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Abstract

Issues involved in the comparative evaluation of upwind schemes for Euler and Navier-Stokes equations have
been addressed. Apart from accuracy, these include robustness and computational efficiency attained in the pres-
ence of convergence acceleration devices. A survey of upwind schemes and convergence acceleration devices is
presented. A selective study, based on a comparison of accuracy for Roe and Osher schemes, has been conducted
in 2 unified framework. Computations in subsonic, transonic, supersonic and hypersonic regimes have been car-
ried out and comparisons of lift, drag, skin-friction and heat-transfer coefficients with reference solutions have

been reported.
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l. Introduction

This investigation is motivated by the necessity for a detailed evaluation of numerical
schemes based on upwind algorithms for inviscid and viscous compressible flow. Sig-
nificant developments in computational fluid dynamics (CFD) for Euler and Navier-
Stokes equations have occurred during the past decade. The advances in high-
prformance computers coupled with the evolution of sophisticated algorithms continue
10 provide impetus for the computation of fluid flows with ever-increasing complexity,
- g_fwmetricauy and physically. In spite of all the progress in algorithm development,
many impediments still need to be overcome before CFD techniques can be routinely used
:::i:)l:; d?Sig“ of aerospace vehicles, which require robust, accurate and efﬁcient compu-
“afgeg Complc.x flows. The resolution of flow phenomena to an appropriate extent .for
are mh‘?Lf’f design and off-design parameters 1nvolves computatl_onal time scales Wth.h
Pfl)bll)eml llive even with the high-performance computers available at present. This
thergy hag:ts compounded when the conservation cqua_twns for_mass, momeqtum and
Plex phys; € ltO be supplemented by additional copservatmn equations reprf:sentmg t::om-
amopg Olhz PTocesses, v{hich %ncludc con}pre351ble tu_rbt_xlenice and cherp;lcal r:actéo;l:;
and Navier._;; {hesﬁ Con'mderatlonr: necessitate the op‘nmlzanon of]alg;}rlt nz :Irl cﬁ:uac-
Celeratiop - U ?q“a‘lofls to a high degree. In pa{‘ncular, the role of converg
Omes increasingly important at the cutting edge of CFD research.

Mode _
r ] - -
beey ! lumerical schemes for compressible Euler and Navier-Stokes equations have

Ie - . - * "
lng shgﬁrkably successful in predicting flow fields containing intricate patterns mvc:lv-
% €Xpansions and slip surfaces/vortex sheets. In particular, shock-capturing
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techniques have the inherent ability to predict the locations and strength of flow discop.
tinuities and their interaction without prior knowledge of their presence. These schemeg
can be classified as central or upwind, based on the spatial discretization of convectjye
terms appearing in the governing equations.. The popularity of central difference
schemes in the past could mainly be attributed to the ease with which their implement,.
tion could be carried out. Unfortunately, these schemes require artificial dissipatiog
terms to ensure stability while computing flow fields containing moderate to strong dis.
continuities, which introduces some degree of empiricism, leading to loss of robustnesg.
On the contrary, upwind schemes are naturally dissipative since their construction ip.
volves a more rigorous representation of the associated flow physics.

2. Survey of upwind schemes

Numerical schemes based on upwind algorithms"5 have convincingly demonstrated their
superiority for the computation of inviscid and viscous compressible flow™’. Upwind
schemes can broadly be classified as flux-vector- and flux-difference-splitting schemes.

