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Abstract 

A brief overview is given of the studies of relaxation to equilibrium in one-dimensional kinetic Potts models 
with only nearest neighbour couplings at low temperatures, both for spin-conserving and nonconserving 
dynamics. For ferromagnetic couplings, the model shows coarsening, with typical size of domains increasing 
as a power of time. For antiferromagnetic couplings, the state of the system in the limit of large times need not 
be frozen, as the system keeps jumping between the large number of degenerate ground states. A large variety 
of relaxational behaviour is seen. Some new results for the ti = 3 antiferromagnetic Potts model, under 
Glauber and Kawasaki dynamics, are briefly summarized. 
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1. Introduction 

It is over 50 years since the celebrated solution of the Ising model in two dimensions was 
found by Onsager. Since then, the number of exactly soluble models in equilibrium 
statistical mechanics has grown, and is now quite large (see Baxter', for example). However, 
only a very small fraction of these can be solved exactly for d> 2. (The case d=00 is 
exceptional, as then fluctuations become small, and the mean-field approximation becomes 
exact). 

The number of problems which can be solved analytically in non-equilibrium 
statistical mechanics is much smaller. Furthermore, the thermodynamic arrow of time 
introduces anisotropies which further complicate the problem. Thus, it is not very 
surprising that the vast majority of theoretical papers on relaxation in non-equilibrium 
Systems have dealt with one-dimensional problems. 

However, my reason for discussing stochastic evolution in one-dimensional models 
here is not just that the questions are easier to answer in one dimension. In fact, one can see 
a very large class of different types of relaxations even in the one-dimensional problems. 
shall confine myself to Markovian evolution of one-dimensional Potts models with only 
nearest neighbour coupling, and no external field. Introduction of external field makes the 
problem much harder, and the exact solution is not known even for Ising chains. 

*_Te xt  of invited lecture delivered at the Annual Faculty Meeting of the Jawaharlal Nehru Centre for Advanced 
Scientific Research at Bangalore on November 11, 1994. 
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I shall show that depending on whether the coupling is ferro-or antiferro-magnetic 
and the dynamics (spin flip or spin exchange) one gets a very wide class of relaxation' 
behaviors. 

We consider q-state Potts spins ai, i = 1 to L, each taking values 0, 1,... (q -1 ). The 
Hamiltonian of the system is the simple nearest-neighbour coupling. 

H =  

We consider time evolution of this system from an initial disordered state. In Glauber 
dynamics, single spins can flip (ai  --+ a;) with a rate (which satisfies the detailed balance 

condition) 

BAE 
- 1[1- tanht-. 27-] rar+a; 2 

where AE is the difference between the final and the initial configurations when spin a i  is 
flipped to a. For one-dimensional systems, correlations in the steady state are large only 
for temperature close to zero, and we study this dynamics for large inverse temperatures ft 

In Kawasaki dynamics 2  adjacent spins can get exchanged, with a rate which is 

[ 	
, fl.a.E* 

r[...01  =a, ai  + i  = b... --A wai = b, cr i4a = ll,... )1= + 1 - tann— . 
2 

2. The ferromagnetic Potts models 

The stochastic evolution of ferromagnetic Ising chain with single spin flip dynamics in the 
absence of external filed was shown by Glauber to be exactly soluble long ago'. 
Unfortunately, significant extensions of this solution to other q, longer-range interactions ,  
have not been possible so far. However, the general qualitative behaviour of the evolution 
is quite well understood. 

We consider first the Glauber dynamics for the Ising case q = 2. Imagine a sudden 
quench from a high-temperature initial configuration to zero temperature. After a fini .te 
amount of time has elapsed, the system would still have a finite density of kinks (domain 
walls). Under the single spin flip dynamics, these kinks undergo diffusive motion. If two 
domain walls come to adjacent sites, they can annihilate each other, reducing the number 
of domains by 2. This corresponds to the diffusion-limited annihilation reaction 

A + A 0. 
If at time t, the typical separation between domain walls is L(t), then for a finite fractio, 

which  of these to annihilate and disappear, they have to move a distance of order L, 
required a time of order L2. This implies that 

L(t) 	t1/2  
the average energy per spin scales as L-I (r), and goes down as rin . Glauber's solut i°11  
also showed that spin-spin autocorrelation function shows a C li2  decay. 
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The same argument holds for general q. For higher q, when two kinks merge, they may 
not annihilate completely, but give rise to single kink (this occurs roughly with probability 

5:2+ Thus the reaction-diffusion processes corresponding to general q are 
cr-1  

A+A —)0. 

Also, spin-spin autocorrelation function would show the same t-ir2  decay. 

