results they obtained a 
necessary and sufficient Lagrange multiplier rule in the form of an inequality. 
Schmitendorf36  obtained a multiplier rule in the form of an equality using a generalized 
Motzkin's lemma°. We now state his main result. For this the following assumptions 
are made: 

(i) We consider the game M defined previously. 
(ii) X Rs' = {xi g(x) 0), where g: R P' —> Rq is C 1  on R n. 

(iii) Y g Rift  and is compact. 
(iv) f:XxY —> RP isC 1 . 

Also, we denote the partial derivative of f,, i E 1, with respect to x by fix  (x, y) and simi - 
larly, for gi , i = 1, 2, ... , q, by gix  (x). 

Theorem 5.3. Let x* E X be a security strategy for Pl. Then there exist 

(0 non-negative integers ai , i 
(El) scalars 23 1  ?.0 = 1,2, ... ab Ai2 0, i = 1, 2, 0, i = 1, 2, 	9 

(4' 
(iii) scalars pi  O, i el  

y (x*)9 (iv) vectors y e Yi (x*), I = 1, 2, ... , al, y e Y2 (x*), i = 1, 2, ... , a2„ •.. y ip E 
= 1, 2, ... , ap, such that 
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E  

At2/2x 	Y2 I • • • i=

a,
1 ifix(x Yi) 2. ri.i  

• 

y
a • 

	

	 p 
i  X pfpx (x*, yp )+Eiti m iga (x*)= 0, 	 (9) 

gi  (x*) = 0, i e 	 (10) 

a l 	i 	. 
Ei=1 A1 +2,

a2
i=l x2 + + Ea

P D  1- EP  Pi #0. 
i=1 	1=1 

This theorem provides necessary conditions for weak Pareto optimality and is of the 
Fritz—John type; Kuhn—Tucker-type conditions may be obtained by imposing certain 
constraint qualifications. Schmitendorf s°  has also proved sufficiency condition, with the 
convexity assumptions, which we now state. 

Theorem 5.4. Let g be a convex function and, for every y E Y, 	y), i E I, be a convex 

function. Let x* E X. If conditions (i)-(iv) and equations (9) and (10) of Theorem 5.3 are 

satisfied with ai  > 0, i €1 and Zia. f k # 0, k = 1, 2, ..., p, then r is a security strategy 

for Pl. 

Schmitendorts°  has also provided a sufficiency condition assuming the functions I 
and g to be C2. Ishizuka and Shimizu's ' have obtained results similar to those of 
Schmitendorf 4° . Ishizuka42  has derived very general necessary conditions using a gen- 
eralized Tucker's theorem. His results are based on directional derivative estimates for 
the optimal value function in mathematical programmin g43, 44. Most of the earlier results 
can be obtained as special cases of Ishizuka's theorems. 

The first results for security strategies in dynamic multicriteria games were obtained 
by Haurie33 . He provides necessary conditions for games with open-loop information 
structure using results from the theory of reachability of perturbed systems 45.  46 . 

Schmitendorr7  has obtained some sufficiency results for games with open-loop infor- 
mation structure. 

5.3. Applications 

One of the main applications of security strategies is in worst-case designs. Examples of 
this in the single-criterion case are the min-max controller desi

gl148,499 min-max filter 
designs°  and stabilization of vibrations in buildings during earthquakes". In the mul- 
ticriterion case, Ishizuka and Shimizu's ' and Shimizu and Hiram" have reported appli- 
cations of security strategies to the design of two-dimensional recursive digital filters. 
Prasad and Ghose52, Grimm et al. 53  and Ghose and Prasat have reported the applica- 
tions of security strategies in bicriterion games to two-target or combat differential 
games. In .Ghose and Prasati 55  the delineation of qualitative outcome regions using 
.ecurity strategies of the players has been discussed. 
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6. Conclusions 

In this paper we have attempted to survey the major results in the area of multicriteria 
game theory. Key solution concepts and their .applications to many real-world problems 

have been discussed. Blackwell's approachability—excludability theory was shov t o  
have potential applications in the area of microeconomics, in general, and reF2ated 

games, in particular. In the area of cooperative games several solution Concepts were 
shown to be possible in the multicriteria framework. A number of unsolved problems 
were also identified. In a purely non-cooperative mode of play, equilibrium and security 
concepts were shown to play a crucial role in defining acceptable strategies for players. 
Here too, several practical applications of the theory were discussed. 
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