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Abstract 

Issues involved in the comparative evaluation of upwind schemes for Euler and Navier—Stokes equations have 
been addressed. Apart from accuracy, these include robustness and computational efficiency attained in the pres- 

ence of convergence acceleration devices. A survey of upwind schemes and convergence acceleration devices is 
presented. A selective study, based on a comparison of accuracy for Roe and Osher schemes, has been conducted 
in a unified framework. Computations in subsonic, transonic, supersonic and hypersonic regimes have been car- 
ried out and comparisons of lift, drag, skin-friction and heat-transfer coefficients with reference solutions have 
been reported. 
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I. Introduction 

This investigation is motivated by the necessity for a detailed evaluation of numerical 
schemes based on upwind algorithms for inviscid and viscous compressible flow. Sig- 
nificant developments in computational fluid dynamics (cFD) for Euler and Navier- 
Stokes equations have occurred during the past decade. The advances in high- 
performance computers coupled with the evolution of sophisticated algorithms continue 
to provide impetus for the computation of fluid flows with ever-increasing complexity, 
both geometrically and physically. In spite of all the progress in algorithm development, 
many impediments still need to be overcome before CFD techniques can be routinely used 
for the design of aerospace vehicles, which require robust, accurate and efficient compu- 
tations of complex flows. The resolution of flow phenomena to an appropriate extent for 

large arge set of design and off-design parameters involves computational time scales which 
re Prohibitive even with the high-performance computers available at present. This 
Problem gets compounded when the conservation equations for mass, momentum and 
c_i:rx,gy have to be supplemented by additional conservation equations representing coma 
Pie e physical processes, which include compressible turbulence and chemical reactions, among 

Others. These considerations necessitate the optimization of algorithms for Euler 
(Iiva.vier—Stokes equations to a high degree. In particular, the role of convergence ac- 
celerati on 

becomes increasingly important at the cutting edge of CFD research. 

1524°dern numerical schemes for compressible Euler and Navier—Stokes equations have 
nnrerkably successful in predicting flow fields containing intricate patterns invo .lv- 
6  Shocks expansions and slip surfaces/vortex sheets. In particular, shock-capturing 
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disco.. techniques have the inherent ability to predict the locations and strength of flow 
tinuities and their interaction without prior knowledge of their presence. These schem es  
can be classified as central or upwind, based on the spatial discretization of convective 
terms appearing in the governing equations. The popularity of central difference 
schemes in the past could mainly be attributed to the ease with which their implementa- 
tion could be carried out. Unfortunately, these schemes require artificial dissipation 
terms to ensure stability while computing flow fields containing moderate to strong dis- 
continuities, which introduces some degree of empiricism, leading to loss of robustness. 
On the contrary, upwind schemes are naturally dissipative since their construction in- 
volves a more rigorous representation of the associated flow physics. 

2. Survey of upwind schemes 

Numerical schemes based on upwind algorithms" have convincingly demonstrated their 
superiority for the computation of inviscid and viscous compressible flow 6.7 . Upwind 
schemes can broadly be classified as flux-vector- and flux-difference-splitting schemes. 

2.1. Flux-vector-splitting schemes 

Flux vector splitting for Euler equations is a consequence of regarding the fluid as an 
ensemble of particles, some of them moving forward and the others moving backward. 
This forms the basis of splitting the fluxes of mass, momentum and energy into forward 
and backward components. Flux vector splitting can be interpreted as an approximate 
technique for integrating the collisionless Boltzmann equation 8  and the resulting nu- 
merical schemes are termed Boltzmann-type 9 . The most prominent upwind schemes, 
based on the flux-vector-splitting concept, are due to Steger—Warming 2  and Van Leer 3 . 

