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Abstract 

A recently developed microscopic theory of ultra-fast solvation dynamics of an ion in dipolar liquid is briefly 
reviewed. The theory has been applied to explain observed solvation dynamics in liquid water and acetonitrile. 
For both these liquids, the calculated solvation time correlation function shows an ultra-fast Gaussian decay 
which is followed by an exponential-like, much slower, decay. The interesting fact is that the initial Gaussian 
decay dominates the relaxation to the extent that it contributes about 60-80% to the total decay. These results 
are in excellent agreement with all the available computer simulation and experimental results. We find that 
both the rotational and the translational librational modes of water contribute significantly to the initial 
Gaussian decay. Since electron transfer reactions are often controlled by the solvation (as in the Marcus the- 
ory), we have carried out a detailed analysis of the dynamic effects of the ultra-fast solvation on electron 
transfer reactions in the above liquids. It is found that the ultra-fast solvation can have novel effects on the 
rates of electron-transfer reactions in these liquids. 

Keywords: Ultra-fast solvation dynamics, electron-transfer dynamics, ion, dipolar liquid, electrical perturba- 
tions, 

I. Introduction 

The dynamics of solvation of a newly created ion in dipolar liquids is a subject of tremen- 
dous current interest in physical chemistry. Recently an international effort has been di- 
rected to understand this problem 1-18 . This effort has led to some spectacular discoveries 
and, as a whole, led to a much better understanding of the dynamics of complex dipolar 
liquids which are so relevant as solvents in many chemical, biological and industrial proc- 
esses. 

In this article a general molecular theory of solvation dynamics developed by us shall 
be discussed with applications to two common dipolar liquids, namely, water and acetoni- 
trite, Both these liquids are known to be rather fast in their response to electrical pertur- 
bations. Initial experimental work was done by Barbara and coworkers 2 . Solvation in wa- 

ter was found to be biexponential with time constants approximately equal to 250 fs and 
1 :2 Ps. This study could not resolve the initial part of solvation dynamics. Computer 
simulations provided a more detailed, but somewhat different, information. The important 
work of Maroncelli and Fleming 3' t9  revealed three notable features. First, the solvation is 
dominated by a Gaussian component which decays within a few tens of femtoseconds and 

*Text of invited talk delivered at the Annual Meeting of the Faculty of the Jawaharlal Nehru Centre for Ad- 
vanced Scientific Research at Bangalore on November 11, 1994. 



322 	 BIMAN BAGCHI 

which carries about 70-90% of the solvation energy. This is followed by a marked os cii 
lation in the solvation time correlation function. The last phase of the decay is slo w and- 
exponential-like with time constant of the order of a 1 Ps or so. The situation was similar 
in acetonitrile where initial experimental studies revealed only the exponential -like decay 
while the simulations of Maroncelli 2°  suggested a significant contribution from the ultra! 
fast Gaussian component. This paradoxical situation was resolved with the landmark ex- 
periment of Rosenthal et al. 21  who measured solvation dynamics in acetonitrile with a  
much better time resolution than hitherto possible. This experimental study of solvation in 
acetonitrile established beyond doubt the importance of the initial, Gaussian component ia 
ultra-fast solvation. The long time decay was exponential-like, like the one observed ex- 
perimentally 3 . Recently, Jimnez a a/. 11  presented the experimental result of ultra-fast 
solvation in water. The features of solvation were similar to those obtained for acetonitrile 
and also from simulations. The notable differences from simulations were somewhat 
slower decay of the ultra-fast component (54 fs instead of 15-20 fs) and the oscillations 
were absent. Theoretical studies discussed here in are in striking agreement with the ob- 
served results. Similar results have been observed even for simple model liquids like a 
Stockmayer liquid 22. Thus, we may regard the biphasic solvation in fast liquids fully es- 
tablished. 

