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Abstract

This paper reviews the work of Keshava Murthy and collaborators in the area of proportional weirs. It brings forth
the lacuna that existed in the theory of weirs and focusses on why there was need a for 2 generalized theory of
weirs. It outlines the theorem of slope discharge continuity developed, emphasizing the importance of a datum or
reference plane for every weir. It explains briefly the mathematical theory developed and its application to the
design of several important weirs having wide application. The theory and application of geometrically simple
weirs is briefly outlined.

Keywords: Weirs, notches, proportional weirs, flow measurement, hydrometry. linear weir, quadratic weir, geo-
metrically simple weir.

1. Introduction

The study of weirs has been a subject of long-standing interest in hydraulics as is evi-
denced by the continuous flow of literature on this subject. The importance of weirs as a
discharge-measuring device has been very well recognized. Sharp-crested weirs or
notches are among the oldest, simplest and most accurate measuring devices used to
measure the rate of flow in natural and artificial streams. It is well known that given any
defined geometrical shape of a weir, the discharge through it can be found out. This will
be a function of &, the head causing flow. The conventional sharp-crested weirs of stan-
dard geometrical shapes like rectangular, triangular, trapezoidal and parabolic have
been extensively investigated and their performance and characteristics well understood.
B'ut the reverse problem of finding the shape of a weir to produce a discharge which is a
gven function of 4, called the ‘problem of the design of proportional weir’, is of consid-
€rable interest in many fields like hydraulic, environmental and chemical engineering,
and is, in general, not as simple and involves the solution of integral equations. The
sWdy of proportional weirs (P-weirs), besides having considerable practical application,
'S of fundamental and academic interest in hydraulics. The linear proportional weir with
s linear discharge head characteristics has been a subject of considerable interest, with
1PiJ_lif.:atic;ns in diverse fields. Such weirs are used as control outlets for float-regulated
1‘:?"‘8_ devices in chemical engineering, as a simple 'measuring devi.ce in* hydraulic‘s ar}d
. “Bation and as an outlet for grit chambers in environmental engineering to maintain .
“Onstant velocity in sedimentation tanks irrespective of fluctuations in discharge.
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The first attempt to design a linear proportional v:feir was made by Oscar vap Pelt
Stout in 1898'. while he was a professor of civil engineering at the University of Ne.
braska. He found out that the equation of such a weir is given by y o< x'2 where y and 4
are coordinates measured along the horizontal and vertical axes, respectively. This weir
although theoretically exact, suffers from the practical difficulty of having an inﬁnit;
crest width (y = o0 as x — 0), which is physically unrealizable. Cowgill and Bankg??
showed that the equation of the curve describing a weir producing a discharge 0 = bH"
(m > 1/2), H being the depth of flow, is proportional to x™2 Stout’s case can be gb-
tained as a special case of this (m = 1).

In 1908, Sutro overcame the deficiency in Stout’s model by providing a rectangular
base of depth a and width 2W and fitting above this weir a designed complementary
weir. For all flows through this weir (Fig. 1) above the rectangular base, the discharge js
proportional to the head measured above a ‘reference plane’ or ‘datum’ located at a/3
above the weir crest. Though this worked out satisfactorily in this case, the rational basis
for the selection of the datum was never explained. It was wrongly believed for over 50
years that the reference plane of the weir could be arbitrarily chosen. This erroneous
notion was largely responsible for a lot of empiricism that crept into this importani
branch of hydraulics. The status of the subject was well summarized in 1966 by Singer
and Lewis® in the following words: “... In spite of its merits, the primary device is only
known to a small number of specialists. There are several reasons for its relative obscu-
rity, the most important one being the lack of up-to-date technical information. Techni-
cal literature that exists is very old. Few textbooks on hydraulics have a chapter on pro-
portional weirs, and the ones which do present the data in such a compressed form that
one is rarely tempted to make further inquiries....” Though all these are true, the main
reasons for its relative obscurity and empiricism are more complex. It is in this regard
that the work on proportional weirs was taken up at the Department of Civil Engineering
at the Indian Institute of Science in the late sixties to develop a theoretical undersiand-
ing of the theory of proportional weirs. The aim of the project was two fold: (i) to de-

velop mathematical theory of P-weirs, and (ii) to apply the same to design important
weirs unsolved till then to prove its effectiveness.

