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4bstract 

nus  wet reviews the work of Prasad, Ravindran and collaborators in the area of shock dynamics. It focuses on 

iby there was a need for a new theory of shock dynamics, and how this theory was developed. It justifies the 
pjopment of the theory, gives some details of how this method can be carried over to a general hyperbolic sys- 

im  Di fixes its attention on the equations of gas dynamics. It also mentions various applications and gives a 
complete bibliography of publications from this group. 
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1. Introduction 

Ileformation and propagation of shocks has been a challenging problem over the last 
twocenturies. The list of investigators who have looked at this problem is most impres- 
stve—Poisson in the early 1800s, Stokes, Riemann, Rankine and Hugoniot in the late 
1800s, to the more recent studies of Lighthill, Whitham, Thomas, Maslov, Hunter, Anile 
indRusso. The problem is one which involves both mathematical concepts for exam- 
pit, weak solutions of partial differential equations, differential geometry andphysical 
laws—entropy increase across shocks, coordinate invariance, etc. The equations of gas 
dynamics have traditionally been used to study shock propagation. However, they are not 
ai:simplest. Though we will always keep gas dynamics as the final goal of our theory. 
Lb  

ic theory will first be illustrated using a simple model equation. 

The shook in itself is an unknown boundary which is both influenced by and influ- en s  
the 

flow 
 behind it. Nonlinear effects are crucial, both geometric effects and the 

eractin with the flow behind. The position of the shock at any given time t is un- 
and 

conditions have to be satisfied across this unknown boundary. In one space 
elision and time, the problem has received a great deal of attention and the solutions 

Iiitb nurither of these--traffic flow, flood waves in long rivers, glacier flow and piston Constant , 
I 	

- wogs . , velccitY—have been obtained. One of the most widely used approxima- 
ch s  the ' aracteristic rule' of Whitham, where one merely transfers the relations Zlloenie  d On a characteristic to the shock. It was found to give far more accurate results , cou ld  

Nsweaa kprox:i 

on 	in a number of cases. However, a 'full analysis of the approxi- Wa , 

kirp 
	mneaviejorncogaympeleted and 'no really satisfactory explanation of this was found .

i 
 . 

git 

, 	pul ses, 
 

Converging 
unbelievably good results in the case of geometrical acoustics 

King th r 	Lonv 
ou 	 ceyrli. ndrical or spherical shocks and for strong shocks propa- 

a fled lay  
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The first development of an approximate geometrical theory for shocks in two- or 
three-dimensional space was with the help of 'rays'. The ray tube approximation in. 
volved considering the propagation of each element of the shock down each elementary 
ray tube as a problem of shock propagation in a tube with solid walls. It was also as- 
sumed that the local Mach number will be a function of the ray tube area. This lead to 
the utopian case, where one could calculate successive positions of a shock without cal- 
culating the flow behind the shock. This was too simple to be true! The rest of this arti- 
cle reports on the work of Prasad, Ravindran and collaborators, who took up the problem 
with the aim to propose a new theory of shock dynamics which would be both mathe- 
matically and physically realistic and correct. 

2. Need for a new theory 

The characteristic rule for shock propagation simplified the problem to such an extent 
that many researchers used it far beyond its region of validity. In this section, we con- 
sider a simple example where the characteristic rule fails. This shows beyond doubt that 
there is a need for a new theory of shock dynamics. 

In a hyperbolic system, the equations can be expressed in characteristic form. This is 
an exact representation. The approximation involved is in replacing the characteristic 
velocity by the shock velocity in the relevant characteristic form of the equation and as- 
suming that it is valid along the shock. The characteristic rule gives completely errone- 
ous results when applied to the equation 

u 2A / r, 
ut  +uux  +  A = v for --n x, t 0, (1) 

where rj > —1, 

Araii(x)= ( 11+1 	, 	 (2) 

and the initial condition 

(ru? \2 

u(x, = 1k n+i ) 
0, 

(3) 

 

otherwise. 

