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Abstracl 

This paper reviews the work of Keshava Munhy and collaborators in the area of proportional weirs. It brings forlh 
the lacuna that existed in the theory of weirs and focusses on why there was need a for a generalized theory of 
,,"'(irs. It oullines the theorem of slope discharge continuity developed, emphasizing the importance of a datum or 
reference plane for every weir. It explains briefly the mathematical theory developed and its application to the 
design of several imponant weirs having wide application. The theory and application of geometrically simple 
weirs is briefly outlined. 

Ke~"WOrds: Weirs. notches. proportional weirs. flow measurement. hydrometry. linear weir. quadratic weir. geo. 
metrically simple weir. . 

1. Introduction 

The study of weirs has been a subject of long-standing interest in hydraulics as is evi
denced by the continuous flow of literature on this subject. The importance of weirs as a 
discharge-measuring device has been very well recognized . Sharp-crested weirs or 
nOlches are among the oldest, simplest and most accurate measuring devices used to 
measure the rate of flow in natural and artificial streams. It is well known that given any 
defined geometrical shape of a weir, the discharge through it can be found oul. This will 
be a function of h, the head causing flow. The conventional sharp-crested weirs of stan
dard geometrical shapes like rectangular, triangular, trapezoidal and parabolic have 
been extensively investigated and their performance and characteristics well understood. 
But the reverse problem of finding the shape of a weir to produce a discharge which is a 
given function of h, called the 'problem of Ihe design of proportional weir', is of consid
erable interest in many fields like hydraulic, environmental and chemical engineering, 
and is, in general, not as simple and involves the solution of integral equations. The 
~tudy of proportional weirs (P-weirs), besides having considerable practical application. 
~s of fundamental and academic interest in hydraulics. The linear proportional weir with 
liS linear discharge head characteristics has been a subject of considerable interest. with 
lpphcations in diverse fields. Such weirs are used as control outlets for float-regulated 
~Ing devices in chemical engineering, as a simple .measuring device in. hydraulics a~d 
, gallon and as an outlet for grit chambers rn envIronmental engrneenng to maIntaIn 
:on stant velocity in sedimentation tanks irrespective of fluctuations in discharge. 
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The first attempt to design a linear proportional weir was made by Oscar van p elt  
Stout in 1898 1 , while he was a professor of civil engineering at the University of N e- 
braska. He found out that the equation of such a weir is given by y oc xe 112, 

where y and x 
are coordinates measured along the horizontal and vertical axes, respectively. This wei r,  
although theoretically exact, suffers from the practical difficulty of having an infinit e' 
crest width (y —4 co as x --> 0), which is physically unrealizable. Cowgill and Banks2.3 
showed that the equation of the curve describing a weir producing a discharge Q = bir  
(m> 1/2), H being the depth of flow, is proportional to 171-312 . Stout's case can be ob- 
tained as a special case of this (in = 1). 

In 1908, Sutro overcame the deficiency in Stout's model by providing a rectangular 
base of depth a and width 2W and fitting above this weir a designed complementary 
weir. For all flows through this weir (Fig. I) above the rectangular base, the discharge is 
proportional to the head measured above a 'reference plane' or 'datum' located at a13 
above the weir crest. Though this worked out satisfactorily in this case, the rational basis 
for the selection of the datum was never explained. It was wrongly believed for over 50 
years that the reference plane of the weir could be arbitrarily chosen. This erroneous 
notion was largely responsible for a lot of empiricism that crept into this important 
branch of hydraulics. The status of the subject was well summarized in 1966 by Singer 
and Lewis4  in the following words: "... In spite of its merits, the primary device is only 
known to a small number of specialists. There are several reasons for its relative obscu- 
rity, the most important one being the lack of up-to-date technical information. Techni- 
cal literature that exists is very old. Few textbooks on hydraulics have a chapter on pro- 
portional weirs, and the ones which do present the data in such a compressed form that 
one is rarely tempted to make further inquiries...." Though all these are true, the main 
reasons for its relative obscurity and empiricism are more complex. It is in this regard 
that the work on proportional weirs was taken up at the Department of Civil Engineering 
at the Indian Institute of Science in the late sixties to develop a theoretical understand- 
ing of the theory of proportional weirs. The aim of the project was two fold: (i) to de- 
velop mathematical theory of P-weirs, and (ii) to apply the same to design important 
weirs unsolved till then to prove its effectiveness. 