As a part of the mathematical theory, the theorem on ‘slope discharge continuity
was recognized and proved. It states: “In any physically realizable weir having 2 finite
number of finite discontinuities, the rate of charge of discharge is continuous at all
points of discontinuity. The theorem has been proved rigorously using the theory of
Laplace Transforms>® and experimentally verified. Accordingly, every weir is associated
with a unique reference plane or datum above which only are all heads reckoned. A ne¥
parameter A, called the ‘datum constant’, which fixes the datum is introduced. The
choice of the datum at a/3 above the crest in the case of Sutro weir is precisely meant ©0
satisfy the slope discharge continuity theorem although it was unrecognized.

1.1. Logarithmic weirs

The above mat.he_jmalical theory was applied to design a logarithmic weir. From the
works of Cowgill” and Banks® it is clear that any attempt to design a weir which has 2
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Fic. 1. Linear proportional weir {Sutro weir). FIG. 2. Rectangular-based quadratic weir.

erm A" in the discharge equation Q = f(h), where m < 3/2 invariably leads to a weir
having infinite crest width. These are classified as ‘compensating base weirs’ requiring a
base for their design. Logarithmic weir is one such weir. Using the general theory devel-
oped, the weir was designed with a rectangular base. Incidentally, logarithmic weirs give
larger changes of head for a given change of flow, compared to conventional weirs and
hence are useful in irrigation canals as sensitive measuring devices® .

1.2. Quadratic weirs

The quadratic weir which gives a discharge proportional to the square root of the head-
causing flow, has applications in bypass flow measurement, was first unsuccessfully
tried by Haszpra® in 1965 in Hungary. An exact solution to the problem was given by
Keshava Murthy’. The function defining the weir has a very significant property of fast
convergence leading a weir of zero width after a certain height, rendering it into a pro-
portional orifice (Fig. 2). For all flows through this weir above the rectangular base of
width 2W and depth a, the discharge is proportional to the square root of the head meas-
ured above a datum located at 2a/3 above the crest, both while acting as a ‘notch” as well
2 when it is acting as an ‘orifice’. A new concept of notch—orifice was introduced for

the first time. Several exact designs of quadratic weirs have been studied by Keshava
Munhy et gl 89-11

L3, Orifice-notch

Though the Sutro weir was used as an outlet weir for grit chambers or sedimentation

' maintain constant average velocity necessary for the collection of the grlfl,hll
¢d from the main drawback in that it had to be fixed with its crest at the bed o the
hel withoyt leaving a clear gap of about 8-12 inches for the collection of the grit.

¥as recognized as early as in 1936'> and had remained unsolved.

I
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This was taken up with the formulation and theory and a generalized Synthesis
cedure for the design of weirs having their base i-n any given shape to a depth g solt);&
the discharge through it is proportional to any singular monotonically increasing fun:{
tion of the depth of flow measured above a certain datum. The problem is fedllcedu;
finding out an exact solution of a Volterra integral equation in Abel’s form. The Maxi.
mization of the datum below the crest of the notch was investigated. It wag Proved thy
for a weir notch made out of one continuous curve and for a flow proportional 1o the mth
power of the head, it is impossible to bring the datum lower than (2m-1)a bejgy the
crest of the notch.

A new concept of an ‘orifice-notch’ having discontinuity in the curve and having ;.
vision of flow into two distinct portions was developed. The division of flow was showy
to have a beneficial effect on the lowering of the datum below the crest and still majy.
taining the proportionality of flow’. This could be used effectively as grit chamber outle
weir, hence solving the long-standing problem in this regard.