2.1. Flux-vector-splitting schemes

Flux vector splitting for Euler equations is a consequence of regarding the fluid as an
ensemble of particles, some of them moving forward and the others moving backward.
This forms the basis of splitting the fluxes of mass, momentum and energy into forward
and backward components. Flux vector splitting can be interpreted as an approximate
technique for integrating the collisionless Boltzmann equation® and the resulting nu-
merical schemes are termed Boltzmann-type’. The most prominent upwind schemes,
based on the flux-vector-splitting concept, are due to Steger-Warming® and Van Leer’.
The Steger-Warming splitting exploits the homogeneous property of the inviscid flux
vector to construct the split fluxes for a perfect gas. However, the lack of homogeneity
prevents the straightforward extension of Steger—Warming splitting for real gases. The
nondifferentiability of split fluxes at sonic and stagnation points even for a perfect gas
constitutes a serious deficiency in the Steger-Warming splitting technique. Van Leer
flux vector splitting, developed subsequently based on certain mathematical constraints,
was designed to overcome the limitations and deficiencies of the Steger-Warming split
ting technique. The continuous differentiability of split fluxes, due to its polynomial rep-
resentation in terms of the Mach number, enhances the convergence characteristics of
the Van Leer scheme, resulting in unrivalled superiority for Euler computations. In a_d'
dition, the extension of Van Leer splitting for real gases is straightforward, with an to-
trinsic simplicity not found in many other upwind schemes. Flux-vector-sphtting
schemes have proved to be extremely successful in capturing steady discontinuities 1€
resented by nonlinear waves, which include shocks. On the contrary, these schemes are
not effective in capturing steady discontinuities represented by linear waves which result
in diffusion of contact discontinuities and slip surfaces. For these reasons, flux-vector”
splitting schemes are primarily suited for Euler computations. Navier—Stokes compula-

tions with these schemes result in artificial thickening of shear layers’ unless the cOMP™
tational grid is sufficiently fine.
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Y Fm.d;ﬁ”erence-splitting schemes

- differences-spli“i“g s_,chemes,_ by virtue of tl?eir superior ability to capture steady
i scontinuities correspor_ldmg_ to linear and nonlinear waves, have been favoured for
Navier-Stokes computations in recent years. These schemes are based on noniterative
olution procedure for the linearized analogue of the classical Riemann problem'® and
hence they are referred to as approximate Riemann solvers. The most popular upwind
«chemes, based on ﬂux-filfference-spllt'tlng concept, are due to Roe® and Osher®. Roe’s
cheme involves determining the snlu_tlol} o_f the linearized Riemann problem, obtained
by replacing the exact Jaccrblan of the inviscid flux by a m?an-valued analogue satisfying
certain constraints. Osher’s §cheme represents the flux difference as a path integral in
state space and then the Jacob{an f:orr}ponel}ts corresponding to forward and backward waves
e integrated along a path which 1s piecewise aligned with the corresponding eigenvectors of
ihe Jacobian matrix. The real gas extensions of flux-difference-splitting schemes due to Roe
and Osher are much more complicated than their perfect gas versions. This is primarily due
o the necessity of introducing nonphysical auxiliary variables to ensure that the solution pro-
cedure for the Riemann problem remains noniterative even for real gases.

3. Convergence acceleration devices

With a variety of possibilities for the spatial discretization of convective terms based on
upwind algorithms alone, the techniques for time integration are comparatively limited.
Time integration techniques can be classified as time-accurate or time-inaccurate. Accu-
racy and stability are two important aspects of a time-integration scheme and for a time-
accurate technique both are equally significant whereas for a time-inaccurate technique
only the latter is relevant. Time-accurate techniques are necessary when the transient
evolution of the flow field needs to be resolved by the numerical schemes. In many in-
slances, however, only the steady-state solution of an initial-boundary-value problem is
sought and time-inaccurate techniques are preferred for their computational efficiency. In
S}ith formulations, the steady-state solution can be obtained by marching the governing equa-
lons in time by starting from a suitable set of initial values while imposing the appropriate
b?“ﬂdary conditions until all the transient terms become negligible. Time-inaccurate tech-
‘lques degrade the time variable, which is primarily responsible for the physical evolution of
the flow field, to an iteration parameter for convergence acceleration towards steady state.

L Implicit Itme integration techniques
from m;p,
doweq Wi

Bration techniques could alternately be classified as explicit or implicit. Apart
Imal requirements of computer memory, explicit marching scher{les are en-
parallelizth- an appealing simplicity and readily lend themselj»res to vecltorllzat‘lor; :tzd
limitayj, atlon. pr?cf‘vdums. However, these schemes are constrained b?' a loca tlzntiona;;
cel] uﬁn' Which is of the order of the smallest time scale that occurs in a (;Dfmpu ah o
are pmf;g the PhySical evolution of the flow field. Hence, explicit marching sC ;::-:in
e time S:cd for t_lme-accurate computations, where it becomes necessary to ;c;r; et
Xplici; *PS as dictated by the resolution requirements o‘f the flow transients. ever,

