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Abstract 

we give a brief introduction to the real symplectic groups and the geometry of canonical variables that they 
describe. The role of the metaplectic groups in the context of quantum mechanics is highlighted. Several ap- 
plications of symplectic techniques to classical ray and wave optics, noise matrices and the uncertainty rela- 
tions, squeezing, and Gaussian states are outlined. 
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1. Introduction 

The most familiar kinds of geometry are real Euclidean and complex unitary geometries. 
These arise in a variey of physical contexts and in various dimensions. There is a third and 
somewhat unfamiliar kind of geometry called `symplectic geometry', which is relevant in 
classical and quantum mechanics and optics, and can be exploited in many interesting ways 
in these fields. However, it does not lend itself to easy and intuitive visualization or picturi- 
zation of the kind one is used to. The purpose of this account is to introduce this kind of ge- 
ometry and indicate some of its uses. 

To begin, let us recall the main features of real Euclidean geometry which govern the 
properties of ordinary space. Here we have the notions of vectors, length of a vector and 
unit vectors, the forming of real linear combinations of vectors, the angle between two 
vectors and their scalar product, the property of perpendicularity, and Pythagoras' theo- 
rem. All these form the basis of intuitive geometrical pictures in many situations. Euclid- 
ean three-dimensional geometry can be generalized to any number of real dimensions, as 
well as to the geometry of space—time in special relativity. 

Real Euclidean geometry also generalizes to a complex form called `unitary geome- 
try', which is basic to the structure of quantum mechanics'. One again deals with vectors 
but they can now be multiplied by complex numbers, and complex linear combinations 
can be formed. The notions of lengths of vectors, scalar products, perpendicularity, Py- 
thagoras' theorem all generalize to the complex domain. In this context, it is very interest- 
ing to see that these geometric notions get closely linked to the laws of probability theory 
In the physical interpretation of quantum mechanics. Thus, the fact that one can normalize a 
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vector to unit length, and Pythagoras' theorem, reflect the laws that the total probability 
of something happening, and the sum of all partial mutually exclusive probabilities in any 
given situation, are both unity. Two vectors being perpendicular in Hilbert space corr e- 
sponds to a certain probability being zero. That the scalar product of two unit vectors 
cannot exceed unity in magnitude corresponds to the fact that no probability can exceed 
unity. All this works in any number of dimensions. 

2. Symplectic geometry and the symplectic groups 

The answer to the question—in what sense is symplectic geometry the third kind of ge- 
ometry?—is an elegant one. When one attempts to classify all possible compact simple 
Lie groups, one finds that there are three great infinite families of such groups, and five 
isolated and so-called exceptional cases 2-6. The latter are of dimensions 14, 52, 78, 133 
and 248. Leaving these aside, the three infinite families are the real orthogonal groups 
SO(n), the complex unimodular unitary groups SU(n), and the symplectic unitary groups 
USp(2n). The first two, supplemented by translations, are the bases for real Euclidean and 
complex unitary geometries, respectively, and each exists in any number of dimensions. 
The third family involves groups defined in even-dimensional spaces alone, and they lead 
to symplectic geometry. 

For our purpose we are concerned with the real noncompact forms of the groups 
USp(2n), namely, the real symplectic groups Sp(2n, R) defined in 2,4,6..., real dimen- 
sions. They are arrived at as follows. Consider a quantum system with n Cartesian degrees 
of freedom and 2n Hermitian canonical operators 4.05j , = 1,2,..., n obeying the Heisen- 
berg commutation relations 

kris 
A l

k = ie ikl[4i, 4k = [Pi? Pk ] = 13 	 (I) 

(Here, we have set h = 1). Arrange them into a 2n-component column vector Z=(L) with  
Hermitian operator entries defined by and obeying: 

t‘  = CO =  WI- 
P. 

 fries. knit a=1,2,...,2n; 

kat tad= ifiab, 

13 —_I
-01 011 	

(2) 

The 2n-dimensional real antisymmetric nonsingular matrix p captures the structure of the 
commutation relations (1). Then a real 2n x 2n symplectic matrix S is any matrix such that  

(3) "ea = scab 
obeys the same commutation relations (2) as it . This leads to the matrix condition 

s 	 (4) pf = p, 
and the real symplectic group Sp(2n, R) consists of all such matrices". 
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For comparison with SO(n) and Su(n), let us list the definitions of all three groups of 
matrices: 

SO(n) = (R = real, nxn1 RR T  = 1, detR = 1), 

SU(n) = {U= complex, tz x n I UU t  = 1, detU = 1}, 
Sp(2n, R)= {S = real, 2n x 2n 1 M T  = lb 

	
(5) 

One can sense that a new kind of geometry is involved here: the unit matrix is replaced by 
the even-dimensional antisymmetric p. This leads to all the unusual features of symplectic 
geometry of which we mention a few 10-12 . 