As a part of the mathematical theory, the theorem on 'slope discharge continuity 
was recognized and proved. It states: "In any physically realizable weir having a finite 
number of finite discontinuities, the rate of charge of discharge is continuous at all 
points of discontinuity. The theorem has been proved rigorously using the theory of 
Laplace Transformsm  and experimentally verified. Accordingly, every weir is associated 
with a unique reference plane or datum above which only are all heads reckoned. A new 
parameter X, called the 'datum constant', which fixes the datum is introduced. The 
choice of the datum at a13 above the crest in the case of Sutro weir is precisely meant to 

satisfy the slope discharge continuity theorem although it was unrecognized.  

1.1. Logarithmic weirs 

The above mathematical theory was applied to design a logarithmic weir. From th 
works of Cowgill -  and Banks 3  it is clear that any attempt to design a weir which has 

ae 
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FIG. I. Linear proportional weir (Sutro weir). 	FIG. 2. Rectangular-based quadratic weir. 

term h" in the discharge equation Q = f(h), where trz < 3/2 invariably leads to a weir 
having infinite crest width. These are classified as 'compensating base weirs' requiring a 
base for their design. Logarithmic weir is one such weir. Using the general theory devel- 
oped, the weir was designed with a rectangular base. Incidentally, logarithmic weirs give 
larger changes of head for a given change of flow, compared to conventional weirs and 
hence are useful in irrigation canals as sensitive measuring devices & 7 . 

1.2. Quadratic weirs 

The quadratic weir which gives a discharge proportional to the square root of the head- 
causing flow, has applications in bypass flow measurement, was first unsuccessfully 
tried by Haszpra 8  in 1965 in Hungary. An exact solution to the problem was given by 
Keshava Murthy9 . The function defining the weir has a very significant property of fast 
convergence leading a weir of zero width after a certain height, rendering it into a pro- 
portional orifice (Fig. 2). For all flows through this weir above the rectangular base of 
width nv and depth a, the discharge is proportional to the square root of the head meas- 
ured above a datum located at 2a/3 above the crest, both while acting as a 'notch • as well 

as 
 when it is acting as an 'orifice'. A new concept of notch—orifice was introduced for 

the first time. Several exact designs of quadratic weirs have been studied by Keshava 
Murthy et a1.6'9-11 

1.3. Orifice-notch 

!!1±"tigh the Sutro weir was used as an outlet weir for grit chambers or sedimentation 
nits_ to maintain constant average velocity necessary for the collection of the grit, it 
scu,attered from the main drawback in that it had to be fixed with its crest at the bed of the 
ttrl . risnel without leaving a clear gap of about 8-12 inches for the collection of the grit. 
"II was recognized as early as in 1936 12  and had remained unsolved. 
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a so that 

This was taken up with the formulation and theory and a generalized synthesis p ro. 
cedure for the design of weirs having their base in any given shape to a depth 
the discharge through it is proportional to any singular monotonically increasing fine,.
tion of the depth of flow measured above a certain datum. The problem is reduced t o  
finding out an exact solution of a Volterra integral equation in Abel's form. The maxi- 
mization of the datum below the crest of the notch was investigated. It was proved that 
for a weir notch made out of one continuous curve and for a flow proportional to the mth 
power of the head, it is impossible to bring the datum lower than (2m-1)a b elow the  

crest of the notch. 

A new concept of an 'orifice-notch' having discontinuity in the curve and having di- 
vision of flow into two distinct portions was developed. The division of flow was shown 
to have a beneficial effect on the lowering of the datum below the crest and still main- 
taining the proportionality of flow s . This could be used effectively as grit chamber outlet 
weir, hence solving the long-standing problem in this regard. 

1.4. Proportional v-notches 

Although weirs for which the discharge Q cc 	, m 3/2, do not require a base (like 
conventional rectangular, v-notch, parabolic weirs), it was shown that they can also be 
designed with bases with advantage. These are classified as `noncompensating' base 
weirs'. Keshava Murthy and Pillai n ' 14  designed a modified proportional v-notch weir 
which produces the same head—discharge relationship, i.e., Q cc hs12 , as that of the con- 
ventional v-notch. They used a rectangular base which not only eliminates the difficulty 
of fixing the weir to plumb, but also increases the indication accuracy. Interestingly, it is 
seen that the proportional weir regains the geometrical simplicity of the conventional v- 

notch weir, as the profile approaches fast a straight line. Other designs of noncompen- 
sating base weirs include proportional three-halves weir' s  (to replace rectangular weir) 
and the proportional parabolic weir") . 