1.4. Proportional v-notches

Although weirs for which the discharge Q o< bH", m 2 3/2, do not require a base (like
conventional rectangular, v-notch, parabolic weirs), it was shown that they can also be
designed with bases with advantage. These are classified as ‘noncompensating’ base
weirs’. Keshava Murthy and Pillai'>'* designed a modified proportional v-notch weir
which produces the same head—discharge relationship, i.e., Q o< h*, as that of the con-
ventional v-notch. They used a rectangular base which not only eliminates the difficulty
of fixing the weir to plumb, but also increases the indication accuracy. Interestingly, it is
seen that the proportional weir regains the geometrical simplicity of the conventional v-
notch weir, as the profile approaches fast a straight line. Other designs of noncompen-
sating base weirs include proportional three-halves weir'® (to replace rectangular weir)
and the proportional parabolic weir'®,

2. Geometrically simple weirs

2.1. Introduction

Linear proportional weirs have recently attracted considerable interest because of ﬂ.lcif
vfride application in varied fields. Further, a linear proportional weir has greater indica-
tion accuracy in that a £ 1% error causes an equal percentage error in discharge com
pared to + 1.5% error in rectangular weir and + 2.5% error in v-notches. Although exact
solution for the linear proportional weirs has been given by Sutro, Keshava Murthy a@

others"!’"!* often these weirs are difficult to fabricate as they require sophisticat®
equipment and skilled labour.

Recently, oa few practical proportional linear weirs have been pmpqsed -b?
Ramamurthy®’, Venkataraman and Subramanya’" with the main objective of simplify

ipg the weir geometry while Incurring negligibly small errors in the discharge computd
tion.



THE THEORY OF PROPORTIONAL WEIRS <5
£

L
[}

i
anﬂ_ Linearity - Aftitude d
deery  renge i _

'ID' -0.72d : Depth of flow h
. 1
—

datum constgnt A = 0.0817 d
Y e AR Wit i R -

] ference plane or datum _ 1

i

A, 3. Characteristics of the inverted v-notch as a linear proportional weir.

12. Inverted v-notch

The work of inverted v-notch was motivated by a casual remark by Troskolansky in
tis well-known book Hydrometry’’, in which he states that a closed trapezoidal
weir with a vertex angle of approximately 50° has a near-linear head-discharge relation-
ship. Surprisingly this had not been investigated. Neither its discharge-head relation-
ship was known nor its range of validity. The inverted v-notch was analysed (Fig. 3)
in the background of the general theory of proportional weirs. It was shown through
u optimization procedure developed that the flow through this weir of half crest
width W and depth d for depths above 0.22 d is proportional to the depth of flow meas-
red from a reference plane situated at 0.08 d for all heads in the range 0.22d <
k<094 d within a maximum percentage deviation of + 1.5 from the theoretical dis-
darge. Nearly 75% of inverted v-notch can be used effectively as the measuring range.

Ypriments are in very good agreement with the theory, giving a constant coefficient of
discharge of ),6223:24

L. Chimney weir

Th! invtned V-

; notch was improved in the ‘chimney weir’ (Fig. 4) with respect to its
08¢ of applic

b ability. It was shown that the range of linearity can tfe considerably en-
alf UE53$3re thﬂl} 200% by the addition of a rectangular weir of w1dtl'§ 0.265 W (H{ 1S
Vi tl th-of inverted v-notch) at a depth of 0.735 d (d is the altitude of the in-
ineary r: ch) above the crest of the weir?* . The design parameters of the Weirs, viz.,
Mmipg Bget; bitsE depth, reference plane, are estimated by solving the nonlinear pro-
ta thg:;. lem using a numerical optimization procedure. It is shown that for flows
Tedsureg awald depth of 0.22 d the discharges are proportiom}l to the depth of ﬂqw
ige ) © areference plane situated at 0.08 4 above the weir crest for all heads in
lh“}“*liical ;lis(:ds h<2.43d, with a maximum percentage deviation of £ l_.S from the
8¢ rel ‘harg,f,_ A significant result of the analysis is that the ‘same lme_ar head-
“ionship governing the flow through the inverted v-notch is also valid for the
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FiG. 4. Salient features of a chimney plate weir.

: : . . : ; : ent
extended chimney weir. Experiments with three different chimney weirs show f—'_KCEH
agreement with the theory, giving a constant coefficient of discharge for each weir.

i z 2 . . = . . n 4-
The inverted v-notch weir and chimney weir are being tested in some minor Irrg
tion canals in Karnataka.