The Steger—Warming splitting exploits the homogeneous property of the inviscid flux 
vector to construct the split fluxes for a perfect gas. However, the lack of homogeneity 
prevents the straightforward extension of Steger—Warming splitting for real gases. The 
nondifferentiability of split fluxes at sonic and stagnation points even for a perfect gas 
constitutes a serious deficiency in the Steger—Warming splitting technique. Van Leer 
flux vector splitting, developed subsequently based on certain mathematical constraints, 
was designed to overcome the limitations and deficiencies of the Steger—Warming split- 
ting technique. The continuous differentiability of split fluxes, due to its polynomial rep- 
resentation in terms of the Mach number, enhances the convergence characteristics of 
the Van Leer scheme, resulting in unrivalled superiority for Euler computations. In ad- 
dition, the extension of Van Leer splitting for real gases is straightforward, with an 
trinsic simplicity not found in many other upwind schemes. Flux-vector-splitting 
schemes have proved to be extremely successful in capturing steady discontinuities rep- 
resented by nonlinear waves, which include shocks. On the contrary, these schemes are 
not effective in capturing steady discontinuities represented by linear waves which result 
in diffusion of contact discontinuities and slip surfaces. For these reasons, flux-vector- 
splitting schemes are primarily suited for Euler computations. Navier—Stokes comPuta" 
nous with these schemes result in artificial thickening of shear layers .' unless the comPu - 
tational grid is sufficiently fine. 
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2.2. 
Flux-difference-splitting schemes 

oux_differences-splitting schemes, by virtue of their superior ability to capture steady 
(lionrinuities corresponding .  to linear and nonlinear waves, have been favoured for 
Navier-Stokes computations in recent years. These schemes are based on noniterative 

solution procedure for the linearized analogue of the classical Riemann problem" )  and 
hence they are referred to as approximate Riemann solvers. The most popular upwind 

schemes, based on flux-difference-splitting concept, are due to Roe and Usher s . Roe's 
scheme involves determining the solution of the linearized Riemann problem, obtained 
by replacing the exact Jacobian of the inviscid flux by a mean-valued analogue satisfying 
certain constraints. Osher's scheme represents the flux difference as a path integral in 
gate space and then the Jacobian components corresponding to forward and backward waves 
are integrated along a path which is piecewise aligned with the corresponding eigen vectors of 
the Jacobian matrix. The real gas extensions of flux-difference-splitting schemes due to Roe 
and Osher are much more complicated than their perfect gas versions. This is primarily due 
to the necessity of introducing nonphysical auxiliary variables to ensure that the solution pro- 
cedure for the Riemann problem remains noniterative even for real gases. 

3. Convergence acceleration devices 

With a variety of possibilities for the spatial discretization of convective terms based on 
upwind algorithms alone, the techniques for time integration are comparatively limited. 
Time integration techniques can be classified as time-accurate or time-inaccurate. Accu- 
racy and stability are two important aspects of a time-integration scheme and for a time- 
accurate technique both are equally significant whereas for a time-inaccurate technique 
only the latter is relevant. Time-accurate techniques are necessary when the transient 
evolution of the flow field needs to be resolved by the numerical schemes. In many in- 
stances, however, only the steady-state solution of an initial-boundary-value problem is 
sought and time-inaccurate techniques are preferred for their computational efficiency. In 
such formulations, the steady-state solution can be obtained by marching the governing equa- 
tions in time by starting from a suitable set of initial values while imposing the appropriate 
boundary conditions until all the transient terms become negligible. Time-inaccurate tech- 
iuques degrade the time variable, which is primarily responsible for the physical evolution of 
the flow field, to an iteration parameter for convergence acceleration towards steady state. 