However, there is still need to understand the reason for the great separation of time 
scales between the initial Gaussian decay and the subsequent slow, exponential-like de- 
cay. It has been suggested 23-26  that the Gaussian decay is due to the librational modes of 
water while the long time decay is due to the diffusive dynamics involving primarily the 
nearest-neighbour molecule. This interpretation raises several questions. First, why is the 
relative contribution of the Gaussian component so large when the librational modes 
themselves contribute only a small amount to the total dielectric relaxation? Second, can 
we explain quantitatively the slow long time decay? Its description in terms of the near- 
est-neighbour molecules is somewhat vague. And lastly, what is the role of the inter- 

molecular vibrational modes that are well known in liquid water"? 

The microscopic treatment presented here provides answers to many of the above 
questions, in addition to providing a unified theoretical description. The calculated solva- 
tion dynamics has a rich structure and is in agreement both with computer simula- tions i9. 20, 22 

and experiments"' 21  . What is perhaps more important is the interpretation of In 
the various stages of solvation that this study provided and this is articulated below. n 
particular, we find that both the rotational and the intermolecular vibrational modes connt 

tribute significantly to the initial relaxation of the solvation energy. Another 
result is that the neglect of molecular polarizability might have led to a faster solvation 

	

classical simulations than would occur in real water. 	

signi.ficain 

There are two major ingredients of all the existing theories of solvation dynamics. 
First, one requires a description of the static equilibrium orientational correlations. tem 

requires both the ion—solvent and solvent—solvent pair correlation functions. Fortunsa TheY 

these correlations are now becoming increasingly available for real dipolar li quids.  • . 1.  
second Important ingredient is the wave vector and frequency-dependent dissipative   . 

nel which is a measure of the dynamic response of the polar liquid. We require both 

K  
inten: 

rotational and the translational dissipative kernel, although the former is clearly more 
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portant for ultra-fast dynamics. It is prohibitively difficult to calculate these quantities. 
The only alternative, therefore, is to obtain them directly from experiment. However, this 
also requires an accurate microscopic expression relating an experimental observable with 
the dissipative kernel. This expression is inevitably an expression for a time correlation 
function which can be inverted to obtain the dissipative kernel in terms of the correlation 
function. The problem with this scheme is that the observables that are readily available 
contain only in the long wavelength (or zero wavenumber) information. Therefore, we can 
obtain by this method only the long wavelength, although full frequency-dependent, dissi- 
pative kernel. 

Another problem addressed to in this paper is the effects of this newly discovered ul- 
tra-fast solvation on the rates of adiabatic electron-transfer reactions. One expects these 
effects to be significant because in electron-transfer reaction, it is the solvation energy 
that is the reaction coordinate 29-33 . Recent theoretical studies have indicated that the ultra- 
fast solvation can indeed have large effects on the nature of electron transfer in water, 
acetonitrile and methano1 33-38 . 

The organization of the rest of the paper is as follows. In the next section we present 
the theoretical formulation. In Section 3, we present the numerical results. In Section 4 we 
present the results of our work on electron-transfer reaction. Section 5 concludes with a 
brief discussion. 

2. Theoretical formulation 

The theoretical formulation is next briefly described. The time-dependent solvation en- 
ergy is given by the following expression" 23  

Eat  (t) = 	
I  

dk  
2.(2g) 	

E0 (—k).P(k,t), 	 (1) 
J 

where E0  (k) is the Fourier-transformed bare electric field of the ion with k as the Fourier 

variable conjugate to the position variable r. The wave-vector and time-dependent solvent 
polarization P(k,t) is defined by 

IS 

1,11 	 P(k,O= di2 p(12)p(k, I 2 ,t), 	 (2) 
3. 

where j2(12) is the dipole moment vector with orientation .0 and p(k, 12, 0 is the wave- 

vector, orientation (D) and time -
dependent number density of the solvent molecules. 