The initial condition has a shock discontinuity at x = 1. A(x) could be treated as an area of 
cross-section which varies with x only. The equation can be put in conservation form as 

1 (u A2) 1  + 
2
_(u2  A2)x  =0, 	 (4) 

giving the shock velocity 

g(t) era U = (ui  + Lc)/ 2, 	 (5) 

where u 1  and u, are the values of u to the left and right of the discontinuity x = X0). 
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Equation (1) can be solved with the help of the characteristic 

patibilitY 	

equation and the corn- 
condition by the pair of ordinary differential equations: 

du 	u2 A' 	dx 
d t 	A 	dt 	 (6) 

The  approximation according to the characteristic rule is that we treat the compati- 
bilitycondition in (6) to be valid on the shock with u replaced by al: 

dui 	u? A' 

dt a  A 
dX 

on — = U. 
dt 

Here, if we choose Ur = 0, 	the shock propagates into an undisturbed medium, 
then we have I/ = Lit /2, which gives 

dt a  

u?A' 

A' 
dX_ ti t  
dt — 2' (7) 

The system (7) can be solved easily using A(x) as in (2) and u 1(0) = 1, X(0) = 1. 

From (7) we can also deduce a general result: u 1A2  = constant, which is the A—M re- 
lation for the problem. This gives the solution for the strength and position of the dis- 
continuity as 

1  
	  • 	 (8) 

14/3 / 	 3 	1 1/3 

( 1  20--tet  2)) 	 ( 1  2042)) 

These expressions are valid only for a small range of values of t, t (2/3)(r/ + 2). As 
I-4(2/3)(q+ 2), both u and X tend to infinity. 

However, the situation is different if we consider the exact form of the equation for 
the shock. The restriction of (1) to the left subdomain can be written as 

1 	u2 A' 
+— u = 	--- • 

2 	2 	A 
Taking the limit of this as we approach the shock from the left subdornain, we get 

dal a  ul (ui.), u?A' 	dX . u1 	 (9) 
dt 	2 	A '  

Ibis diffen f dosed as s 	..., irom 	

I) 

.-7‘ 

term tepre atio n 	

in the pressure of the term —(1/2)ui(ux)i. The system is not 
the  in 	

for ti l  t  
2)1 is an unknown, which is not specified. The presence of the derivative (ursisi mu  

is typical in equations determining shock front positionlc. from  

behiriti . r_sents the effects on the shock of the waves which catch up with the shock l
om 

t  

form of ?: the case discussed here, (u x)i can be evaluated by differentiating the imp ic ti 
setiinn i_m: soluti on  

of (1) and (2). However, the characteristic rule would amount o 
6  ‘11  )1 z 

0. We can solve (1)—(3) to get 
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4t(x+n) 	  

i}2 
0+ 1)( +

2
x

t 11+11111+  (n+1) 2 (x+n-ED 

where x = X(t) is the position of the discontinuity at time t. From this we deduce an ex- 

pression of ux(x, t) in the form 

2u  
(11) x+n+1[ I + 2(x+n)--sffi(n+1)] .  

If this is used in (9), we get the position of the shock 

X(t) = -(n+1)+ 1/ {1 — / 40(il + 1) 2  (s2  + 2s) } , 	 (12) 

where s is the positive real solution of the quartic 

A  4 2 32 	t 3  rt ÷_sa 	 = a 	 (13) 
3 	3 [(n +1)(n + 2)] 3  

The solution u 1 (t) satisfying u 1 (0) = 1 when X(0) = 1 is obtained from the equation 

i x+n+1
33 

 =0. 	 (14) 
n +2 

It is easily verified that u t (t) given by (14) is the same as u(X(t), t) as given by (10) 
when x = X(t). 

For t<<In I, the expressions for X(t), u 1 (t) as given by (12) and (14) agree with X(I), 
u 1 (t) given by (8) up to 0(t 2/n2). If the flow behind were uniform (i.e., n —> 00) then the 
characteristic rule would give an accurate estimate of the shock position for t = 0(1). In 
all other cases, there is a large error involved in choosing the characteristic rule ap- 
proximation on the shock. For 0 < 1 + i << 1 and t = 0(1), the exact value of 
u (2(n 1)/30 112 , whereas the characteristic rule gives u 1/(1-3t/2) 4/3, which is 

completely in error and is defined only up to t — 2/3. (For details see Prasad et al!). 

For problems involving a hyperbolic system of two or more equations, such as gas 
dynamics equations4 , the normal derivative term (corresponding to the term --(1/2)u10 4i1 

in (9)) may be evaluated by the short-wave approximation. The accuracy in the shock 
position will depend on the accuracy with which the normal derivative term has been 
evaluated. 