3 .1. Implicit time integration techniques 
Time integration techniques could alternately be classified as explicit or implicit. Apart from 	 en- 
d 

minimal requirements of computer memory, explicit marching schemes are een- 
do

wedwith an appealing simplicity and readily lend themselves to vectorization and 
Piima.lielization procedures. However, these schemes are constrained by a local time step 

cel l 	 which is of the order of the smallest time scale that occurs in a computational 
a n -- ng the physical evolution of the flow field. Hence, explicit marching schemes 

are   
the  ?referred for time-accurate computations, where it becomes necessary to constrain 
expitilni. e steps as dictated by the resolution requirements of the flow transients. However, 

cit  schemes do not possess the desired computational efficiency for obtaining 
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steady-state sohitions of Euler and Navier—Stokes equations. Implicit schemes, endow ed 
with superior damping characteristics for solution transients, are preferred for ti me_ 
inaccurate computations. They permit significantly larger time steps compared to ex- 
plicit schemes and thus offer enhanced robustness for steady-state computations. How- 
ever, implementation of implicit schemes requires computationally expensive Jacobian 
matrices, whose construction gets further complicated when it involves upwind discreti- 
zation of convective terms. Upwind schemes with first-order representation of convec- 
tive terms in the implicit operator enhance the diagonal dominance of the resulting 
block matrix system of equations, which can be efficiently solved using approximate 
factorization or relaxation techniques. A variety of these convergence acceleration 
strategies for upwind schemes have been incorporated in industrial computer codes such 
as CFL3D (NASA, Langley), GASP (NASA, Langley), USA (Rockwell International), 
CNS(NASA, Ames) among others, which are used for flow computations involving 
complex aerodynamic configurations. 

As far as implicit upwind schemes are concerned, the Jacobian matrices arising from 
flux-vector-splitting algorithms of Steger—Warming and Van Leer are algebraically and 
computationally simpler than those resulting from flux-difference-splitting algorithms of 
Roe and Osher. However, the algorithms due to Van Leer and Osher yield continuously 
differentiable fluxes which enhance the convergence characteristics of implicit schemes. 
In recent years, hybrid algorithms have been proposed 1 Li 2  which attempt to combine the 
computational efficiency of flux vector splitting with the accuracy of flux-difference- 
splitting schemes. In this category of schemes, AUSM (advection upstream splitting 
method) and HUS (hybrid upwind splitting) are prominent in having achieved remark- 
able success, overcoming some of the deficiencies of existing upwind schemes 11 • 12 . How- 
ever, the development of hybrid schemes has occurred relatively recently and it would be 
premature to draw comprehensive conclusions based on limited computational results. 
Hybridization procedures involving flux-vector-splitting and flux-difference-splitting 
schemes have been explored in the past 13  in an attempt to improve upon the computa- 
tional efficiency of implicit schemes. This is based on the rationale that for implicit time 
integration schemes, the steady-state solutions of Euler and Navier—Stokes equations are 
governed by the explicit operator, whereas the implicit operator is primarily responsible 
for convergence. It would be advantageous to invoke an inconsistent linearization strat- 
egy to select the implicit operator based on a scheme which yields continuously differ- 
entiable fluxes and then the choice of explicit operator would be dictated by the scheme 
which yields the desired steady-state solution. Several possible combinations of explicit 
and implicit operators, based on upwind schemes due to Steger—Warming, Van Leer and 
Roe, have been analysed by Liou and Van Leer 13  for computational performance involv - 
ing Euler and Navier—Stokes equations. 

3.2. Generalized conjugate
-gradient method 

Apart from implicit time integration techniques, a variety of convergence acceleration 
devices with differing complexities can be availed for improving the efficiency of nu- 

merical schemes for steady-state computations. They include generalized conjugate gra- 
dient, multigrid and preconditioning methods among others, that have been tried out Mr 
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un ier and Navier—Stokes equations. The viability of preconditioning techniques coupled 

with 
GmgEs (Generalized Minimum RESidual) algorithm, which is a conjugate gradi- 

etetype iterative procedure, has been demonstrated by Venkatakrishnan w  for com- 
pressible 	computations. A major difficulty with GMRES is that the com- 

pu tat ional nal work per iteration and the overall storage requirements grow linearly with the 

-number of iterations involved in the minimization procedure. Consequently, it is highly 
impractical to execute the full version of the algorithm and it becomes necessary to re- 
sort to restart options, which often results in slow convergence for complex flow prob- 

lems. One of the most efficient and universal techniques available for convergence accelera- 
tion is the multigrid method, which was originally developed for elliptic partial differential 
equations and has been extended to a much more general category of equations by Brandt' s. 