Even though the dynamics of the ferromagnetic Potts model with spin-flip dynamics is 
thus easily analyzed in terms of annihilating diffusing random walkers, and thus 
corresponds to the classical dynamical scaling exponent z = 2, the problem is not devoid 
of surprises. This is illustrated by the recent result of Derrida et al.'', where the authors 
studied the fraction of spin which never flip in a zero temperature quench from totally 
disordered initial state. These authors prove that the fraction decreases as a nontrivial 
power r e (q)  where 0 (q) is a q-dependent exponent given by 

1 	2 	- 1  f q 
cos 	 

8 7r 	21—q 

Note that the exponent 0(q = 3) is an irrational number. It is remarkable that this irrational 
exponent occurs even in such a simple model. 

Let us now discuss the low-temperature dynamics of ferromagnetic Potts model under the 
spin-exchange (Kawasaki) dynamics. In this case, if we have a strictly zero temperature 
dynamics, then the system quickly relaxes into one of many metastable states such as 

aaabbbccccbbbadddccccccc... . 

So long as each domain of parallel spins has more than two sites, it is easy to see that 
these are no lower energy states which can be reached by a single pair exchange. Further 
relaxation occurs by activation dynamics. We exchange a pair at the boundary of two 
domains, say, at the boundary of domains of type d and c. This costs extra energy 2], and 

creates a single isolated 'atom' d in the sea of c's, and also an isolated c in the sea of d's. 

These single atoms can move by pair exchanges without any additional energy cost (only 
one can move, the jump by either one of the isolated atoms renders the other immobile). 
The typical time for activation is exp(2J/k7). Once an excited 'atom' is formed, it does a 
diffusive motion. The motion ends when it hits a boundary of a domain in the same state as 
itself The distance between the two domains in the same state is of the same order as the 
typical size of a domain. If the typical size of a domain is L(t) at time t, then the diffusing 

particle is reabsorbed at the same boundary with probability (1-1L(t)), and at the other 
boundary with probability 1/L(t). The net result is transfer of one particle from one cluster to 
a nearby cluster of the same Potts state by an 'evaporation and recondensation' process. We 
need on an average such random transfers of order L 2(t), so that the net transfer is 

L(t) which changes the typical size of a region by a finite factor. This argument gives 

2.7 	, 
L(t) (e -  kr) 	, for exp(6J / kT) << t << exp(9J / kT). 
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Thus the energy density E(t)-1 -113 ;The analogue of the exponent 0(q) has not yet been 
determined for the Kawasaki dynamics. 

3. The antiferromagnetic case 

The antiferromagnetic q = 2 Potts model (Ising case) is different from q 3 in that for 
q = 2, the ground state is only two-fold generate, while for q 3, the ground state has a 
high degeneracy, the number of states increasing as (q-1)" for a chain of length L. 

Consider first the Ising case. In this case, by a unitary transformation corresponding t o  
flipping all the spins on the odd sites, the Hamiltonian gets converted into that of a 
ferromagnetic Ising model. Thus the behaviour of energy at time t, and spin-spin 
autocorrelation functions is the same as for the ferromagnetic Ising model. 

Thus, in the zero-temperature quench from totally disordered state described in the 
previous section, with the Glauber dynamics, the energy per site decreases also as 
The average size of ordered domains increases as 

L(t)-t ia  

the spin-spin autocorrelation function decreases as 

(s(o)s(0)-r'. 
The probability that a spin is not flipped up to time t decreases as 1-318  as in the 

ferromagnetic Ising case. 

Now, consider the antiferromagnetic !sing chain with Kawasaki dynamics. Again, we 
start with a totally disordered initial state (infinite temperature), and suddenly quench to 
zero temperature. After some time, a typical state would be 

_abababbabababbababaabababab.... 

Here the domain walls are underlined. These undergo diffusive motion. Two walls of the 

same type cannot come closer than two units. If two diffusing walls of different types 
come nearer to each other, they annihilate each other by the reaction 

aabb -› abab. 

Thus the dynamics of this process is the same as the diffusion-limited reaction 

A + B 0. 
There is a large body of work on these reactions 5 ' 6 . The basic result is that the energy 
density varies as 1-114 . F[he typical size of a domain 

L( :)-t"4 . 

This result is understood as follows: If we start with a totally disordered state, diffu sive  
dynamics leads to smoothening over length scales of order t in*  Thus all pairs of tYPe a  
and type-b kinks within this scale would meet each other and annihilate. Howev ierr, ,neys  
access of a- or b-type kinks survives. The excess of a type kinks on averging are t s it,_, 
would be typically of the order t ifil . And thus their typical density of kinks decreases w ith 
time as tu  . As the density of kinks is the same as the energy density, we get 
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E( t) 

typical distance between kinks and the H increases as 

Now let us discuss the case q 3. Let us consider the Glauber dynamics first. Then 
whatever the state of two neighbouring spins, there exists at least one state [in general (q-2) 
states] which corresponds to the local minima of energy. As there is a finite rate to go into 
any of these states, we see that starting from a disordered state, the energy relaxation is 
exponential in time 

E(t)—E 0  exp[—At] 

where E0  is the ground state energy and A is some constant. Thus the system approaches 
ground state with an exponential rate. However, in this case, the ground state has infinite 
degeneracy, and at long times, the system shows no tendency to reach a dead state, as it 

keeps moving between different ground states. If (q 4), then each spin keeps flipping at 

finite rate, and the initial state correlation function (3, ,(0) ; am) and autocorrelation 

function in the steady state both decay exponentially in time. 