2. Geometrically simple weirs 

2.1. introduction 

Linear proportional weirs have recently attracted considerable interest because of their 

wide application in varied fields. Further, a linear proportional weir has greater indica - 

tion accuracy in that a ± 1% error causes an equal percentage error in discharge com- 
pared to ± 1.5% error in rectangular weir and ± 2.5% error in v-notches. Although exact . 

solution for the linear proportional weirs has been given by Sutro, Keshava MurtbY and, 
others 1.17-19  often these weirs are difficult to fabricate as they require sophisticate

d  

equipment and skilled labour. 

Recently, a few practical proportional linear weirs have been proposed bY 
Ramamurthym, Venkataraman and Subramanya 21  with the main objective of sin-Whir 
ing the weir geometry while incurring negligibly small errors in the discharge comPuta" 
tion. 



THE THEORY OF PROPORTIONAL WEIRS 
a 359 

f 
b , tcp limit 	Linearity 

direfintY 	range 
• 94d 	0.72 d 

base ficw dePti 
.0.22±r2 

Attitude d 

Depth of flow h 

_ 	

1 

f  datum const4nt 1. a 0.0817 d 

-CTial7rineEe 'lane or --T&itet;T:i— es 	---- -  

1 

1t.3. Characteristics of the inverted v-notch as a linear proportional weir. 

2.2. Inverted v-notch 

The work of inverted v-notch was motivated by a casual remark by Troskolansky in 
his well-known book Hydrometry 22, in which he states that a closed trapezoidal 
weir with a vertex angle of approximately 50 0  has a near-linear head-discharge relation- 
ship. Surprisingly this had not been investigated. Neither its discharge—head relation- 
ship was known nor its range of validity. The inverted v-notch was analysed (Fig. 3) 
in the background of the general theory of proportional weirs. It was shown through 
an optimization procedure developed that the flow through this weir of half crest 
width W and depth d for depths above 0.22 d is proportional to the depth of flow meas- 
ured from a reference plane situated at 0.08 d for all heads in the range 0.22 d 
hs0.94d within a maximum percentage deviation of + 1.5 from the theoretical dis- 
ch_ arge. Nearly 75% of inverted v-notch can be used effectively as the measuring range. 
Experiments are in very good agreement with the theory, giving a constant coefficient of 
discharge of 0.6223'24. 

2.3. Chimney weir 

111 e inverted v-notch was improved in the 'chimney weir' (Fig. 4) with respect to its r  
hange of applicability. It was shown that the range of linearity can be considerably en- 
hanced by more than 200% by the addition of a rectangular weir of width 0.265 W (W is 
7crest width of inverted v-notch) at a depth of 0.735 d (d is the altitude of the in- 
linear.v-notch) 

above the crest of the weir 24, 25. The design parameters of the weirs, viz., 
jamm

ity range, base depth, reference plane, are estimated by solving the nonlinear pro- 
Using a numerical optimization procedure. It is shown that for flows 

measnuraereshold depth of 0.22 d the discharges are proportional to the depth of flow 
the ran above a reference plane situated at 0.08 d above the weir crest for all heads in 
theoretiege,°-2.2 d h S 2.43 d, with a maximum percentage deviation of ± 1.5 from the disci 	

discharge. A significant result of the analysis is that the same linear head- 
kr relationship governing the flow through the inverted v-notch is also valid for the 
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FIG. 4. Salient features of a chimney plate weir. 

extended chimney weir. Experiments with three different chimney weirs show excellent 
agreement with the theory, giving a constant coefficient of discharge for each weir. 

The inverted v-notch weir and chimney weir are being tested in some minor irriga- 
tion canals in Karnataka. 