3.3. Multig rid method 

The multigrid method 16  involves the iterative solution of a system of discrete equations 
on a prescribed grid, by repetitive interactions with a hierarchy of coarser grids, which 
exploits the inherent relationships that exist among the discretized governing equations 
on a sequence of grids. Typically, each grid is involved in a two-way interaction process 
that improves accuracy on the next coarser grid by correcting its discretized governing 
equation and additionally it provides corrections to the approximate solution of the next 
finer grid. The principal advantage of multigrid over other acceleration techniques can 
be attributed to its convergence rate being nearly independent of the size of the system 
whose solution is sought. In contrast, the rate of convergence of other acceleration tech- 
niques degrades noticeably as the system size increases and this can be readily observed 
for computations involved in grid refinement studies. Furthermore, the additional stor- 
age requirements necessary for the implementation of multigrid acceleration is minimal 
if the data structure for the sequence of grids can be organized based on a compact repre- 
sentation. The application of multigrid acceleration for compressible Euler and Navier- 
Stokes computations based on upwind schemes is still a subject of considerable research. 

3.4. Preconditioning techniques 
In.  recent years, preconditioning algorithms have been developed for steady-state solu- 
tions of Eater and Navier—Stokes equations" to alleviate the stiffness caused by the dis- 
Panty in characteristic wave speeds of the convective terms. This disparity is pro- 
flounced for stagnation and transonic flow conditions apart form low Mach number flows 
lending towards the incompressible limit. In such situations, a deterioration in conver- 
gence rates of numerical schemes can be observed even when acceleration devices such 

implicit time integration and multigrid techniques are availed". Furthermore, loss of 
accuracy of steady-state solutions has been reported for computations involving low Mach 	incompressible flows based on algorithms developed for compressible fiwzogvi  

si To Overcome the degradation in accuracy and convergence, local preconditioning 
t
echniques have been proposed to reduce the disparity in characteristic wave speeds of 

(mvective terms of Euler and Navier—Stokes equations. The time evolution is incor- 

gvilY seddescribed by the preconditioned governing equations, which may be acceptable 
a  the steady-state solution is unaltered. 
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The present research' s  is directed towards a comprehensive investigation involving 
the flux-vector-splitting algorithms due to Steger—Warming and Van Leer, apart  
the flux-difference-splitting algorithms due to Osher and Roe. Two hybrid algorithms 

AUSM E  and HUS 12 , have also been considered in this investigation' s . The performance' 
of these algorithms has been analysed in a unified framework based on two-dimensional 
Euler and Navier—Stokes computations in subsonic, transonic, supersonic and hypersonic 
flow regimes. Apart from accuracy, the upwind algorithms have been evaluated for their 
robustness and computational efficiency achieved relative to various convergence accel- 
eration devices. These include implicit time integration involving a variety of relaxation 
strategies, multigrid and local preconditioning techniques among others, which have 
been systematically investigated on an individual as well as cumulative basis. The details 
of the investigation can be found in Amaladas 1  and the remaining part of the paper will 
be limited to a selective study from this source. In particular, a direct comparison of 
flux-difference-splitting schemes due to Roe and Osher has not been established ear- 
lier". A comparison of accuracy for these two schemes based on Euler and Navier- 
Stokes computations will be presented here, whereas the issues pertaining to computa- 
tional efficiency can be found in Amaladas ls . A variety of inviscid and viscous com- 
pressible flows, which are well documented in literature, have been computed in a finite- 
volume framework with third-order accuracy attained by incorporating a MUSCL strat- 

egy 19
. 