2.4. Bell-mouth weirs

Troskolansky*? while referring to approximate weirs mentions that flow through the 11;:
tervening space obtained by keeping a semicircular disc in a rectangular channel Pra‘
duces an approximate linear head-discharge relationship. Unaware of this, Vﬂ“k‘a_‘ics
man and Subramanya®' have experimentally observed the linear discharge charactert’ 5
of weir called ‘quadrant plate weir’. However, no analytical investigation has b¢
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made. A detailed theoretical analysis of the flow through the quadrant plate weir, re-
ferred to as bell-mouth weir (Fig. 5), is made in the light of the generalized theory of
proportional weirs using the ‘range of point method’ of numerical optimization proce-
dure. It is shown that the flow through the quadrant plate weir has a linear discharge-
head relationship valid for certain ranges of head within a maximum deviation of £ 1%
from the theoretical discharge. Further, it is shown through the optimization procedure
!hat the measuring range of quadrant plate weir can be considerably enhanced by extend-
g the tangents to the quadrants at the terminals of the quadrant plate weirs. These are
discussed in the paper on ‘bell-mouth weir’ by Keshava Murthy and Giridhar****.

% Self-basing linear weirs

3.1, Introduction

It | . .
S clear from the works of Banks® and Cowgill® that the linear weir belongs to the

za;:;;;?;lp ensating weirs’ invariably requiring a base for its d'esign, rendering it in;o

Keshavah:; Welr defined by two separate profiles. Further, it has been showi. l)lw

il heggs urthyS that these weirs have a unique reference plane or datum above whic
are reckoned. These weirs pass discharge, for all flows above the base welr,

Proport;
*Portional 1o the head above the datum.

prng;l:::‘ llbere has b‘een some special interest in the design anﬁd deveIOpmfizntt‘ olfsﬁli)-
[-hﬁnceftmh lnfear weirs  which  produce near-linear- hefad—dlscha-rg::: relatio [:_)
Metricq simrel-el:md o as h—q function). The prime motwatlon. fOI"lhlS 1nterest.1s fg_z;)d
c':!nditiﬁrls ufhlcuy‘ af‘d consequent ease in the fabrication, which is necessary 1n It

' TRMTE 1L is hard to find sophisticated equipment and skilled labour. Rama-
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murthy e al.”® have designed a quadrant plate weir by replacing the curved profile of ;.
Sutro weir' by the quadrant of a circle. Optimum dimensions of the weir have pegp
found by minimizing the percentage deviation of discharge produced by the quadrapt
plate weir from the corresponding Sutro weir.

The first significant mention of a geometrically simple linear weir appears to be by
Troskolansky??, where he refers to two approximate linear weirs: one an inward trape-
zium (with an apex angle of 50°) and the second a quadrant weir (where the curyeq
profiles are quadrants of a circle). It is said that these welrs can pass near-linear djs.
charges in certain ranges of head. Keshava Murthy and Giridhar have analytically jp.
vestigated in depth these two weirs, viz., the inverted v-notch® and bell-mouth weir*%,
In their study, they have used a numerical optimization procedure to fix the weir pa-
rameters governing the threshold depth (base depth) and the datum of the weir. The ex-
periments fully confirm the results.

One of the main outcomes of the above investigation 1s the emergence of the linear
weir defined by a single profile unlike the exact linear weirs like Sutro weir, etc."""",
which are essentially compound weirs defined by two profiles: one for the base and the
other for the complementary weir above. It has to be underlined here that a portion of
the profile of the weir above the crest itself acts as base for the weir. In other words, the
base weir becomes an integral part of the whole weir itself. Hence, these weirs are ap-
propriately called ‘self-basing linear weirs’. One of the main drawbacks of the above
designed self-basing weirs is that they have a limited range of head which makes their
choice difficult in practice. The exact solution for the self-basing linear weirs is the one
obtained by Stout', which, however, is physically unrealizable. In what follows, we are
concerned with the finding of a very good approximate solution to this problem. Suc-
cinctly, we seek an answer to the question ‘Is it possible to find an approximate solution
for a self-basing linear weir defined by one single profile with infinite measuring
range?’ It is shown that the significant property of rapid convergence (hence an ap-
proximate solution of Fredholm’s integral equations of a particular kind) of a quadratic
weir can be eminently exploited to arrive at a practical self-basing linear weir
(henceforth referred to as SBL weirs) of very high degree of accuracy.