2.4. Bell-mouth weirs 

Troskolansky22  while referring to approximate weirs mentions that flow through the in - 

tervening space obtained by keeping a semicircular disc in a rectangular channel Pi t" 

duces an approximate linear head—discharge relationship. Unaware of this. Verikatacs 
man and subramanya2 have experimentally observed the linear discharge characterisn 
of weir called `quadrant plate weir'. However, no analytical investigation has bcefl  
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FIG.5. Typical EBM weir. 	 FIG. 6. Definition sketch of the proposed weir. 

made. A detailed theoretical analysis of the flow through the quadrant plate weir, re- 
ferred to as bell-mouth weir (Fig. 5), is made in the light of the generalized theory of 
proportional weirs using the 'range of point method' of numerical optimization proce- 
dure. It is shown that the flow through the quadrant plate weir has a linear discharge— 
head relationship valid for certain ranges of head within a maximum deviation of ± 1% 
from the theoretical discharge. Further, it is shown through the optimization procedure 
that the measuring range of quadrant plate weir can be considerably enhanced by extend- 
ing the tangents to the quadrants at the terminals of the quadrant plate weirs. These are 
discussed in the paper on 'bell-mouth weir' by Keshava Murthy and Giridhar 24 ' 26 . 

3. Self-basing linear weirs 

3.1. Introduction 

It.  is clear from the works of Banks 3  and Cowgill 2  that the linear weir belongs to the 
:ass of 'compensating weirs' invariably requiring a base for its design, rendering it into 
!pes  compound weir defined by two separate profiles. Further, it has been shown by 
k a.. 

h
eads muithy5.6 that these weirs have a unique reference plane or datum above which 
cads are reckoned. These weirs pass discharge, for all flows above the base weir, 

pirlo  

portional to the head above the datum. 

nre?„!finiaattel there has been some special interest in the design and development of ap- 
1"0:e_4ci e  e linear weirs which produce near-linear head—discharge relationship i 
rtieturiefoirth referred to as h—q function). The prime motivation for this interest is geo- 
conditial  simplicity and consequent ease in the fabrication, which is necessary in field 

°Ilst where it is hard to find sophisticated equipment and skilled labour. Rama- 
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murthy et a/. 2°  have designed a quadrant plate weir by replacing the curved profile of the 
Sutro weir' by the quadrant of a circle. Optimum dimensions of the weir have been 
found by minimizing the percentage deviation of discharge produced by the quadrant 
plate weir from the corresponding Sutro weir. 

The first significant mention of a geometrically simple linear weir appears to be b y  
Troskolansky22 , where he refers to two approximate linear weirs: one an inward trape. 
zium (with an apex angle of 50°) and the second a quadrant weir (where the curved 
profiles are quadrants of a circle). It is said that these weirs can pass near-linear dis- 
charges in certain ranges of head. Keshava Murthy and Giridhar have analytically in- 
vestigated in depth these two weirs, viz., the inverted v-notch 23  and bell-mouth weir 24.26 . 
In their study, they have used a numerical optimization procedure to fix the weir pa- 
rameters governing the threshold depth (base depth) and the datum of the weir. The ex- 
periments fully confirm the results. 

One of the main outcomes of the above investigation is the emergence of the linear 
weir defined by a single profile unlike the exact linear weirs like Sutro weir, etc. I.17-19 , 
which are essentially compound weirs defined by two profiles: one for the base and the 
other for the complementary weir above. It has to be underlined here that a portion of 
the profile of the weir above the crest itself acts as base for the weir. In other words, the 
base weir becomes an integral part of the whole weir itself. Hence, these weirs are ap- 
propriately called 'self-basing linear weirs'. One of the main drawbacks of the above 
designed self-basing weirs is that they have a limited range of head which makes their 
choice difficult in practice. The exact solution for the self-basing linear weirs is the one 
obtained by Stout', which, however, is physically unrealizable. In what follows, we are 
concerned with the finding of a very good approximate solution to this problem. Suc- 
cinctly, we seek an answer to the question 'Is it possible to find an approximate solution 
for a self-basing linear weir defined by one single profile with infinite measuring 
range?' It is shown that the significant property of rapid convergence (hence an ap- 
proximate solution of Fredholm's integral equations of a particular kind) of a quadratic 
weir can be eminently exploited to arrive at a practical self-basing linear weir 
(henceforth referred to as SBL weirs) of very high degree of accuracy. 