For 	4, with Kawasaki dynamics also, the situation is quite simple. As the number 
of spins of each of q species is separately conserved, if the fractional number of atoms of 
one species is larger than half, the minimum energy configuration cannot be reached. 
However, the density of pairs of spins which can be flipped without increasing the energy 
in a typical state is finite and thus the spins keep diffusing. This implies that in the steady 
state, the autocorrelation function is diffusive 

(ja•, ai(zn) ) 	fin , for large tr. 

The case q = 3 requires special care. For a chain of size L, there are 3.2 ir l  ground states, 
the long time dynamics involves transitions between these states. Let us denote the three 
states of spin at a site by integer 0, 1 and 2. Define 6i  = qpi. 1 —q 1  (mod 3). Then in the 

groundstates 3', s take values + 1. 

Consider the Glauber dynamics first. Then a spin can flip only if spins on both sites of 
it are in the same state. In terms of 8 4 , this corresponds to interchanging a pair [ + 1,-1] by 
[—I, + 1]. The quantity EA is the total winding number of the state, and is conserved by 
the dynamics. Thus the state space breaks up into L mutually disconnected sectors. If the 

System is started from a high -energy state, it will relax to one of these sectors, and would 
not be able to go to other ground states. Thus the motion is not ergodic. 

Let us now calculate the spin—spin autocorrelation function in a typical sector. In the 
steady state define. 

( e( 	
;ff  2 

0= er-.5(qi(o-gion 

Expressed in terms of S i , this becomes the expectation value of exponential of the sum of 
&'s. Now, the dynamics of 3;s is diffusion of hardcore particles on a line. In this case, 
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it is very well known that the density field satisfies linear d.  iffusion equation' and th e  
variance of number of particles to the left of 1, increases as i lf2 . This shows that for this 
case we have 

C(t) exp (-At in). 

Finally, let us consider the Kawasaki dynamics for the antiferro q = 3 Potts model. For  
this case, the only spin exchanges which do not increase energy are 

0120 fe> 0210,1201 4-> 1021 and 2102 4-> 2012. 

In terms of the variables 8, the dynamics corresponds to 

111 4-> -1-1-1 

at any three adjacent sites in the same state 8, we flip them together at a fixed rate. This is 
the trimer deposition evaporation model recently introduced by Barma et tie. This 
dynamics has been studied by us recently. It is found that there is a strong breaking of 
ergodicity, and the number of disjoint sectors is exponential in the size of the lattice. The 
system has an infinite of conservation laws, which are most simply represented as a 
conservation law of an object called the Irreducible string'. The longtime behaviour of 
relaxation depends on the sector, and many different behaviours are seen 10. We refer the 
reader to the original papers for details. However, the most common behaviour of 
autocorrelation function of 8's in this case is found to be 

(8,(05,(t T)) — T-114  for t>> r>> 1. 

which corresponds to a four-point correlation function terms of the original spin variables q. 

4. Conclusion 

Thus we see that even the one-dimensional Potts model, which has a rather trivial 
equilibrium behaviour displays a variety of relaxations, in the dynamical case. The possible 

behaviours are summarized in Fig. 1. One can expect some more surprises if we study the 

Potts model with next nearest neighbour-couplings also. These are known to give a rather 
complicated phase diagram even in equilibrium statistical mechanics (in the mean field  
theory) :  Extension of this approach to other values of q is an interesting problem. For 

luu example, q =1 is known to be related to the percolation problem, q = 0 is the spanc 
trees/resistor network problem by the well-known work of Fortuin and Kasteleyn. Can one 

define a `Glauber' or `Kawasaki' dynamics for these cases? What about ninteger values of 
t  

q? Clearly, cluster-flip algorithms do not qualify, as they are nonlocal. An irnportan 
question is effect of external magnetic fields. The critical slowing down in the preseflc! of 
complex_ 	 h values of magnetic field is related to the statistics of branched polymers, and is of 
interest". If the magnetic field is time-dependent, we have a simple model to study 
hysteresis in ferromagnets, which has been subject of much interest lately 12' 13• Anothe r 

. 
important question is the relaxation behaviour in higher dimensions. It is hoped that to 
paper will induce the reader to think about these and related problems. 
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E r 112, L r 112  

E 	-1/37 	r113 

E C 112, L t in 

t 114 

E 	C exp(-4-112) 

Non-ergodic, C 

E, C exp(—t) 

-i 
E e-t  C r n  

FIG. 1. Different types of relaxation behavior in the one-dimensional kinetic Potts models. 
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