3.2. Preliminary consideration

Refe_rring to Fig. 6, the discharge through the sharp-created weir (symmetrical about the
x-axis), defined by y = f(x) for a head h is given by

h
q=2Cy Jﬂjﬁf(x)m dx, M

where ¢ is the discharge or rate of flow, h, the head above the weir crest, g, the accel-
eration due to gravity, and Cy, the coefficients of discharge.

The coefficient of discharge is assumed to be constant (approximately equal t0 0.6).

which is true for streamlined flows through sharp-crested weirs (this is confirmed 1atef
by experiments).
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Non dimensionalizing the above equation we have, for example,

H
Q=Lf(H)JH—XdX=¢(H)1 (2)
where

q
0=9¢, J2aW>"

W, = half crest width,
h

[

o

X

X=w5

For a proportional weir the h—q function ¢(H) is known a priori, in which case egn
(2) is the standard Volterra integral equation and can be reduced to Abel’s form by dif-
ferentiating with respect to H(using Leibnitz’s rule), so that

T Xy o o

Solving eqn (3)"°, which is in Abel’s form, we get the weir profile

2 x ¢”(H)
= — dH . 4
f(X) T -[0 JX-H e

The above solution is realizable only if ¢(H) and ¢’(H) are continuous in the range

0<X < and ¢(0) = ¢” (0) = 0, where ¢(H) is a continuous and monotonically increas-
Ing function of head.

33. Characteristics of the discharge function of the SBL weir

The discharge function of the SBL weir, in addition to satisfying the conditions specified
o the previous section, should satisfy another property, viz., it should tend to become
ear very rapidly after a certain small threshold depth, the variation from linearity be-
:lm '0¢ smaller as the head increases. In other words, the error in replacing this h—q
ra;g?n (henceforth referred to as the primary h—q function) by a hpear one, should
cxa.:t{-and continuously decrease as H increases. It has to be en?phaswcd_ here that an
izab| ;near relationship used as the primary h—q function results in a physically unreal-
vlorm y oc 112 (Stout profile', for which Y(0) = o).

34,
Forms of primary h—q function
Thc abO\#e-

i Imemiﬁ“ed near-linear property of the primary h—q function of the SBL weir
a

ized in three following forms (Fig. 7):
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(a) SBL-1 () SBL-2 (c) SBL-3

FiG. 7. Forms of primary h-q function.

(i) A function although nonlinear in 0 £ X < a rapidly becomes linear and retains this
till infinity such that f(X) can be replaced by a form mX £ C in the range of a < X <
with increasing accuracy, so that this function can be used directly as the primary h—g
function ¢(H) (Fig. 7a).

(i) An increasing function which rapidly approaches its constant value at infinity
such that this could be treated as the first differential of the primary h—q function, inte-
grating which one can get the primary h—q function ¢(H) (Fig. 7b).

(iii) A continuously decreasing function which rapidly approaches zero, so that this
could be treated as ¢”(H) vs H curve, from which ¢(H) can be obtained (Fig. 7¢).

The above three forms of functions from which the primary h—q function of an SBL

weir can be generated are termed for convenience as, SBL-1, SBL-2 and SBL-3-type
generating functions, respectively.

3.5. Generating functions through exact solutions of some proportional weirs

In practice, it is very difficult to find a function which possesses all the essential proper-
ties of a primary h—q function discussed above. However, some of the existing propof-
tional weir functions (equations defining profile shape of the weirs) do posses certain special
characteristics which can be exploited to generate the primary h—q function of SBL welr.

It has been observed that the profile of a proportional v-notch weir'® designed using
any base weir (Fig. 8a) is nearly a straight line after small values of x and the linearity
rapidly improves with increasing x. Hence, by shifting the origin from O to O’ (Fig. 8a)
the weir function considered with reference to the axes O’ X’ and O’ Y (Fig. 8a) can ¢
treated as SBL-1-type generating function

The quadratic weir’!', shown in Fig. 8b, has been found to become a ‘proportional

oriﬁc?’ or a weir of aimost zero width for X > X, (X, is a small initial value), so that hE
function defining this weir considered with reference to the axes O’ X’ (Fig. 8b) can be
treated as SBL-2-type generating function. Similarly, the function defining the quadrali¢



THE THEORY OF PROPORTIONAL WEIRS
365

le with reference to the axes OX and OY (Fig. 8b) can be c

- profl
weir P BL-3-type generating function.

onsidered to repre-

1.6. Choice of generating function

An important aspect to be' considered in the choice of a particular type of generating
function is whether or not it results in a finite nonzero crest width for the designed lin-

ear weir. An infinite crest width is physically unrealizable and a zero crest width renders

p;actical difficulties in the fixing of the weir to plumb and symmetry and in the accurate

measurement of the initial head.