3.2. Preliminary consideration 

Referring to Fig. 6, the discharge through the sharp-created weir (symmetrical about the 
x-axis), defined by y = f(x) for a head h is given by 

( 1 ) q =2Cd irg-Sof(x). a—Cr dx, 

where q is the discharge or rate of flow, h, the head above the weir crest, g, the accel- 
eration due to gravity, and Cd, the coefficients of discharge. 

The coefficient of discharge is assumed to be constant (approximately equal to 
which is true for streamlined flows through sharp-crested weirs (this is confirmed 
by experiments). 	

later 
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Nondimensionalizing the above equation we have, for example, 

Q = (H)ndX = 0(11), 	 (2) 

where 

2Cd IfiWs5/2 ' 

Ws = half crest width, 

ws 

x= 

For a proportional weir the hag function 0(H) is known a priori, in which case eqn 
(2) is the standard Volterra integral equation and can be reduced to Abel's form by dif- 
ferentiating with respect to H(using Leibnitz's rule), so that 

f (X)  dx  = 20f(H)• 
Jo JH–X (3) 

Solving eqn (3) 13, which is in Abel's form, we get the weir profile 

f(X)=-
2  lex  (4) 

The above solution is realizable only if 0(H) and OH) 
0.C.X.c. co and 0(0) = 0' (0) = 0, where 0(H) is a continuous 
ing function of head. 

are continuous in the range 
and monotonically increas- 

33. Characteristics of the discharge function of the SRL weir 

The discharge function of the SBL weir, in addition to satisfying the conditions specified 
iii the previous section, should satisfy another property, viz., it should tend to become 
linear very rapidly after a certain small threshold depth, the variation from linearity be- 
coining smaller as the head increases. In other words, the error in replacing this h–q 
relation (henceforth referred to as the primary haq function) by a linear one, should 
rapidly and continuously decrease as H increases. It has to be emphasized here that an 
x act linear relationship used as the primary h–q function results in a physically unreal- 

izable    form y cc  x-I/2 (Stout profile', for which 1'(0) = °a). 

3.4• 
Forms of primary h–q function 

Theme.above-rnentioned near-linear property of the primary h–q function of the SBL weir 
1-1  be realized 

in three following forms (Fig. 7): 



(a) S8L-1 	 (b) SEL-2 (C) SEL-3 
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FIG. 7. Forms of primary h—q function. 

(i) A function although nonlinear in 0 X a rapidly becomes linear and retains this 
till infinity such that f(X) can be replaced by a form mX ± C in the range of a :c X < 03 
with increasing accuracy, so that this function can be used directly as the primary h-q 
function 0(H) (Fig. 7a). 

(ii) An increasing function which rapidly approaches its constant value at infinity 
such that this could be treated as the first differential of the primary h-q function, inte- 
grating which one can get the primary heti function 0(H) (Fig. 7b). 

(iii) A continuously decreasing function which rapidly approaches zero, so that this 
could be treated as 0"(11) vs H curve, from which 0(H) can be obtained (Fig. 7c). 

The above three forms of functions from which the primary h-q function of an SBL 
weir can be generated are termed for convenience as, SBL-1, SBL-2 and SBL-3-type 
generating functions, respectively. 

3.5. Generating functions through exact solutions of some proportional weirs 

In practice, it is very difficult to find A function which possesses all the essential proper- 
ties of a primary h-q function discussed above. However, some of the existing propor- 
tional weir functions (equations defining profile shape of the weirs) do posses certain special 
characteristics which can be exploited to generate the primary h-q function of SBL weir. 

It has been observed that the profile of a proportional v-notch weir 13  designed using 
any base weir (Fig. 8a) is nearly a straight line after small values of x and the linearity 
rapidly improves with increasing x. Hence, by shifting the origin from 0 to 0' (Fig. 8a), 
the weir function considered with reference to the axes 0' X' and 0' Y (Fig. 8a) can be 
treated as SBL-1-type generating function 

The quadratic weir9-11 , shown in Fig. 8b, has been found to become a 'proportiona l  

orifice' or a weir of almost zero width for X > X0  (X0  is a small initial value), so that the 
function defining this weir considered with reference to the axes 0' X' (Fig. 8b) can be.  
treated as SBL-2-type generating function. Similarly, the function defining the quadratic 
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wei rOfi le with reference to the axes OX and OY (Fig. 8b) can be considered to repre- 
sent the S8L-3-type generating function. 