The characteristic rule is a good approximation when the flow behind the shock is 
uniform at a given time t. When the flow behind the shock is nonuniform, the nonlinear 
effects which catch up with the shock are accounted for poorly by the characteristic rule: 
Although the characteristic rule allows for a simple elegant solution, it must be us e°  
with great caution as its use is justified only for a very restricted class of problems. Un- 
fortunately, its simplicity so fascinates its users that they do not bother to check its va- 
lidity. 
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i. A new 
theory of shock dynamics 

- 	the characteristic rule is not mathematically justified and could give erro- t 
made it necessary to look for a new theory. For this, we turned to the work 

inheo: :rsaincrefseurid 

that 

ts5  and Maslovb, who, for waves in elastic materials and nonviscous gases, 
arefspe: acctiervetliYin,  e,  

derived an infinite system of compatibility conditions along certain curves 
called shock rays. These theories had attracted little attention and there 

work at all. It is, however, these compatibility conditions which pro- i
: 

no follow-UP 
:d se an extremely efficient system of equations to solve shock propagation problems. 
mil  e  efficacy of this method will be illustrated first with the help of a model equation: 

2 ) u  = 
2 	, 

(x, € 91 x 91 4. (15) 

with initial condition 

u(x, 0) = 0(x), t e 91 
	

(16) 

such that the solution is sufficiently smooth except for a single shock curve 

x =X(t), t 
	

(17) 

The solution behind the shock, i.e., x < X(t), is assumed to have a Taylor's series rep- 
resentation: 

cc 
u(x, 0 = 	ui  (0(x — x(0)i 	 (18) 

i=o 

where rt i  are spatial derivatives of u at the shock x = X(t), i = 0, 1, 2, ... . Here 
im,..4 (0_0 u(x, 0 = 4(:). We assume that the state ahead of the shock (i.e., for x > X(0) 

isknown, so that x (l).0  u ( x, t ) = U r  t ( ) is a known function of t. The shock velocity is 
given  by 

dxl 
dt -2-(40 +ur). (19) 

_ 
ubTshee solution behind the shock satisfies the partial differential equation ti t  + uus  = 0. 

Substituting (1 8) in the equation, setting v(t) = ui (t)/i!, i = 1, 2, ... , and equating vari- 
ws Powers of x x0), we get 

duo 	1 , 
dt = 	kuo u r  )vi , 

dvi 	i + 1 	 i 
i +1 1 	i= 1, 2, 3, ... 	 (20) 

dt = ' 2  (uo — ur )v i+1  - -±-- 	v iv i_ j.4.11 

.i=1  
The infi • 

kreati m  nue system of eqns (19) and (20) constitutes the required set of ordinary dif
;  

Ili equations for the determination of the shock position X(t), shock strength uo( ) 
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and the spatial derivatives u(t) i! vi(t), i 1. The initial values of X, /40  and ui  are 
given by the initial data (16) 

X(0) = X 0 , /40 (0) = Ø(X0 — 	u00  

Ili (0)   
dxi 	

rt yip, say, 	 (21) 
i!  x—,x 0-0 

where X0 is the value of x at which 45(x) has the discontinuity. 

If we set v n  = 0 in the (n + 1)th equation in (20), then the first (n + 1) equations 
form a closed system. Let Jr, F40 (t), vi (t), i = 1, 2, 3, ... n be the solution of the truncated 

system of (n + 2) equations 

dY 
dt = 2 070 -Fur) ,  

drio _ 1 
dt 	(140  ur)rit 

chT 	1+1 i +1 	_ 
dt = 	

2 (ffourW +r 	V  f lit.— j+1 1  2 
i=1 

(22) 

n 	(23) 

n + v .v , 
dt 	2 j+1, 

j= 1  

(24) 

with initial conditions as in (21): 

70 =x0 , 170M= uoot yin =viol i = 1, 2, ...,n. 	 (25) 

Since the right-hand side of eqns (22)—(24) are Lipschitz-continuous at any point in 
(3/0 ,1-40 ,c1 ,... fin ) space, a unique solution of (22)—(25) exists on a suitable interval 
(0, T). Using this, the function u(x, 0 can be constructed as follows: 

(x, 0 = 	
(t) 	(X — jer  (01 , X < Y(0, (26) ii  1=1 

0(x), x > )7(t). 