Next, p(k, 	t) is expanded in spherical harmonics as 

p(k,12, = 	(k,t) YI „, (12). 
	 (3) 

1.m 

The salvation dynamics of an ion probe a 10  (k,t) which is related to longitudinal polariza- 
tion bylts'23 

4g 
P(k,t).k =p a 10  (k 0. 	 (4) 
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The molecular hydrodynamic approach, described elsewhere 23 , provides the following 
general expression for aim  (k, z) 

=  
aio (klz)= z+110(ktz)t 	 (5) 

where the generalized rate a 10  (k, z) as given by 23  

1(1 + 1)/110(k) pk 2filo (k)  
E io (k t z)=  z+FR (k,z) 	z+rT(klz) 	

(6)
1 

Here, am (k, z) is the Laplace transform of aw (k,t) with z as the Laplace frequency, scaled 
in the units of I, = (fil) 112  with fi as the inverse of temperature in the energy units. 

Ala) = I — (P0/410 c, 10(k) is the `caging pa rameter ' where c 11 0(k) is the (1 10) component 
of the spherical harmonic expansion of the two-particle direct correlation function in the 
intermolecular frame. For a solvent molecule of mass M, diameter a and moment of iner- 
tia I, the translational parameter, p = 1/A/a2  measures the relative importance of the sol- 
vent translational modes in comparison to the rotational ones. rR (k, z) and rr (k, 4 are 
the dissipative kernels for rotational and translational motions of the solvent molecules. 
The final expression for the time-dependent solvation energy of an ion of charge Q is 
given, in the frequency space, by the following rather elegant expression 23 . 

1  

E(k,z) 	
(7) 

2 	sin k ) 2 	[i 	I  E501(Z) =--Q  idk (-- 	' L (k)] z+ Ira 

where EL(k) is the longitudinal component of the wave-vector-dependent dielectric relaxa- 
tion, related to flio(k) 8.9. The time-dependent solvation energy can be obtained from eqn 7 
by Laplace inversion. 

The two quantities of crucial importance in the expression for solvation energy are 
the 'caging parameter', 1110) and the dissipative kernels,. rx(k,Z), X=R,T. fito(k) has a 

i strong dependence on the wave-vector k. It is large and positive near k = 0 as it s ap- 
proximately proportional to the static dielectric constant, E0. But it undergoes a dramatic 
decrease in value near k=2:rds, which corresponds to the nearest neighbour distance. This 
decrease in f110(k) implies, in turn, a pronounced slowing down of the relaxation of,  

h  a lo(k, t). In the present work, we have used fi 1 	 b) 0(k) which has been calculated recently 
Rainari et al. 28  for liquid water. It must, however, be emphasized at this juncture that e 
k-dependence of Ilia)  and hence of EL(k), is nearly universal, as can be seen if wep

lo t 

these functions, as obtained by different model calculations, including MSA and ISM 01 ' 

computer simulations. This makes the present calculation of solvation dynamics " all  
model free. 

As discussed in the Introduction, the determination of the dissipative kernel is hie d)?.11  
non-trivial and forms the bottleneck in any microscopic study of orientational relaxati:a 
in dense dipolar liquids. And, it is especially complicated for liquid water which shn„,.. 
complex dynamics. In this work, we shall neglect the wave-vector dependence of the o' n's  

sipative kernels. This is justified in the short time when essentially the static correlatio  
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determine momentum and angular momentum dissipations. We have shown elsewhere 23 ' 24  
that this assumption is valid for the ultra-fast solvation in the model Stockmayer liquid 22 , 
where ra = 0, z) = rR(k —> 0, z) with surprising accuracy. We next describe how to ob- 

tain 	= 0, z) from the dielectric relaxation and the far-infrared (FIR) spectrum of liq- 
uid water. First note that the frequency-dependent dielectric function, E (z) [ = E (k = 0, z)] 
is related to a l o(k = 0, z) by the following linear response expression 

1— —
1 

= —4gI3 [CA4L (k =0, t =0)— z CA,fL(k =0, z)1, 	 (8) 
£(.0 	V 

where = (kBT) -1 , k B , the Boltzmann constant, T, the absolute temperature, and V, the to- 
tal volume of the system. Chu, (k, Z) = ( 412/3)112  < aio(k, r = 0) aio(k, z) > is the longitudi- 
nal component of the total moment autocorrelation function. Therefore, eqns 5 and 6 can 

be inverted to obtain FR(z) in terms of the frequency-dependent dielectric function e (z), 
as given by the following elegant expression 23  

1 	 Z 	Eo[E(Z) —  n 2 ]  
(9) 

z rio(z) 	21.1 io(k = 0) n
2 [Eo  —E(z)i' 

where ii is the refractive index of liquid water. The details of the derivation of eqn 9 are 
available elsewhere 23 . 