Cowgill‘! and Banks’ have shown that an h—q relationship of the form Q «« H™ can be
Jpiained for a flow in a weir having its profile in the form of y o x™32 from which it is
evident that the weir will have a finite crest width if and only if the least power of the
head term in the discharge function ¢(f) is 3/2.

It is found that out of the three types of the generating functions developed using the
proportional v-notch and quadratic weirs, only for the SBL-2-type generating functions
developed using the quadratic weirs the least power of head term is 3/2. For the rest it is
oreater than 3/2. In addition, the SBL-1-type generating function developed using the
proportional v-notch is not amenable to exact integration and hence a closed-form solu-
tion of eqn (4) is not possible.

In the light of the above discussion, only SBL-2-type generating functions, developed
using the exact solutions of quadratic weir, are considered for the design of the SBL weir.

§. Development of self-basing linear weir utilizing the exact solution of a quadratic
weir

41. Generating the head discharge function

The function defining the profile of the parabolic-based quadratic weir'! is (Fig. 9), for

example,
= —-
. F
y=W4.‘/l+i—J-;-— == f(x) (12)
“ “ s |
a -

nu.c,{t has been mathematically proved'* that f(x) is positive, single-valued and a continu-
[ionyldet?reasmg function. Further, the proportional weir transforms itself into a propor-
" orifice or a weir of almost zero width after a small finite height. Hence, by shift-

g the origin 1o O (Fig. 6)

r= Wl X’ fo'!-
y' = — l+-;'+ p

’

(13)

X
2
a
> il |

] A
a_
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N—a

o : -y
0" an) —e=

(a) Rectangular based proportional V-notch weir.
. :

b A

H-b>

Y 1
= "{HJ'-_ 3 e o'(H) o

(b) Rectangular-based quadratic weir.

FiG. 8. Generating functions using profiles of P-weirs. FiG. 9. Parabolic-based quadratic weir.
(a) Rectangular-based proportional v-notch weir, (b)
Rectangular-based quadratic weir.

Nondimensionalizing, we get

2VX y’ x
vax TSy ad X=y

Choosing the above function as SBL-2-type generating function to develop the self-
basing weir, we have (Fig. 9),

Y=1—JI+X+JJ?+1 (14)

2JH
’ =1 - 15
¢'(H)=1 J1+H+JH+1+4H. (15)

Integrating eqn (15) with respect to H,
¢(H) = H - %[(1 + H)¥2 - g3 4 g'12] —% tan~! (2VH) + C. (16)

The constant of integratior C is evaluated using the initial condition ¢0) = 0. I is
found that C = 2/3. Therefore, the required primary h—q function is

¢(H) = (H +§-)—-§»[(l +H)¥2 — H32 4 g2} --;-tan-*(z,fﬁ). (17)

Expanding the terms on the right-hand side of the above equation and simplifying
we gel

O(H)=2H3? _%HZ _JSEHm o (18)
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From €qn (18) it can be obsefve:d that the least power of the head term in the primary
b function 1 3/2 and hence it is confirmed that the designed SBL weir will have 2
fpite, nONZETO crest width.

1.2, To derive the function f(X) defining the self-basing weir

Referring 10 Fig.' 6, the discharge equation for flow through the proposed SBL weir in
the qondimensional form is

H
qubstituting for o(H) from eqn (17),

2y 2
JH ms(x)dx=(H+§)—§[(l+H)3’2 - HY2 + §2] - 2 tan™ VA, 20)
0

Differentiating with respect to H using Leibnitz’s rule,

H f(X) ~ 2JH |
0mdx_z[l—J1+H+Jﬁ+1+4H]_¢(H). 21)

Equation (21) is recognized as the Volterra integral equation in Abel’s form, whose
solution 1S

B 2 X ¢ﬂ(H)
f(X) = EL 77— (22)

Differentiating the RHS of eqn (21) and evaluating the integral in eqn (2) we get

2 2
=]1-=tan! VX + :
hld)=1=gpim (1+4X)>?