This is an approximate solution of the conservation law (15) with (16) in the follow- 
ing sense: on the approximate shock path x = 7(t), the jump condition (22) is satisfied. 
In the region behind the approximate shock, i.e., x < 7(0, the substitution of Rix, 0 in 

the conservation law (15) leaves a remainder containing a factor (x 2-(t))n on the left. - 
hand side. This is small near x = 7(1). The accuracy with which the conservation law Is 
satisfied in a neighborhood of the shock increases as n increases. 

For numerical computation, two special cases are considered. 
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01(x) 17- 

0,  

523 

X E (-11, 1) , - 
elsewhere. 

Case 2. 

x<0, 02(x)= 
0, 	elsewhere. 

For 44A X0  = I and v40) = o for i 
3. Without loss of generality for 02(x), we can seta .I p= 1 because by a change of variables 

x = fit, t 	13I = -- 
a U = 

this can be obtained. Here Xo  = 0 and rio(0)=t(0)t1 for all i 1. 

The exact position of the shock in this simple case can be obtained from the equation 

t0 2 © +2.1.  0(p) cip = 0, xo  

where =X-uot. In Case 1 we have 

and in Case 2 

	 =0 77+1 	3 	(1+77) 2  (29) 

(28) 

'Inch give the 
shock: 

teg + 2(e{ -1) = 0, 	 (30) 

value of e. This in turn helps to evaluate the other quantities on the 

uo = 	=  og)  

1+ tr© 

Otf© Om©  
a. 15 

v2  _ 	 1,3 
2[1+ tr(M3 	6[1+ tOWT4  2[1+ tr(01 

ladsoon. In Case 1, where 0i(t.) = 0 for i> 3, we have 

(31) 

. 

-400 for all i and 111111. The 
initial data in Case 1 

1 .  3-5.7 (2i - 3)[0"(4)ji -lt 1-2  

t0g)12i-1  

gives a value for comparison with the approximate re- 
are nonzero only in the interval En, 1), with a shock at 

(32) 
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Table 1 

Ti  =4.5. 

t = 1.0 

U Error (%) Error (%) 

t = 10.0 

U Error (%) 

Exact 0.47390445 - 0.24232081 - 0.17572092 - 

n = 1 0.4421360 -5.6 0.21821789 -9.9 0.15617376 -11.0 
n = 2 0.47171239 -0.46 0.23787367 -1.8 0.17140803 -2.5 

n = 3 0.47366942 -0.50x 10-1  0.24120493 -0.46 0.17440411 

n = 5 0.47390183 -0.56 x 10-3  0.24221465 -0.40x 10-1  0.17554484 -0.10 
n = 8 0.47390560 0.24 x 1W 3  0.24230783 -0.12 x 10-2  0.17570887 -0.68 x 102 

n = 25 0.47390561 0.24 x 10-3  0.24231136 0.24 x 10-3  0.17572129 0.22 x 10-3  

x = 1. As n -* 00, the disturbance behind the shock approaches a constant state u = 1. 
For q close to -1, 0 increases very rapidly from 0 to 1 over a very short distance, so that 
the spatial derivatives of u play an important role in this case. For numerical computa- 
tion, we have chosen ri = - 0.5. The initial data in Case 2 are not of compact support. 

Tables 1 and II give the values of u for initial values corresponding to Cases 1 and 2 
at t = 1.0, 5.0 and 10, n = k denotes that v k.g. 1  is set equal to 0 and k + 2 eqns (22)424) 
with (25) are considered. For n = 1 the error in u is sizeable, but for n = 2 the error 
drops rapidly (< 1% in Case 2), while for n = 3 it is uniformly very small, as for 
n = 5, 8, 25 as well. Computation was done for Case 2 with a = 1, fi = 1. 

For the equation ut  + uu, = 0, with initial condition having a single jump discontinu- 
ity, the shock position X(t), shock strength u0(t) and the spatial derivatives at the shock 
u(t) are given by an infinite set of ordinary differential equations. If this set is truncated 
at any stage, involving five or more equations, this closed system of equations can be 
easily integrated numerically to give very accurate results. This is in sharp contrast to 
the characteristic rule, where only two equations are considered and the error involved 
could be extremely large. 

For the accuracy of this theory for small t and for very large t, see Ravindran and 
Prasad7  and Prasad and Ravindran g . 