The frequency-dependent dielectric function derives contributions both from the Debye 

dispersion and the librational modes of the water molecules. The expression for S (z) is 

then given by23-26 
 

2 Ed Ecc (10) E(Z)= n + 	+(g cs, —n 2 )(1— 0 lib(Z)), 
1+ZTD 

where the Debye relaxation time, TD = 9.33 ps, and the infinite frequency dielectric con- 
stant, E.  = 4.86, are obtained by fitting to Debye formula's° . For water, n is equal to 1.33. 

Orib (z) is the librational moment correlation function. This is calculated from the model of 
a damped harmonic oscillator with the experimental librational frequency equal to 
199 cm-1  and a damping factor of 100 cm -I . 

We next describe the calculation of the translational dissipative kernel. This can cer- 
tainly be obtained from dynamic structure factor. However, there is a simpler and more 
convenient procedure, which is described below. First note that the translational contribu- 
tion is important only at intermediate to large k. In this domain, the dissipative kernel is 
given accurately by its single particle limit and the following memory function relation 
between the Laplace transform of the velocity correlation function and the dissipative 
kernel holds 

( C, = 	 11)  Cv (z) z rr (z) • 
In their important work, Rahman and Stillinger 41  provided accurate C v(z). It has two li- 

brational peaks at frequencies near 44 cm -1  and 215 cm -1 . We have fitted Cv(z) to the fig- 
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ure provided by these authors. We have now all the ingredients to determine E --301.z i  Com_ 
pletely. We obtained E„, (t) by numerically Laplace inverting 401z). 

We have checked the accuracy of our method of obtaining the dissipative kernel. The 
idea is that if the k-dependence is really weak, then the rotational diffusion constant, DR  
calculated from the Einstein relation DR = (1311-R(k = 0, z = ay

, 
 (with /R(k = 0, z =0) 

given by eqns 9 and 10), should be in good agreement with the known DR. We find a 
value of DR= 2.2 x 10 11  s-1 .  Two different computer simulations give values equal to 

3.6 x 10 11  s-1  and 1.6 X 10 11  S-1  42 . Thus, the agreement is quite good. An experimental 
measure of this self-diffusion coefficient can be obtained from the Debye relaxation time TD  

itself by using the following macro—micro relation s  between (2DR ) and iD5  

T D  =(2DR) -1 [1+ (po 	(k = 	 (12) 

This provides a value equal to 2.2 x 10 11  s-1  which is perfect. All these evidences lead us 
to conclude that the assumption of the weak k-dependence of the rotational dissipative 
kernel is valid for liquid water. We next present the results of our numerical calculations. 

For acetonotrile, the most accurate information of the ultra-fast solvent response is 
obtained from Kerr relaxation studies of MacMorrow and Lotshaw 43 . In the study reported 
below, the Kerr relaxation data has been used to obtain the rotational memory function 
which is then used to obtain the solvation time correlation function. 