A comparative evaluation of Roe and Osher schemes involving flow field compu- 
tations in subsonic, transonic, supersonic and hypersonic regimes has been conducted, 
which includes comparisons of lift, drag, skin-friction and heat-transfer coefficients with 
extensively validated computational and experimental results. 

4. Euler computations 

A series of Euler computations were carried out that would clearly indicate the similari- 
ties and reveal the differences between the two flux-difference-splitting schemes that 
were selected for this comparative evaluation. A standard test case involving flow past a 
NACA 0012 airfoil in the subsonic, transonic and supersonic flow regimes has been chosen 

Table I 
Comparison of reference and computed lift and drag coefficients for in- 
viscid flow past NACA 0012 airfoil 

Test case 
parameters 

Reference 
values 

Roe 
scheme 

Other 
scheme 

= 0.63, a = 2.0 0  CL  = 0.3335 CL  = 0.33373 CL = 0.33372 
CD = 0.00003 CD = 0.00017 CD = 0.00017 

/4. = 

= 

M..= 

0.80, a= 1.25 0  

0.85, a= 1.00  

1.20, a= 0.0° 

CL = 0.3632 
CD = 0.0230 

CL  = 0.3793 
CD = 0.05760 

CL= 0.0000 
CD= 0.09600 
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FiG . 1
. Mach contours for inviscid flow over NACA 0012 airfoil based on Roe's scheme. 

to evaluate the 
e relative accuracy of Roe and Osher schemes compared to reference solu- 

the a_ eported in the literature 20 ' 21  . In particular, lift and drag coefficients obtained from 
P2:11Puted solutions form the basis of comparison. Table I contains the four sets of 

gia  ters for which computations were carried out on a 128 x 32 grid for both the 
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schemes in a unified framework. Other entries in the table include the lift and drag co- 
efficients obtained from the computed solutions in addition to the coefficients reported in 
the literature 20'2I  for these cases. 

The flow features corresponding to these four cases are depicted in Fig. I in the  
form of Mach contours obtained from the computed solutions based on Roe's scheme. 
The Mach contours from Osher's scheme are not shown here since they are virtuallY 



44 

0.0  

C) 
 

C 

M = 1.20 a = 0.0° 

40141404 ***ant*** In*** 

iff* 
 

g 

CL-CI  
cgt=6

0000 °D - 95g0 

0 OS 	1 

EVALUATIOIN OF UPWIND SCHEMES 	
381 

tvi = 0.63 a = 2.0°  
-1.2 

 

a = 1.29 

    

-0.8 

6 	 re 
'rap*  

1414. 
41 *, 

* 	 4.101 ***4*,  • 
* 

14 
i 

41  
* 

41 

-0.4 

	

0.4 
	 0.4 

C00.33372 
Ce0.00017 

	

0.8 
	 0.8 

1.2 

-12 

-0.8 

-0.4 

0.4 

0.8 

Q 

1 * * 
* 
* * * ** 
* 

0.4 	0. 	0. 
X/C 

M = 0.85 	CI = 	1.0° 

1.0 

1. 

1.2 4.- 
0.0 

-1.2 

-0.8 

-0.4 

0.0 
0 

0.4 	i 

0.6 

1.2 +- 
0.2 . 

it 

...******•S **10 *• ***a flaps 

****** 

* 

* 

Cta0.37992 
C0=0.05464 

OA 
v /c 

* 

* 

ha' 3. Surface-pressure distributions for inviscid flow over NACA 0012 airfoil based on Osher's scheme. 