Table 11 
0=e,x<0; 0=0,flO 	 _- 

tar. 1.0 	 t=5.0 	 t=10.0 

U 
	

Error (%) 	u 
	

Error (%) 
	

u 	Error (%) 

Exact 
n = 1 
P1 = 2 

0.73205081 
0.70710678 
0.73372900 

- 
-3.4 

0.23 

0.46332497 
0.40824829 
0.46777169 

- 
-12 

0.96 

0.35825757 
0.30151134 
0.36157950 

- 

-16 
0.93 

n = 3 0.73200502 -0.63 x 10-2  0.46355666 0.50 x 10-1  0.35872978 -0.13 _2  
n=5 0.73205096 0.26 x 10 -4  0.46331988 -0.11 x 10-2  0.35825020 -0.21 x 10.4  
n = 8 0.73205081 0 0.46332497 0 0.35825765 0.22 x 10 
n=25 0.73205081 0 0.46332496 0 0.35825757 0 
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4.  The  equations of gas dynamics 

a  m 

the 

 

odd l 

ew 

conservation law, by truncating the infinite system of compatibility condi- 

!

theory of shock dynamics is developed. The derivation is mathematically 
Is, 	n 

ur yinc ing and gives extremely good results. This theory gives not only the shock 

cafffit
ooth and shock position but also a few spatial derivatives behind the shock so that we 
construct the unknown solution at any time by using a finite Taylor series. 

one could now carry over the theory to the equations of gas dynamics in two space 
dimensions and time — (x, y, 1). Derivation of the compatibility conditions is extremely 

complex and requires not only very careful mathematical calculations but also utmost care in 
thechange of the order of certain differential operators, since they do not commute. 

We consider the propagation of a shock front in a polytropic gas with y as the con- 
ga' ratio of the specific heats. For simplicity, we assume that the motion is two- 
dimensional ,  that there exists only one smooth shock manifold 12 in space—time (91 3 ) and 
that the fluid velocity q = (u, v), pressure p and density p are Cs(913) functions except for 
adiscontinuity of the first kind on D. We further assume that the shock front propagates 
into a gas in a uniform state and at rest ahead of the shock, i.e., q a = (0, 0), p a = Po and 
pa  po, where Po  and Po  are constants. The state behind the shock manifold D is denoted 
by qb  (4, vb), p b  and pb. These functions, defined only in the domain behind the shock, 
are then extended as C" functions on the whole of W. The extended functions qb , Pb  and 
pre nonunique in the domain ahead of the shock. 

Let S(x,y, t) = 0 denote the equation of the shock surface 	in space—time. For a 
shuck in an ideal gas with constant specific heats, it has been shown 9i 10  that the function 
Scan be obtained by solving any one of a number of shock-manifold partial differential 
equations (SME), one of which is 

• 	(33) 

C2 = Ph Pb P0  (34) 
Po Pb Po  

itherePb and pb  are in C(913). 
We define a function 

= 
Pb Po  e  CO3 (90) 	 (35) 

Po 
%Iliirae uvarlueon  12 represents the shock strength. A shock front denoted by D, at any time 

rtve in the  (xl )1 ) plane and is given by S(x, y, t) = 0, in which t appears as a p 
a_  

rotter:'Re Rankine--Hugoniot conditions give the following relations on .0: 

1/2 
Clo = ao( 

2(1+ 	 (36) 
2 — (y — 1)p

) 

 
12 
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2+( y +1)11  
Pb IQ = P° 2 — (Y — nau  12 	

(37) 

(38) — 	(N17 N2) ' PC  (ub7 vOlf2  — 	ii 

where 62,; = yp olp, and (N 1 , N2 ) = (cos 0, sin e) is the unit normal to the shock front ii,. 
The relations (36)—(38) are not valid in 9i 3  but only on £2. The SME is valid in 9i 3  and 
hence it is possible to define 0 in 91 3  with the help of the relation 

(SS) x ? S y) 
(N1, N2) = 	 (39) 

(S,? +53) 1 /2  .  

The derivative 

d _ ± Nic  1 + N2c  ± 	
(40) 

dt — dt 	 dy  

represents the time rate of change as we move along a characteristic curve of the eqn 
(33). When C is evaluated on 12, then this is the time rate of change along a shock ray 
and is an interior derivative in £2. We denote the normal and the tangential derivatives 
for the shock front by alaN , alai-, that is 

d 
= N -S)---+N ± —

d 
= Nall-- Ni 	 (41) 

dN 	I  dx 	2 dy ,  	. dx 	i dy  - 

We also denote the normal and tangential components of the fluid velocity by A and 

B, respectively; then 

Al n  -  IIC  
-- - 1+ p s2  

and 

Bln  = O. 