Let xa , ya ,... be real 2n-component vectors. The symplectic scalar product of x with y 

is defined as 

x.y = x r  fly = xaPabYb 

= xlYn+1 — xn+1Y1+ X 2Yn+2 — Xn4-2Y2 ±—±x-nY2n —  x2nYn• 
	 (6) 

From the structure of this expression we see the appropriateness of the name for this ge- 
ometry. The word `symplectict comes from the Greek "GWITCAE KT1X0c" meaning 
"twining or plaiting together, to twine, to plait, to weave", and we see just this feature in 
the series of terms in x.y.. This scalar product is antisymmetric: 

x • y = — y - x, 

x - x = O. 	 (7) 

Because of this we lose the intuitive ideas of length of a vector, unit vectors, the angle be- 
tween two vectors, perpendicularity, Pythagoras' theorem, etc.! This is why this geometry is 
unfamiliar and difficult to visualize. Even with the idea of a subspace something new comes 
in. With both Euclidean and unitary geometries, any two subspaces of the same dimension 
are basically similar and can be transformed into one another. But in symplectie geometry 
this is no longer the case. Apart from dimension, an invariant and significant characteristic is 
the symplectic rank of a subspace basically this is a measure of the number of complete 
canonical pairs contained in the subspace. So two subspaces of the same dimension but dif- 
ferent symplectic ranks are intrinsically different and cannot be transformed into one an- 
other. 

3. The metaplectic representation of Sp(2n, R) in quantum mechanics 

Since the hermiticity of '4's and P's and their commutation relations are maintained by the 
linear transformations (3), these changes are unitarily produced. Thus we have unitary 
Operators V(S), *(S'),...such that 

S',S E Sp(2n, R): S al: 4 b  = 10).4 „lei(S) -1  , 

w(s)le (s) r- 1, 

71(5')Ii(S) = (phase factor) V (S'S). 	 (8) 
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These operators are fixed up to phases; however, these cannot be adjusted so as to lead to 
a true unitary representation of Sp(2n, R). The best that can be achieved is 

W(S') U(S) = ± It(S'S ). 
(9) 

We actually have here a faithful unitary representation of the metaplectic group Mp(2n) 
which is a double cover of Sp(2n, R) 13 . The situation is similar to the so-called double: 
valued representation of the group of rotations in space, provided by the spin 1/2 solution 
to the angular momentum commutation relations. The generators of lt(S) are all Hermitian 
quadratic expressions in the 4's and p's . 

Usually when we deal with the symmetry group of some physical system in quantum 
mechanics, various inequivalent unitary irreducible representations of it may appear; and 
generally different energy eigenstates belong to different irreducible representations. But 
here in the case of Mp(2n), we have a particular and fixed unitary representation, which 
happens to be the sum of two irreducible representations. No other representations come 
in, and the ones occurring are completely determined by the number of degrees of free- 
dom. So it is more like a symmetry of the basic language of canonical variables rather 
than of any specific system. 

4. Some uses of the symplectic groups 

We now describe briefly various uses of the family of groups Sp(2n, R), covering classical 
ray and wave optics, quantum mechanics and optics. 

4.1. Classical ray and wave optics" 

In linear Gaussian optics, each axially symmetric optical system is representable by a ma- 
trix of Sp(2, R); this acts directly on ray variables to transform input rays into output rays. 
For nonaxially symmetric systems, we need to use the group Sp(4, R). All this is due basi- 
cally to Fermat's principle, which governs ray propagation, being a variational principle 
just as in Lagrangian and Hamiltonian mechanics. When we go over to the wave descrip- 
tion, then the metaplectic groups Mp(2) and Mp(4) come in 15 ; their actions on the wave 
amplitude are via the generalised Huyghens kernel. 

4.2. The Wigner distribution 

In the phase space description of quantum states one uses the so-called Wigner function 
or distribution 16. To a general state described in operator form by a density matrix p one 
associates a real classical phase space function W(4), which is a partial Fourier transform 
of the configuration space matrix elements of 'A : 

W(4) = (27r)n Id' q' < q - 	Plq +4 1)e ing  . 
2 	2 

(10) 

Then it turns out that this function has a very simple transformation law under the sr m.  
plectic grouplt  is: 
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j5?= U(S)? U(S)' <* w'(4)= ms-14). 	 (ii) 

This can be and has been exploited in many ways"' 18 . 