3. Numerical results on solvation dynamics 

We calculate the solvation time correlation function, 5(t), defined as" 

S( t) = E501(0 —  E501(00) 
E 3.01(0) - E sot(') • 

(13) 

The calculated SW for water and acetonitrile are shown in Figs 1 and 2. In both the cases, 
we have compared our theory with the experimental results. First note that the agreement 
is excellent in both the cases. While in the case of water, no adjustable or free paramete r: 
was used, in the case of water we need to make the 199 cm -1  intermolecular vibration

band overdamped to remove the oscillation at the intermediate time. Second, the solvation 
time correlation function in both the cases exhibits a pronounced biphasic character. The 
initial decay is extremely rapid and Gaussian in time. For water, this ultra-fast component 
accounts for the completion of 50-60% of solvation in less than 50 fs. After the °selli _

c  
a: 

tion, the rest of the decay is slow and exponential-like, but not single exponential- M 
part of the decay can be fitted to a sum of two exponentials, with time constants of 250t_ 
and 1 ps. This agrees quite well with the observation of Barbara and Jarzeba

2 
 . For ace 

tonitrile, the ultra-fast component carries even larger contribution (70-80%) but t. naes  
time constant is somewhat larger, about 100 fs. The difference between the two liquw 

can be understood by considering relative contributions and the relevant time constants  

of the librational and the orientational motions. Water, because of its extended hydro!n. 

bond network, contains significant amount of librational and vibrational motions ultr a°, 
are almost absent in acetonitrile. The latter, however, has very fast, partly i neria 

o al 	

t 

(because of its nearly spherical shape), single particle reorientation 	
monni 
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FIG. 1. The comparison between theoretical predic- 
tion and experimental results on solvation dynamics 
in water. The solid line is the theoretical prediction 
(eqn 7) while the solid dots are the experimental 
results of Jimnez et cd.". The theory has no adjust- 
able parameter 25 . 

FIG. 2. The comparison between theoretical 
prediction and experimental results on solvation 
dynamics in acetonitrile. The solid line is the 
theoretical prediction (eqn 7) while the solid dots 
are the experimental results of Rosenthal a a/21 . The 
theory has no adjustable parameter 24 . 

which responds in the ultra-fast time scale. Another key aspect, often ignored, is the high 
polarity of the solvent that is essential in setting the frequency of the solvation energy 
surface. The rate of solvent is determined jointly by the frequency of the driving force and 
the linear response of the solvent. 

4. Electron-transfer reactions 

Since the important work of Zusman 3°  on the solvent effects in outersphere electron trans- 
fer reactions, considerable effort was directed to understand these effects in more detail 31-34 . 

Experimental results reveal dramatically different solvent dependencies which range from 
virtually no role of solvent relaxation to the cases where such relaxation is rate determin- 
ing. Recently, we investigated the effects of ultra-fast solvation in water and acetonitrile, 

discussed above, on the rates of adiabatic electron-transfer reactions in these solvents 35-38 . 

In the following we summarize the main results. 

The reaction studied was the electron transfer in the following model system 31  

OX +e -) Red. 

In the one-dimensional Marcus model, the reaction coordinate is the fluctuating energy 

gap ,  AEW, between the two equilibrium surfaces. For this reaction, the reaction coordi- 
nate becomes the solvation energy of a charge e. It is further assumed that the acceptor 
and the donor are in contact and that they are spheres of the same size. In order 
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<9 

ILL 

Reaction Coordinate 

FIG. 3. A schematic illustration of the reaction potential energy diagram usually employed in the study of 
electron-transfer reaction (ETR). The situation shown here corresponds to a weakly adiabatic electron-transfer 
reaction which is formed from two diabatic surfaces which are shown by dashed lines. In the given example, 
the rate of ETR is determined by the twin rates of well-relaxation (k s4.) and barrier crossing (kb). These rates 
are also indicated in the figure. 

to calculate the rate of an outersphere adiabatic electron-transfer reaction in an ultra-fast 
solvent, we need to calculate both the rate of energy diffusion required to reach the barrier 
top (Iced) and the rate of barrier crossing (kb). The reaction potential energy surface is 
shown in Fig. 3. The total rate of electron transfer is given by the following expression 

(kyr ]  = (ked) i  (kb) -1 . 

Both ked  and kb  are determined, in addition to the reaction potential energy parameters, and 
the reaction time correlation function, cEE(t) = <E(0) E(t)>. Now, the connection with th e  

solvation dynamics comes from the equivalence between SO) and CEE(t). This is, 
the assumption of linear response and seems to be generally valid for solvation of ions. 