We write the equations of conservation of mass, 
shock as follows (after dropping the subscript b): 

(42) 

(43) 

momentum and energy behind the 

_dp ± (A  _ c,)_
dN
dp +pHdA A  de ± Bdp + P dB de 	 (44) 

dN dr 	der Tr + B -Tv =01  dr  

dA 
+ (A — C)_

dN
dA  + _1 -

dN
dp + B[

-
d
d
e
r + (A — C) dN 

Le i  dA . 
1

ail _ n 	(45) 
dt 	 p 	 r  d'r ± "7 7 I - '' 

de B 	d AB  el 
dt + (A - C) = 0, 	(46) 
— 	

de 	
A )dN pA 

(A - CI)  dB 1 dp 1 [dB 	d 
dN 	 - 

dT —A- + B (yr, - 
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dP A-C)E1L- 111-ed  +(A -C)---an+ Bid!) 
 p 
 Y P aP 0 dt ÷ ( 	dN p dt 	dN 	
- rd =  ' 	(47) 

In each of the above equations, either the quantity in the square bracket or its coeffi- 
cient vanishes on 12 (awaT = 0 since B = 0 on 12 and amT is an interior derivative). 
Equations (44), (45) and (47) on D form a system of equations in the unknowns p, A and 
p not in volving B. From these equations, the quantities aNaN and ap/aN can be elimi- 
nated to give on 12 

dp --p(A - C) -
dA + {(A – c)2 ...1111dP 	dp 

dt 	dt 	 dN 	-02 	-- P dt 4-  " - 0 -4 --  pA(A 	t° Tr .  – a (48) 

in (48) C, p, A, p on ,C2 are known functions of p (see (35)–(38)) and the derivative 
did: is an interior derivative in Q, so that (35) to (38) can be used to determine dp/dt and 
dA/dt in terms of p and dp/dt: 

	

LI/ _ 	47 	dp 
dt 

12 - P°  { 2  - CY - 04142 dt  01 	

(49) 

	

dA . c 	4 + 3p –  yp 	cjdt . 
dt .0 	2(1p) 2  p) 2  (2 – (y –1)p) dt in' 	

(50) 

where we have used the fact that N? + Ni = 1. This leads to the first compatibility condi- 
tion oni2 along the shock rays: 

 

1 dp 	Q[2  . 0 (y +1)  dp] o 	f-2 n 	, T dt = P  7 dT 1+p (9N 
(51) 

where 

Q = 2 – p(y -- 1), S = 8 ± 5/2 _ 3py  + ta (72 - D.  (52) 

The characteristic equations for the shock-manifold partial differential eqn (33) give 9  
the shock ray equations: 	

a 

dY  = 1V1C dt 	- 
(53) 

and 

de _ dC 	 (54) 
dt - dT • 

011 Q, eqn (54) reduces to 

1 de ._ 	y+1 	dp 
C dt - 2Q(1 + p) cil" * 

(55) 

•tiEquations (53) (restricted to (2), (55) and (51) form a coupled system of four equa- 
ons for  the position (x, y) of the shock, the inclination e of the normal to the shock and 
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the shock strength p. Since amr is an interior derivative on (2, ap/aT and a (NT are 
known on 12 if p and 0 are known on Q. The system, however, is not closed due to the 

presence of the normal derivative ap/aN in (51). The presence of such a normal deriva- 
tive rendering the system incomplete is typical of the compatibility conditions on 12 7 . 

To obtain the second compatibility condition, the normal derivative of each of the 
equations of mass, momentum and energy is considered. The terms are then rearranged 
to give the following three equations on 12 (corresponding to eqns (44), (45), (47) in the 
first compatibility condition): 

dp)(A 
	

d2 A 	d2 A n  d dB) A  d ( de) 

	

d*31‘ ) -C)  dN 2+  dN 2+1.1 	) P  drdN 

1 BA dejdp (d0 .0 dB)dp 
2-- A — — ± --C — 
dN dN dt dissi dN dr 

+2  dB .0 ( .0)
2 A rde)2  BA Be A  

P  dN dN PA (dN 	Pf\dT ) 	dN dr ti  on 
12, 	(56) 

d (dA ) 	d2 A  + 1 d2 p  +(do _ c, de dB)dA (924 
dt 43/1/ 	dN 2  p dN 2 	dt 	dN_