hemes do not possess the desired computational efficiency for obtaining
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steady-state sohutions of Euler and Navier-Stokes equations. Implicit schemes, endowed
with superior damping characteristics for solution transients, are preferred for time.
inaccurate computations. They permit significantly larger time steps compared tq ex-
plicit schemes and thus offer enhanced robustness for steady-state computations. Hoy.
ever, implementation of implicit schemes requires computationally expensive Jacobiap
matrices, whose construction gets further complicated when it involves upwind discret;-
zation of convective terms. Upwind schemes with first-order representation of conveg-
tive terms in the implicit operator enhance the diagonal dominance of the resulting
block matrix system of equations, which can be efficiently solved using approximate
factorization or relaxation techniques. A variety of these convergence acceleration
strategies for upwind schemes have been incorporated in industrial computer codes such
as CFL3D (NASA, Langley), GASP (NASA, Langley), USA (Rockwell International),
CNS(NASA, Ames) among others, which are used for flow computations 1nvolving
complex aerodynamic configurations.

As far as implicit upwind schemes are concerned, the Jacobian matrices arising from
flux-vector-splitting algorithms of Steger—Warming and Van Leer are algebraically and
computationally simpler than those resulting from flux-difference-splitting algorithms of
Roe and Osher. However, the algorithms due to Van Leer and Osher yield continuously
differentiable fluxes which enhance the convergence characteristics of implicit schemes.
In recent years, hybrid algorithms have been proposed’ 12 which attempt to combine the
computational efficiency of flux vector splitting with the accuracy of flux-difference-
splitting schemes. In this category of schemes, AUSM (advection upstream splitting
method) and HUS (hybrid upwind splitting) are prominent in having achieved remark-
able success, overcoming some of the deficiencies of existing upwind schemes'""'*. How-
ever, the development of hybrid schemes has occurred relatively recently and it would be
premature to draw comprehensive conclusions based on limited computational results.
Hybridization procedures involving flux-vector-splitting and flux-difference-splitting
schemes have been explored in the past'’ in an attempt to improve upon the computa-
tional efficiency of implicit schemes. This is based on the rationale that for implicit time
integration schemes, the steady-state solutions of Euler and Navier—Stokes equations aré
governed by the explicit operator, whereas the implicit operator is primarily responsible
for convergence. It would be advantageous to invoke an inconsistent linearization strat-
egy to select the implicit operator based on a scheme which yields continuously differ-
entiable fluxes and then the choice of explicit operator would be dictated by the scheme
which yields the desired steady-state solution. Several possible combinations of explicit
and implicit operators, based on upwind schemes due to Steger—Warming, Van Leer and

Roe, have been analysed by Liou and Van Leer'® for computational performance involv-
ing Euler and Navier-Stokes equations.

3.2. Generalized conjugate-gradient method

Apart from implicit time integration techniques, a variety of convergence acceleration
devices with differing complexities can be availed for improving the efficiency of nu-
rqerical schemes for steady-state computations. They include generalized conjugate gra-
dient, multigrid and preconditioning methods among others, that have been tried ou! for
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uler and Navier—Stok§s equalti?ns. The vi:ability of preconditioning techniques coupled

.» GMRES (Generalized Minimum RESidual) algorithm, which is a conjugate gradi-
wlt-t ype iterative procedure, has been demonstrated by Venkatakrishnan'® for com-
& ssible Navier-Stokes computations. A major difficulty with GMRES is that the com-
pres> 2l work per iteration and the overall storage requirements grow linearly with the
qumber of iterations involved in thf: minimization Procedure. Consequently, it is highly
impractical to execute the_full version of th_e algorithm and it becomes necessary to re-
sort 1o restart options, Wh.lCh often rv:esults In slow convergence for complex flow prob-
lems. One of the most efficient an umvers?l techniques available for convergence accelera-
ion is the multigrid method, which was originally developed for elliptic partial differential

equations and has been extended to a much more general category of equations by Brandt'>.