3.6. 
Choice of generating function 

An  important aspect to be considered in the choice of a particular type of generating 
function is whether  ether or not t results in a finite nonzero crest width for the designed lin- 
ear weir. An infinite crest width is physically unrealizable and a zero crest width renders 
practical difficulties in the fixing of the weir to plumb and symmetry and in the accurate 
measurement of the initial head. 

Cowgill 2  and Banks 3  have shown that an h—q relationship of the form Q oc Er can be 
obtained for a flow in a weir having its profile in the form of y cfc x' 312 , from which it is 
evident that the weir will have a finite crest width if and only if the least power of the 
head term in the discharge function 0(H) is 3/2. 

It is found that out of the three types of the generating functions developed using the 
proportional v-notch and quadratic weirs, only for the SBL-2-type generating functions 
developed using the quadratic weirs the least power of head term is 3/2. For the rest it is 
greater than 3/2. In addition, the SBL-1-type generating function developed using the 
proportional v-notch is not amenable to exact integration and hence a closed-form solu- 
tion of eqn (4) is not possible. 

In the light of the above discussion, only SBL-2-type generating functions, developed 
using the exact solutions of quadratic weir, are considered for the design of the SBL weir. 

4. Development of self-basing linear weir utilizing the exact solution of a quadratic 
weir 

4.1. Generating the head discharge function 

The function defining the profile of the parabolic-based quadratic weir" is (Fig. 9), for 
example, 

2.17  
y=1V 11-7-17- 	Va  =fix). 	 (12) 

a Va 	x 
1+ - 

a 

It has been mathematically proved 14  that f(x) is positive, single-valued and a continu- 
ously decreasing function. Further, the proportional weir transforms itself into a propor- 
tional orifice or a weir of almost zero width after a small finite height. Hence, by shift- 
ing the origin to 0' (Fig. 6) 

. 	 .., 

2 
— 	

x' 
x ' lx—  _ 	a , 

+ — + -- • 
a 	a 	x 

1+• a 
. 	 _. 

(13) 
y i = 
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(a) Rectangular based proportional V-notch weir. 

(b) Rectangular-based quadratic weir. 

FIG. 8. Generating functions using profiles of P-weirs. 
(a) Rectangular-based proportional v-notch weir, (b) 
Rectangular-based quadratic weir. 

•	  • 

X I  

Carpletneragy wet profile 

_Y 

Paratoic base 

FIG. 9. Parabolic-based quadratic weir. 

Nondimensionalizing, we get 

x' 
• Y=1– 1-n+fiCet- 

1+4X' 	
— d 	 (14) 	 Y = 
W 

an X = 

Choosing the above function as SBL-2-type generating function to develop the self- 
basing weir, we have (Fig. 9), 

O'(H) = 1 - 	+ fir + 21ri 	 (15) 
I + 411 

Integrating eqn (1 5) with respect to H, 

0(H) = H -32  1(1 + H) 312 - H312 + H1/21 _I tan el  (21TO+ C. 	(16) 
2 

The constant of integration C is evaluated using the initial condition 0(0) = 0. It is 
found that C= 2/3. Therefore, the required primary h–q function is 

„ 	2 OW) = (n 
2) - ! [(1 M312  ,H3/2 + H1/21 I

2  
1  tan -1 (2a). 	( 17) 

Expanding the terms on the right-hand side of the above equation and simplifYing' 
we get 

0(H) = 2H3/2 	H 2 156 11 5/2 – 4 	 +.... 5 	
(18) 
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From eqn (18) it can be observed that the least power of the head term in the primary 
bi function is 3/2 and hence it is confirmed that the designed SBL weir will have a 

finite, nonzero crest width. 

4.2. 
To derive the function L (xr) defining the self-basing weir 

Referring to Fig. 6, the discharge equation for flow through the proposed SBL weir in 
the nondimensional form is 

10  H 
 
Jr—x-  fs(x)dx = 0(H). 	 (19) 

Substituting for 0(H) from eqn (17), 

i
II 2 	2 r 	 ,,, i 	1 

Ins  (X)dX = (H + —
3

) — —
3

i(1 + 10 312  — H 312  + Hate j— —
2

tan -1 (2a). (20) 

Differentiating with respect to H using Leibnitz's rule, 

1111  is(X)  
Jo 
ndX=2[1-1-n+1 r 1+n— ' ° (H)* 	 (21) 

Equation (21) is recognized as the Volterra integral equation in Abel's form, whose 
solution is 13  

fa) = —2  ix  Ø"(H)   dn. 	 (22) 
z Jo frrii 

Differentiating the RHS of eqn (21) and evaluating the integral in eqn (2) we get 

	

fs (X) =1 — —
2

tan -1  a- 	2 
+ 	 (23) 

if 	 (1+4X) 312  . 