4.3. Variance matrix and uncertainty relations 

The variance or noise or uncertainty matrix of a quantum state ji is defined by 

II = °tab), 

Val,= -1-Tr(k Ya 9 t ilk < eta >< etb >1 

< tta  >=. Tr(M.). 	 (12) 

This is a real symmetric positive definite 2n x 2n matrix, and these are the only conditions 
on it at the classical level. Under the symplectie group it has a nice transformation law: 

ilt = fte(s)i3 v(s) - ' 	vi = SVS T  . 	 (13) 

In passing, we mention a very useful theorem due to Williamson 19. 11 . Since V is positive 
definite, it turns out that we can find suitable S E Sp(2n, R) such that V is diagonal. 
These diagonal elements are not in general the eigenvalues of V. The point is that a gen- 
eral symmetric V, not possessing the property of positive (or negative) definiteness, can- 
not generally be brought to diagonal form by a symplectic S e Sp(2n, R), but only by a 
matrix of SO(2n). 

We mentioned above that the only conditions on a noise matrix arising from a classical 
phase space probability distribution are reality, symmetry and positive definiteness. Any 
such matrix is classically physically admissible or realizable. In quantum mechanics, 
however, there are further conditions, namely, the Heisenberg uncertainty relations. Using 
symplectie group methods these can be handled completely for any number of degrees of 
freedom". The necessary and sufficient conditions in quantum mechanics for a matrix V 
to be a physically acceptable noise matrix are (apart from reality and symmetry) 

i 
V-1--13>.0. 	 (14) 

2 

We have here a positive semidefiniteness condition for the Hermitian matrix on the left, in 
the complex domain. Even in one dimension, this goes beyond the usually stated Heisen- 
berg uncertainty relation. 

4.4. Squeezing and squeezed states 

Squeezed states of radiation are nonclassical states of the quantized radiation field with 
unusual properties. Most studies have dealt with a single mode of the field. The methods 
described above allow us to set up a satisfactory squeezing criterion with desirable invari- 
ance properties for any number of modes of the radiation field". It reads: 
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iii is a squeezed state <=> 1(V)= least eigenvalue of V < —1  . 
2 	(15) 

Useful classifications of squeezed states, squeezing transformations and their intrinsic 
properties can be given using the Sp(2n, R) machinery. 

4.5. Geometric phase for squeezed states 

Even with one degree of freedom, in the context of geometric phases, there are interesting 
results connected with Sp(2, R) and Mp(2). In the case of polarization optics, there is the 
familiar result of Pancharatnam 2I : after a closed circuit on the Poincare sphere, the result- 
ing geometric phase is the negative of the solid angle enclosed. For squeezed coherent 
states, the Poincare sphere gets replaced by the unit timelike hyperboloid in a 2+1- 
dimensional Minkowski space; each squeezed state corresponds to a point on this two- 
dimensional surface 22 . And after a closed cycle of squeezing transformations, the accumu- 
lated geometric phase is one quarter of the enclosed hyperbolic solid angle on this sur- 
face. 

4.6. Gaussian pure states" 

Lastly, we mention the description and transformation properties of Gaussian wave func- 
tions for quantum systems with n degrees of freedom. Any such normalized and centred 
wavefunction can be written, apart from a phase, as 

w(q) = gen/ 4  (det u) 114  exp[— —21  q r  (u + iv)q], 

u,v = real symmetric n x n matrices, u > 0. (16) 

Thus this is an n(n + 1)-parameter family of pure states. Now it turns out that any two 
such states can be connected to one another by (many) suitable elements of Sp(2n, R) via 
the metaplectic unitary representation. In fact, these states are in one—one correspondence 
with points of the coset space Sp(2n, R)IU(n), where U(n) is a maximal compact subgroup 
of Sp(2n, R). The symplectic transformation law of the labels u, v is also very interesting. 
If we write SE Sp(2n, R) in terms of n X n blocks as 

(A In 	 (17) S = 
C D,)' 

then we find: 

Il(S)Vf (u,,,)  (q) = (phase factor)tp' (v.v)(q), 	
(18) 

where 

A = (iu - v) i  -* A' = (iu' - v'l l  = (AA + B)(C A + D) -I  - 	
(19) 

This is a multidimensional matrix form of the familiar Mobius transformation law, 311(.1 
the 

complex symmetric matrix A is the generalization of the lower half plane fo r a sing  complex variable. 



SYMPLECTIC TECHNIQUES IN MECHANICS AND OPTICS 	 295 

5. Conclusions 

We have given a brief introduction to the structure and properties of the real symplectic 
groups and their associated geometry, and outlined a few applications in mechanics and 
optics. There are other applications too such as for instance: the prediction of a new class 
of optical beams which have been recently experimentally produced; geometrical gener- 
alization of Hamilton—Jacobi theory; the semiclassical limit of quantum mechanics; uni- 
versality classes of random matrix ensembles; to mention a few.This brief account should 
hopefully convey the flavour of symplectic geometry. 
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