owdistinguishable from those in Fig 1. The coefficients of pressure distributions on the 
3 ,er and upper surfaces a the airfoil in each a the four cases are shown in Figs 2 and 

or the two flux -difference-splitting schemes. The first case corresponds to a shock less 
for c. C flow, where an exact solution 22  based on a hodograph method is also available 
edgeumParison. For a NACA 0012 airfoil which has been extended to a sharp trailing 
oxte ct.he  hodograph method yields a lift coefficient CL  = 0.335. In this case the drag 

lent CD"-÷:  0, which is in accordance with the so-called D'Alembert's zero-drag 
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paradox. It may be noted that the lift and drag coefficients obtained from Roe and Osher 
schemes are nearly identical, comparing quite favourably with reference values listed i n  
Table I. The reference drag coefficient is in better agreement with D'Alembert's zero.. 
drag paradox since the reference solutions were computed on a much finer grid than that 
corresponding to the present study. The second and third cases correspond to transonic 
flows with shocks on upper and lower surfaces of the airfoil. In the second case, the  
shock present on the lower surface of the airfoil is extremely weak and is not clearly r e- 
vealed by the Mach contours in Fig. 1. This weak shock is better represented in the co- 
efficient of pressure distributions for the two schemes as shown in Figs 2 and 3. It can be 
observed from these figures that both these schemes are capable of resolving shocks with 
at most two interior zones for two-dimensional transonic flow cases. However, for one- 
dimensional flows, Roe's scheme can represent shocks with zero or one interior zone as 
compared to two for Osher's scheme' s . Unlike Roe's scheme, the flux-difference- 
splitting scheme due to Osher yields continuously differentiable fluxes which contribute 
to the enhanced convergence of implicit schemes. However, this advantage is more than 
offset by the computationally expensive expression for the flux resulting from Osher's 
algorithm. Extensive comparisons of the computational efficiencies of implicit Roe and 
Osher schemes have been carried out by Amaladas". As far as accuracy is concerned, 
these two schemes yield virtually identical results for the lift and drag coefficients as 
well as for the coefficient of pressure distributions for the four cases. 

A prominent failing of Roe's scheme has been observed 23-25  for blunt-body computa- 
tions, where it is possible to obtain a spurious solution in which a protuberance appears 
ahead of the bow shock along the stagnation line. This 'carbuncle phenomenon' is found 
to be more pronounced at higher Mach numbers for a grid which is closely aligned with 

Grid 	 Roe 	 Osher 

FIG. 4. Mach contours for inviscid flow over a blunt-body based on Roe and Osher schemes. 
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hock. The failure of Roe's scheme in this case is attributed to the lack of dissi- 
thet how s 

. on provided by the linear waves, in a direction tangential to the shock, for counter 

act
ing the perturbations carried by the nonlinear waves 25 . It has been conjectured 24  that 

Usher's 
scheme would also be plagued by this carbuncle phenomenon for blunt- 

bed y computations. To characterize this phenomenon for the two flux-difference- 
sPlitting schemes, computations involving supersonic flow past a circular cylinder 

yre carried out. With a free-stream Mach number of 6.0, the grid was adjusted 
l oe's scheme yielded a pronounced carbuncle shock, which is displayed in unti R 
4 in the form of Mach contours. It was found that with the same grid as shown in 

the  figure. Osher's scheme did not exhibit any visible evidence of a carbuncle shock. 
The Mach contours obtained from the computed solutions based on Osher's scheme are 
shown in Fig. 4. However, upon further examination it was found that the solution did 
develop a mild asymmetry but it was confined to a small region in the neighbourhood of 
the stagnation point. It was also observed that further adjustment of the grid to the bow 
shock could not produce any noticeable asymmetry in the solution obtained with Osher's 
scheme. Even though the lack of dissipation at the stagnation point does not have a 
significant influence on the accuracy of the solution in this case, the resulting degradation 
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	Induced Shock 

a 
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Sur face 
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'chematie diagrams of flow field for shock-wave-boundary-layer interaction test cases. 
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in convergence is particularly severe. This has been comprehensively investigated by 
Arnaladas 18 . 