Equation (23) gives the profile of the SBL weir for flow through which the h—q rela- 
tionship 0(H) is almost linear after a small base depth. The accuracy to which it is linear 
Can be best explained by comparing this theoretical h—q relationship with an exact linear 
h-q relationship. 

4.3. Linear discharge characteristics of the designed weir 
It 

is found that, beyond a small base depth, as the head increases, the h—q graph ap- 
proximates the asymptote (tangent at infinity) and the deviation of the value given by the 
tang at infinity from that given by the h—ci graph becomes increasingly negligible. 
Let 	

of 	 dli.••• 	■,. 

(24) 
Qt.  = mli ± C, 

be the equation of the asymptote. Constants m and C and be found as 	 . 
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FIG. 10. Parameters of the designed SBL weir. 

	

. dQ 	. ] = 1 m= urn ein  = 114 	 1+4H1- 	 (25) 

	

H-)** an 	H--+ 

and 

22 	 1 C = lim (H - Q)= 	+ -1(1+ H)312 H3/2 _ H 112 	- - - 
2 

tan 1 (2a)] 
H-0 00 	 H-.00 3 	3 

fr  
C=---

2  
=01187

' 	
(26) 

4 3  

Hence, the equation of the asymptote, which is the linear relationship of the SBL weir. is 

QL = H-0.1187. 
	 (27) 

The absolute value of the deviation of this discharge from the one obtained by the 
theoretical h-q relationship given by eqn (17) is 

Er(H)=Q-QL. 	
(28) 

It is seen that E(0) = finite, E(00) = 0 and 

r  

dQ 	= dildQ 	 (29) 
dH = dH 
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FIG. Ha. Discharge-head variation (experimental). 

From eqn (14) it is found that the above expression is negative throughput the range 
OS I I 	C.3  • Hence, it is concluded that the relative error e given by 	̀ 

e = Q QL 	 (30) 

continuously decreases as H increases in the range 0 < H 5 00, which is also evident from 
Fig. 5a. Further from Fig. 10a, it can also be observed that the error, which is nearly 1% 
at II re. 1 . 2, decreases very rapidly and is very nearly zero (accurate to third decimal 
place) at H = 4, beyond which for all practical purposes, the designed weir is as accurate 
as an exact linear weir. If a limit for the maximum permissible value of the error 

0.620 
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0.1 	 0.2 	 0.3 
head over ref. plane (m) 

0.4 0.5 0.6 

Flo. 
1lb. Variation of C4 with head. 
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FIG. 12. SBL weir discharging. 

(usually, ± 2%) is prefixed, the flow through the depth corresponding to any prefixed 
permissible maximum error (Fig. 10b) is analogous to the flow through the base weir of 
any existing exact linear weir. This depth is generally called the 'base flow depth' or the 
'threshold depth (d)' of the designed SBL weir. For all flows above this threshold depth, 
the theoretical h—q relationship (eqn(17)) can be replaced by the linear relationship 
given by eqn (27). Hence, for all flows in the range d < h < 00, called the 'linearity 
range', the weir will pass discharges proportional to the head measured above a refer- 
ence plane or datum located at 0.1187 above the weir crest (Fig. 10b). The validity of 
this linear relationship is further strengthened from the fact that the coefficient of dis- 
charge as obtained from experiments computed using the linear h—q relationship is con- 
stant to a high degree of accuracy. 

4.4 Experiments 

Experiments conducted on a typical SBL weir having a crest width of 40 cm in a rectan - 

gular channel measuring 18.5 m long, 1.2 m wide and 1.1 m deep and with its crest 
20 cm above the bed of the channel show excellent agreement with the theory, giv ing a  
constant average coefficient of discharge of 0.61 (Fig. 11). Figure 12 shows a phow° 
graph of the SBL weir discharging. 
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