13. Multigrid method

The multigrid method'® involves the iterative solution of a system of discrete equations
on a prescribed grid, by repetitive interactions with a hierarchy of coarser grids, which
exploits the inherent relationships that exist among the discretized governing equations
on a sequence of grids. Typically, each grid is involved in a two-way interaction process
that improves accuracy on the next coarser grid by correcting its discretized governing
equation and additionally it provides corrections to the approximate solution of the next
finer grid. The principal advantage of multigrid over other acceleration techniques can
be attributed to its convergence rate being nearly independent of the size of the system
whose solution 1s sought. In contrast, the rate of convergence of other acceleration tech-
niques degrades noticeably as the system size increases and this can be readily observed
for computations involved in grid refinement studies. Furthermore, the additional stor-
age requirements necessary for the implementation of multigrid acceleration is minimal
ifthe data structure for the sequence of grids can be organized based on a compact repre-
sentation. The application of multigrid acceleration for compressible Euler and Navier—
Stokes computations based on upwind schemes is still a subject of considerable research.

34, Preconditioning techniques

lflrecem years, preconditioning algorithms have been developed for steady-state solu-
tm:!g OF‘ Euler and Navier-Stokes equations'’ to alleviate the stiffness caused by the dis-
izﬂge:inf“’hafaﬂer%stic wave speeds of the convective terms. This disparity is pro-
tendi lﬁf Stagnathn and transonic flow canditions;. apa'rt form low I\‘/Iach' nurpber flows
gence Eatﬁwards the Incompressible limit. In such situations, a deterioration in convm;
2 implj :S ?f numerical schemes can be observed even wher_l ac::_fe]eranon devices suc :
aCCurac ) ;lmc integration and multigrid techniques are availed . lfurthgrmore? loselz 0
3 H{JO S[E‘?d)’-statc solutions has been reportetfl for computations involving | ;);v
flows, Tgn;ber incompressible flows based on algorithms developed for comgil;tj:ssn‘ne
hiqueg ;ercome the degradation in accuracy and- cor?vergence, l?ca_l prccons leLOdI;l ng
the Convect; ave been proposed to reduce the dlsparlty’ in charac{erlstlc xlva:cn ?s e
teetly descr;iterms of Euler and Navier—Stokes equauops. The t}me evolutio b]
d by the preconditioned governing equations, which may be acceptabie

Provideq
t
he Steady-state solution is unaltered.
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The present research'® is directed towards a compreh‘ensive investigation Involvip
the flux-vector-splitting algorithms due to Steger-Warming and Van Leer, apart from
the flux-difference-splitting algorithms due to Osher and Roe. Two hybrid algorithms
AUSM!! and HUS'?, have also been considered in this investigation'®. The performanc;
of these algorithms has been analysed in a unified framewcfrk based on two-dimensiopy)
Euler and Navier-Stokes computations in subsonic, transonic, supersonic and hypersopic
flow regimes. Apart from accuracy, the upwind algorithms have been evaluated for thej,
robustness and computational efficiency achieved relative to various convergence accel.
eration devices. These include implicit time integration involving a variety of relaxatigp
strategies, multigrid and local preconditioning techniques among others, which haye
been systematically investigated on an individlilaal as well as cumulative basis. The details
of the investigation can be found in Amaladas and the remaining part of the paper wil|
be limited to a selective study from this source. In particular, a direct comparison of
flux-difference-splitting schemes due to Roe and Osher has not been established ear-
lier'>. A comparison of accuracy for these two schemes based on Euler and Navier-
Stokes computations will be presented here, whereas the issues pertaining to computa-
tional efficiency can be found in Amaladas'®. A variety of inviscid and viscous com-
pressible flows, which are well documented in literature, have bef::n computed in a finite-
volume framework with third-order accuracy attained by incorporating a MUSCL strat-
egy'’. A comparative evaluation of Roe and Osher schemes involving flow field compu-
tations in subsonic, transonic, supersonic and hypersonic regimes has been conducted,
which includes comparisons of lift, drag, skin-friction and heat-transfer coefficients with
extensively validated computational and experimental results.