(23)

| qu_lalion (23) gives the profile of the SBL weir for flow through which the h.-q 'rela-
Honship §(H) is almost linear after a small base depth. The accuracy to which it is linear
€an be best explained by comparing this theoretical h—q relationship with an exact linear

b~q relation ship.
43 1. : .
3. Linear discharge characteristics of the designed weir

[ .
F:r:_found that, beyond a small base depth, as the head increases, the h-—q' graph ap-
Ximates the asymptote (tangent at infinity) and the deviation of the value given by the

la | ; " . " .
L:gent 4 infinity from that given by the h—q graph becomes increasingly negligible.
{

0, =mH=*C, (24)

th :
- equa_t“:’“ of the asymptote. Constants m and C and be found as
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I
10 ’
, B : |
L |
()
S
§ I
: I
Q
i
| ref
_i 0,1187 gin
. = + -
FiG. 10. Parameters of the designed SBL weir.
H
m-luniQ— lim|1-J1+ H +JH + J— =1 (25)

and

= lim (H - Q) = lunm[-—+ (1+H)¥2 - H¥2] - H' 4 %—tan"(2ff7)J

C

) ;
1 3 0-1 1 S L

Hence, the equation of the asymptote, which is the linear relationship of the SBL weir, 18

0L = H-0.1187. (27)

The absolute value of the deviation of this discharge from the one obtained by the
theoretical h—q relationship given by eqn (17) is

Er(H) e Q"QL. (28)
It 1s seen that E(0) = finite, E(e0) = 0 and

(29)
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discharge (rmd3/s) —ee—
2 <
e T

8

0.01

- I— L S— ' W W W— E— A ——— NN S————

i 0.2 0.3 0.4 05 05
head over ref. plane (M) —p

D I—Ll 4 P N T VNN TS SN =8 5 L I
0.

Fic. 11a. Discharge-head variation (experimental).

From eqn (14) it is found that the above expression is negative throughput the range
0 < H < =, Hence, it is concluded that the relative error e given by

- Q - QL (30)
— Q |

continuously decreases as H increases in the range 0 < H < oo, which is also evident from
Fig. 5a. Further from Fig. 10a, it can also be observed that the error, which is nearly 1%
at H=12, decreases very rapidly and is very nearly zero (accurate to third decimal
Place) at H = 4, beyond which for all practical purposes, the designed weir is as accurate
% an exact linear weir. If a limit for the maximum permissible value of the error

e

0.620 _
* 0.61 1 ° +1%
5 0610 - - —
0805 F ~ = = = e e e e e e e ——————————— o
ﬂ‘m § 2 a1 L  CERTE VR | | 1 W A i A A
’ 0.2 0.3 0.4 0.5 0.6

head over ref. plane (m) —%=

Fig .
e “b. Vanaliﬂn of Cd' Wilh hcad.
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FiG. 12. SBL weir discharging.

(usually, +2%) is prefixed, the flow through the depth corresponding to any prefixed
permissible maximum error (Fig. 10b) is analogous to the flow through the base weir of
any existing exact linear weir. This depth is generally called the ‘base flow depth’ or the
‘threshold depth (d)’ of the designed SBL weir. For all flows above this threshold depth.
the theoretical h—q relationship (eqn(17)) can be replaced by the linear relationship
given by eqn (27). Hence, for all flows in the range d < h < oo, called the ‘linearity
range’, the weir will pass discharges proportional to the head measured above a refer-
ence plane or datum located at 0.1187 above the weir crest (Fig. 10b). The validity of
this linear relationship is further strengthened from the fact that the coefficient of dis-

charge as obtained from experiments computed using the linear h—q relationship is ¢on-
stant to a high degree of accuracy.

4.4 Experiments

Experiments conducted on a typical SBL weir having a crest width of 40 cm in a rectan”
gular channel measuring 18.5 m long, 1.2 m wide and 1.1 m deep and with its Cres!
20 cm above the bed of the channel show excellent agreement with the theory, giviné "

constant average coefficient of discharge of 0.61 (Fig. 11). Figure 12 shows a phot®
graph of the SBL weir discharging.
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