In theoretical calculations, the adiabaticity of a reaction is often expressed in terms of 
. iof the ratio of the barrier frequency (cob) to the reactant well frequency (NO 	

i This ratios (NO. 

This essence, 

the order of unity for an adiabatic reaction while it can be much larger one for a weakly 
adiabatic reaction. The terms involved in the calculation of the barrier crossing 	a rates 

the Grote—Hynes reactive frequency XR and the transmission coefficient 
re  The  rate co  

barrier crossing is given by k b = k ST , where k 	the barrier crossing rate. As the ramlic  
co 	increases, ncreases, one expects the transmission coefficient to approach unity as c l Y rialcu _ 
solvent effects become less important when this ratio is very large. The method to c a. ge  

of  

late the energy diffusion is entirely different. Here we calculate the mean first Pass a:nt  
time to reach the barrier top starting from the zero point energy in the reaeta 
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Table I 
Calculated rates of barrier crossing 

Solvent OValo AR K Vb 

Acetonitrile 0.5 1.1193 0.3658 0.3563 
1.0 4.4834 0.7326 0.7136 
1.8 11.0149 0.9998 0.9739 

Water 	1.0 	1.1603 0.2397 	0.1847 
5.0 	20.3395 0.8405 	0.6474 
9.0 	43.0134 0.9875 	0.7606 

[sc.= (A,./(0b)= (KbhcrsT ); vb = v TE, ST  K = frequency of barrier 

'ST 
crossing from Grote-Hynes theory; v t, = co0nir.3 

well. Here the barrier frequency is not involved, as we have approximated the reactant 
well by a harmonic well with frequency; COD. Here the important dynamical quantity is the 
net frequency of electron transfer which is given by v ed  = Iced  exp (fi E a), where Ea  is the 
Marcus activation energy. 

In Tables I and II we show the calculated values of the rates of electron transfer along 
with the individual rates of barrier crossing and energy diffusion 36-38 . Note that in Table I 
the predicted transition state rate (v b) should be unity in the scaled unit. Table II shows 
the surprising prediction that for acetonitrile, the rate can be in the energy diffusion- 
controlled regime while for water it is still dominated by the barrier crossing. In fact, the 
predicted rate of electron transfer is close to the transition state rate for water. In acetoni- 
trile, however, the rate falls below the TST rate because of slow rate of energy diffusion. 
Thus, the latter provides an extreme example of energy diffusion limited rate. These pre- 
dictions can be verified experimentally. 

5. Conclusion 

In the present work, the slow long time decay observed both for water and acetonitrile 
Originates from the strong orientational correlations present at the molecular length scales, 
where c 110(k) reaches a maximum and consequently f ilo(k), a minimum". This produces a 
considerable slowing down in the rate of energy relaxation. Translational modes of the sol- 
vent molecules are important in this regime. The initial Gaussian decay arises primarily from 
the librational modes (especially for water) and the fast orientational motions. What makes it 

so dominant is the large value of f 1  Ha = 0) which is equal to 11.7  1 for liquid water. 

Table II 

Calculated rates of energy diffusion and the rates of electron transfer 

TST Solvent 	 V b 	 Vet too 	ga 	Ved 

Acetonotrile 	6.12 
Water 	 4.84 

(Did = LI exp(PE„) fiequency of energy diffusion, v et  = knexP(13 Ea) = net f  

requency of electron transfer reaction.] 

9.88 0.1295 0.5618 0.1052 

27.1 124.88 0.7703 0.7656 
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Note that this value is model independent as f lio(k = 0) is related to the static dielectric  

constant ea . What is perhaps more interesting is the observation that the translational li_ 
brational modes also contribute significantly to the Gaussian decay. 

We have also discussed the effects of these ultra-fast modes on the electron-transfer 
dynamics in water and acetonitrile. Theoretical studies offer some interesting predictions, 
such as the energy diffusion control of the rate in acetonitrile. These predictions can be 
tested against experiments. 
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