4. Euler computations

A series of Euler computations were carried out that would clearly indicate the similari-
ties and reveal the differences between the two flux-difference-splitting schemes that
were selected for this comparative evaluation. A standard test case involving flow past 2
NACA 0012 airfoil in the subsonic, transonic and supersonic flow regimes has been chosen

Table |

Comparison of refercnce and computed lift and drag coefficients for in-
viscid flow past NACA 0012 airfoil

—

Test case Reference Roe Osher
parameters values scheme scheme
M_=0.63, a=2.0° CL=0.3335 CL.=0.33373 C.=0.33372
Cp = 0.00003 Cp =0.00017 Cp=0.00017
M_=0.80, a=1.25° Ci.=0.3632 CL=0.35552 Cr =0.35495
Cp=0.0230 Cp = 0.02258 Cp =0.02255
M_=085 a=1.0° CL.=0.3793 CL=0.38065 C.=0.37992
Cp=0.05760 Cp = 0.05467 Cp =0.05464
M_=120 a=00° CL = 0.0000 C. = 0.00000 CL = 0.00000
: Cn =0.09600 CD = (0.09592 Cp =0.09590

—

—
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Fig, ;
. Mach contours for inviscid flow over NACA 0012 airfoil based on Roe’s scheme.
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“T$ for which computations were carried out on a 128 X 32 grid for
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FiG. 2. Surface-pressure distributions for inviscid flow over NACA 0012 airfoil based on Roe's scheme.

380
M = 0.63 a = 2.0° ' M = 0.80 a = 1.
-1.2 **‘*,.twtl"nt# ——
] ™ 1 - .
& L “'.O‘
-0.84" ‘*"-r' —0.8 1 K.
] ’* *‘
'* | #'***
- %
™ "I : *J". ‘1:4.
—0.4 - "t,* —0.4 1 £ + s 4
. sxmy ***H i *"'* ***"‘1.
M' “ruy L *u
T K ot *ing, t:*:*"t o A : **l‘t#
= o *“ o . 1 =* #**tth
o 0.0 * iyt S b
¥ .
X
0.4 »
Q.4 |+ ' 1
¥ €,=0.33373 C,=0.35552 !
L Co=0.00017 . ‘t Co=0.02258
C.8 4 :
1-2? | L 1 I 10 1-2010 0'2 OI4 1 Ois OIE ID
0.0 C.2 0.4 / 0.6 0.8 . ; : x/c . :
X/ C
&
M =085 o = 1.0° M = 120 a = 0.0
-1.2 -1.2
1 t##:#:*t*t**“‘"*ﬂ*
a ' 0.8 -
~0:87 *"*'*'* ****y*#l#**
o ¥ «®
":l* t*"f * -
* -0.4 -
ok x -t: » *xﬂtuﬂﬂﬂ""’" :
¥ =3 x4
- P
| * ‘,,-"’ et
e
Oﬂ_ 0.0 "‘: #*‘*l‘lu‘ on 0.0 ****
S :"F
G ¥
0.4 0.4 - *
C =0.38065 1* C,=0.00000
Cy=0.054567 . Cy=0.09592
08 0.8 -
‘. ¥ T T T t-2 T T | L * ' LU
200 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
X/C * K/C

schemes in a unified framework. Other entries in the table include the lift and drag &

. . . : . : in
efficients obtained from the computed solutions in addition to the coefficients reported
the literature’®*' for these cases.

The flow features corresponding to these four cases are depicted in Fig. ] in the

. _ , €.
form of Mach contours obtained from the computed solutions based on Ro€'S s_chﬁﬂ;ly
The Mach contours from Osher’s scheme are not shown here since they are Virtda



EVALUATIOIN OF UPWIND SCHEMES

M _ 0.63 o = 2'0p
_1'2..__...——"-‘
s
[ ]
D,
0.8 ‘t'
7 o
d ",
b ",
s
0.4 “'*‘
P‘. “**" .
[ ¢ o ""*nu;: bae
004 *
$ .
o 13
|
0.4 49
f C,=0.33372
p C,=0.00017
0.8 -
4
3
1-2 T T ; = 1 X | ]
0.0 0.2 0.4 0.6 0.6 =,
K/c
M= 085 a = 1.0°
-12
ttltt#tt*##lttqt#t
PE L * '
-U'E- "“'*. & llttlrttlllt
¥ ‘*‘,.
:"‘ ¢"‘ .
044 + &
z »
l:‘ *
1*
t: ]
G ) -.: ""“t:ﬂ-t
™
v
0.41
T e
e 05484 |
1_2{r :
Oﬂ 0,2 0.1 > 0:6 T o.la 1 -0
¥ /C