S. Navier-Stokes computations 

A series of Navier—Stokes computations were also carried out for this comparative 
evaluation based on Roe and Osher schemes. Two test cases involving shock-wave- 
tha  naarY-layer interactions were chosen and the corresponding schematic diagrams of 

!_no. w.  field are shown in Fig. 5. The first test case is based on the experiments re- 
rneci by Hakkinen 26 , where an oblique shock wave interacts with a laminar boundary er   

causing it to separate and subsequently reattach, thus creating a separation bubble. 
Mach number upstream of the oblique shock is 2.0 and the corresponding shock 
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angle is 32.58 °. The Reynolds number is 2.96 x 10 5  based on the shock impingement 
distance on the flat plate for an inviscid flow. The surface pressure distribution and the 
skin-friction coefficient obtained from the computed solutions based on Roe and Osher 
schemes are plotted in Fig. 6 along with the experimental data from Hakkinen 26. The filled  
symbols, representing the experimental data for negative values of the skin-friction coeff icient  
in the separated flow region. indicate that their magnitudes could not be measured and have 
been set to zero for convenience. It is observed from Fig. 6 that Roe and Osher schemes yield 
results that are nearly indistinguishable from each other and compare quite well with the ex- 
perimental data for surface-pressure distribution as well as skin-friction coefficient. 

The second test case is based on the experiments reported by Holden and Moselle 
involving hypersonic flow past a corner formed by a flat plate with a ramp of 15° com- 
pression angle. The upstream Mach number is 14.1 and the static temperature of 160R 
is low enough for real-gas effects to be important. The Reynolds number is 7.2 x 10 4 j ft 
and the flow remains fully laminar. The wall temperature is fixed at 535 R. The surface- 
pressure, skin-friction and heat-transfer coefficients obtained from the computed solu- 
tions are plotted in Figs 7 and 8 along with the corrected experimental data provided by 
Dave Rudy of NASA Langley Research Center. The computational and experimental 
data compare very well with each other. It can be observed that the shock formed by the 
ramp of 15° compression angle does not quite separate the flow since negative values of 
skin-friction coefficient are not encountered. However, for 18° compression angle, a 
small region of separated flow occurs and the corresponding comparisons between com- 
putational and experimental data can be found in Amaladas is . 

6. Conclusions 

A systematic evaluation of the flux-difference-splitting schemes due to Roe and Osher 
has been carried out based on Euler and Navier—Stokes computations that were designed 
to compare and contrast the two schemes in a unified framework. Extensively validated 
computational and experimental data reported in literature form the basis for comparison 
of the relative accuracy of the two schemes. Numerical experiments seem to indicate that 
the lack of dissipation at stagnation conditions for blunt-body flows does not result 111 

catastrophic consequences for Osher's scheme as it does in Roe's scheme. For other flow 
computations that were carried out, these two schemes yield virtually identical results. 

References 

1. 

2. 

ROE, P. L. 

STEGER, J. L. AND 

Characteristic-based schemes for the Euler equations, A. Rev. Fluid Ma 
1986, 18, 337-365. 

Flux-vector splitting of the inviscid 	dynamics equations with aPPli ct  
WARMING, R. F. 

gas 
tions to finite difference methods, J. Comput. Phys., 1981, 40, 263-293. 

3. VAN LEER, B. • 	Physics, 
Flux-vector splitting for the Euler equations, Lecture Notes m 	. 

Vol. 170, 1982, Springer-Verlag. 
4. ROE, P. L. Approximate 	Riemann 	solvers, 	parameter 	vectors, 	and difference 

schemes, J. Comput. Phys., 1981. 43, 357-372. 
5. OSHER, S. AND SOLOMON, F. Upwind difference schemes for hyperbolic systems of conservati °11  

laws. Math. Comput., 1982, 38, 339-374. 



9, HARTEN• A. LAX, P. D. AND 

VAN LEER, B. 

10. smou-E" 

11. Lou, M. S. AND SIEFFEN, C. J. 

12. COQUEL. F. AND Liou. M. S. 

EVALUATIO1N OF UPWIND SCHEMES 	
387 

A comparison of finite volume flux-vector splittings for the Euler 
6. ANDERsoNja 	VAN LEER, B. equations, AIAA J., 1986, 24, 1453-1460. 