381
-1.2 M — 0-80 _ 1'250
t,,..nuuuunt
"
&
-0.8 - *‘,f"
*u"
i oy
@
—041. t"‘x. 'tu
P $xy 1-
5 .
P .
s "
b * .*‘*
Un 0.0 1, -
&
&
0.4 +
Co=0.02255
0.8
B l : - ) T T
0.0 0.2 0.4 / 0.6 0.8 1
X/C
M= 120 a = 0.0°
-1.2
-0.8 -
—0‘4 o
..un#tnn-unM
+=*" e
o 0.0 1 ‘..,o"
() | *'*
K
|
Q.4 4 »
"
. C,=0.00000
I ;=0.09580
0.6 4
T
%99 o2 ' os o6 " 0B 10
M x/c

FiG. 3 :
- Surface-pressyre distributions for inviscid flow over NACA 0012 airfoil based on Osher’s scheme.

i l | ! = . ]
mz:mgumhﬁble from those in Fig 1. The coefficients of pressure dlstrlbutmr}s on the
and upper surfaces of the airfoil in each of the four cases are shown 1n Figs 2 and

3f.;;,,tet

o flux-difference-splitting schemes. The first case corresponds to a shock less

h
m | . .
fqbssslc ﬂ"_‘”! where an exact solution? based on a hodograph method is also aval%a'ble
"Parison. For NACA 0012 airfoil which has been extended to a sharp trailing

coefflCiem

odograph method

yields a lift coefficient Cy
Co=0, which is in accordance with the so-

= 0.335. In this case the drag
called D’Alembert’s zero-drag
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paradox. It may be noted that the lift and drag coefficients obtained from Roe ang Osher
schemes are nearly identical, comparing quite favourably with reference values Jjgieq i
Table I. The reference drag coefficient is in better agreement with D’ Alembery’s zero-
drag paradox since the reference solutions were computed on a much finer grid thap (g,
corresponding to the present study. The second and third cases correspond to transonije
flows with shocks on upper and lower surfaces of the airfoil. In the second case, the
shock present on the lower surface of the airfoil is extremely weak and is not clearly re.
vealed by the Mach contours 1in Fig. 1. This weak shock is better represented in the ¢o-
efficient of pressure distributions for the two schemes as shown in Figs 2 and 3. It cap be
observed from these figures that both these schemes are capable of resolving shocks wig
at most two interior zones for two-dimensional transonic flow cases. However, for ope.
dimensional flows, Roe’s scheme can represent shocks with zero or one interior zone as
compared to two for Osher’s scheme'®. Unlike Roe’s scheme, the flux-difference.
splitting scheme due to Osher yields continuously differentiable fluxes which contribute
to the enhanced convergence of implicit schemes. However, this advantage is more thap
offset by the computationally expensive expression for the flux resulting from Osher’s
algorithm. Extensive comparisons of the computational efficiencies of implicit Roe and
Osher schemes have been carried out by Amaladas'®. As far as accuracy is concerned,
these two schemes yield virtually identical results for the lift and drag coefficients as
well as for the coefficient of pressure distributions for the four cases.

A prominent failing of Roe’s scheme has been observed>?> for blunt-body computa-
tions, where it is possible to obtain a spurious solution 1n which a protuberance appears
ahead of the bow shock along the stagnation line. This ‘carbuncle phenomenon’ is found
to be more pronounced at higher Mach numbers for a grid which is closely aligned with

Gnd - Roe Osher

FiG. 4. Mach contours for inviscid flow over a blunt-body based on Roe and Osher schemes.
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- shock. The failu}*e of Roe’s sc_heme _in this case is attributed to the lack of dissi-