THOMAS. J . 
 comparison of numerical flux formulas for the Euler and Navier- 

7. VAN LEER. 
B., THOMAS, L.. 
AND NEWSOME, R. W. 	Stokes equations, AIAA paper 87-1104, 1987. 

ROE. --- 

S. 
parniAmE, B. 

13. Lou, M. S. AND VAN LEER, B. 

14. VENKATAKRISHNAN V 

15. BRANDT, A. 

18. RICHARD AMALADAS, J. 

19. VAN LEER, B. 

20. VIVIAND, 

Boltzman type schemes for gasdynamics and the entropy property, SIAM 
J. Nuttier. Anal., 1990, 27, 1405-1421. 

On upstream differencing and Godunov-type schemes for hyperbolic 
conservation laws, SIAM Rev., 1983, 25, 35-61. 

Shock waves and reaction—diffusion equations, 1983, Springer—Verlag. 

A new flux splitting scheme, NASA TM 104404, 1991. 

Stable and low diffusive hybrid upwind splitting methods. In 
Computational Fluid Dynamics,'92, Vol. I, (Ch. Hirsch et al (eds)), 
Elsevier Science Publishers B.V. 

Choice of implicit and explicit operators for the upwind differencing 
method, AIAA Paper 88-0624, 1988. 

Preconditioned conjugate gradient methods for the compressible Navier- 
Stok es equations, AMA J., 1991, 29, 1092-1100. 

Multi-level adaptive solution to boundary value problems, Math. Comput., 
1977, 31, 333-390. 

A multigrid tutorial, 1987, SIAM. 

Review of preconditiong methods for fluid dynamics, Appl. Numer. 
Math., 1993, 12, 257-284. 

Ph.D. Thesis (in preparation), Department of Aerospace Engineering, 
Indian Institute of Science, Bangalore, 1995. 

Towards the ultimate conservative difference scheme V. A second order 
sequel to Godunov's method, J. Comput. Phys., 1979, 32, 101-136. 

Numerical solutions of two-dimensional reference test cases, AGARD 
AR 211 1985, see also Pulliam, T. H. and Barton, J. T. Euler computa- 
tions of AGARD working group 07 Airfoil test cases, AIAA paper 

85-0018, 1985. 

Numerical simulation of compressible Euler flows. Notes on numerical 
fluid dynamics, 26, Vieweg, Braunschweig 1989, see also Proc. 

GAMM Workshop on the Numerical Simulation of Compressible Euler 
flows, INRIA, Rocquencourt, France, 1986. 

16. BRIGGS, W. L. 

17. TURKEL, E. 

21. DERVIEUX, A., VAN LEER, B., 
PERiAux, J. AND RIZZI, A. (EDs) 

22. LOCK, R. C. 

23.
PEERY, K. M. AND IMLAY, S. T. 

24. UN, H. C. 

25. QUIRK, J. J. 

26 

27 

Test cases for numerical methods in two-dimensional transonic flows, 
AGARD Report 575, 1970. 

Blunt-body flow simulations, A1AA Paper 88-2904, 1988. 

Dissipation additions to flux—difference splitting, AIAA Paper 91-1544, 

1991. 

A contribution to the great Riemann solver debate, NASA CR 191409, 

1992. 
KKKINEN R 	r, 

BER 1., 
4-1.1NG, L. a 	 The interaction of an oblique shock wave with a laminar boundary layer, ' — J. ,  kiRE,  

AND ABARBANEL, S. S.NASA Memo 2-28-59W, 1959. 
11°1-DEN,M .  s.  

AND MOSELLE, J. R. Theoretical and experimental studies of the shock wave—boundary layer 
interaction on compression surfaces in hypersonic flow, 1970, ARL 70- 

0002, Aerospace Research Laboratories, Wright-Patterson, AFB, Oh. 