[hfioﬂ provided by the linear waves, in a direction tangential to the shock, for counter
p

the perturbations carried by the nonlinear waves™. It has been conjectured®* that
oeher's scheme would also be Plagued by this carbuncle phenomenon for blunt-
wody computations. To characterize this phenomenon for the two flux-difference-

splitting schemes, cqmputations involving supersonic flow Past a circular cylinder
ere carried out. Wlt_h a free-stream Mach number of 6.0, the grid was adjusted
until Roe’s scheme yielded a pronounced carbuncle shock, which js displayed in
g, 4 in the form of Mach contours. It was found that with the same grid as shown in
thE figure. Osher’s scheme did not exhibit any visible evidence of a carbuncle shock.
The Mach contours obtained from the computed solutions based on Osher’s scheme are
qown in Fig. 4. However, upon further examination it was found that the solution did
develop 2 mild asymmetry but it was confined to a small region in the neighbourhood of
the stagnation point. It was also observed that further adjustment of the grid to the bow
shock could not produce any noticeable asymmetry in the solution obtained with Osher’s
sheme. Even though the lack of dissipation at the stagnation point does not have a

significant influence on the accuracy of the solution in this case, the resulting degradation

acting

Leading edge Shock Induced Shock — — —
]
v" = Contact
Bouhd/ /. 7/ . Sur tace
Ury-loyer Edge Expansion Fan

Matic diagrams of flow field for shock-wave-boundary-layer interaction test cases.
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I:C(:nver%fnce Is particularly severe. This has been comprehensively investigated by
Maladas'®

5. ’
Navier-Stokes computations

A Serieg of

_ Navier-Stokes computations were also carried out for this comparative
Valuation 1

ased on Roe and Osher schemes. Two test cases involving sh_ock-wave—

lhe"daffr"laycr interactions were chosen and the corresponding schematic dliagrams of
’ oW field are shown in Fig. 5. The first test case 1S based on the ex.perlmcnts re

lay;dcby Hakl_‘i“eﬂm, where an oblique shock wave interacts w‘ith a laminar bo];l::;l;?

¢ iﬂausmg It to separate and subsequently reattach, thus creating a separation . k
h number upstream of the oblique shock is 2.0 and the corresponding shoc
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angle is 32.58°. The Reynolds number is 2.96 X 10’ based on the shock impingemep,
distance on the flat plate for an inviscid flow. The surface pressure distributiop and
skin-friction coefficient obtained from the computed solutions based on Rge and OSh:
schemes are plotted in Fig. 6 along with the experimental data from Hakkinen?®. The ﬁne;
symbols, representing the experimental data for negatiw_fe values of the skin-friction Coefficien
in the separated flow region. indicate that their magnitudes could not be measured apg have
been set to zero for convenience. It is observed from Fig. 6 that Roe and Osher schemes yield
results that are nearly indistinguishable from each other and compare quite well with the ey
perimental data for surface-pressure distribution as well as skin-friction coefficient.

The second test case is based on the experiments reported by Holden and Mose]je?
involving hypersonic flow past a corner formed by a flat plate with a ramp of 15° cop.
pression angle. The upstream Mach number is 14.1 and the static temperature of 160z
is low enough for real-gas effects to be important. The Reynolds number is 7.2 x 10°/ 4
and the flow remains fully laminar. The wall temperature is fixed at 535 R. The surface-
pressure, skin-friction and heat-transfer coefficients obtained from the computed solu-
tions are plotted in Figs 7 and 8 along with the corrected experimental data provided by
Dave Rudy of NASA Langley Research Center. The computational and experimental
data compare very well with each other. It can be observed that the shock formed by the
ramp of 15° compression angle does not quite separate the flow since negative values of
skin-friction coefficient are not encountered. However, for 18° compression angle, a
small region of separated flow occurs and the corresponding comparisons between com-
putational and experimental data can be found in Amaladas'®.

6. Conclusions

A systematic evaluation of the flux-difference-splitting schemes due to Roe and Osher
has been carried out based on Euler and Navier-Stokes computations that were designed
to compare and contrast the two schemes in a unified framework. Extensively validated
computational and experimental data reported in literature form the basis for comparison
of the relative accuracy of the two schemes. Numerical experiments seem to indicate th_al
the lack of dissipation at stagnation conditions for blunt-body flows does not result m
catastrophic consequences for Osher’s scheme as it does in Roe’s scheme. For other flo¥
computations that were carried out, these two schemes yield virtually identical results.
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