L 
 dN ) dr 1- dN 

dB (de 
+(A -C)

de) 1 dp  (dA 
+(A-C) ' A  7T-v )=0 on 12, 	(57) 

dNdt 	dN p dN dt 

.±(dpLyp 	dp
) d2P YP  d2P)+

(d0 eac 
dt dN p d4dN 	dN 2  p dN 2 	dt 	dN 

x ( dp 	dp) + dA dp yp dp) ±  dB (dp s yp dp) 
p dT dN dN p dN ) dN 4f3T p d 

[ 1 dp 	p dpirdp 	dp _ 
0 on 12. 	 (58) 

-Y L-o dN p2 	L-dt " C)  W ./■71 

The fourth equation, corresponding to (46) in the first compatibility condition, is of 
interest only for evaluating the third compatibility condition. The expressions for amaN, 
affiaN and 3p/3N on 12 can be obtained in terms of p, afilaT, aktiaN, actin-  and a ems 
from (45)-(47) and (51) and (55). These expressions are then substituted for all interior 
derivatives in eqns (56)-(58). The terms a 2A/aN2  and a2p/aN2  are eliminated from the 

three eqns (56)-(58) to give the following equation:  

	

1 d dp 	1 p(1 y)  d 2p ( dp ) 2  r  dp de 

	

-C- 717 dN 	c i  2(1+ p)3  dN211-'2U9N  
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c 7  diti de  
drr dNi 	 (59) 

where the coefficients 	12, - 	17 are known functions of y and p. These coefficients 
are expressed in terms of 8 1 , 82 , •.•, 36  and pi, th, .•., P6 which appear in the equations 

d dN 	13°  
d (dp r_ 	[ n  d dp cn  dpj2 

P1  dt dN 	P2 (dN 

and 

de  )2 

-}-C 414,71" 
2 	 2 dp 	p + cp5 	-f- C/361—d-yd

,) 1 on (2 (60) 

	

1 d (diti 	d dp) rs  dp) 2 res  dp. de 

	

C -cd N 	I  dqdbi 	2 (91‘1 ±‘-‘'3  dN der 

+C85  
eIrt 

d 2p , (12  
6 + L S  Tf on II (61) 

The expressions for all these coefficients are known functions of y and it and are 
available in Ravindran and Prasad 11 . 

We define a quantity pi 	= 1, 2, 3, ...) by 

/tli = E 
r+s=i 

iCrNiN1 
dxrdys} .  

(62)  

Obviously, il l  = apiaN and it is easy to verify that 

d 2p  dp 
dN2 aT 

dO 
dN = 142 

The second compatibility condition (59) finally becomes 

,1 dill 	I [ p o  y) 	
), 	de 

C dr 11 2(1+ ;2) 3/12  ± Cill f +1' 3/11—di 

+4) 2 

	
d 2 1U 
	2 

on 12. 
	 (63) 

anceihe first compatibility condition (43) was originally incomplete due to the appear- 

Illov-i°f e and  aPlaN = III on the right-hand side. The shock ray equations partially re- 
tinn ecla  the incompleteness by providing the equation (55) for 19. The search for an equa- 
" for Pi led to the second compatibility condition (63), which is also incomplete due 

rn  dp de 
%--P3 

 
3N dT  
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to the presence of p 2 . The search for an equation for p 2  leads to the third compatibility 

condition 5  containing p3  and the process could continue, leading to an infinite system of 
compatibility conditions. 

S. General approach 

In this approach, we use the theory of 'singular surfaces' to study the propagation of 
discontinuities in general. The theory is based on a simple idea. From the governing 
system of equations, compatibility conditions are derived along singular surfaces. This 
involves a detailed study of 

1. geometrical jump conditions associated with the surface, 

2. kinetimatical conditions involving a specially defined time derivative, and 

3. an infinite system of dynamical compatibility conditions. 

This technique is based on the theory of moving singular surfaces and the theory of 
Grinfel'd 5 . Consider a moving surface At) defined by equations x i  = 1(4', t), where (i) 
is a fixed curvilinear coordinate system in Euclidean space and 	are the -surface coor- 
dinates (Latin indices take the rules 1, 2, 3 and Greek 1, 2). The term defined by 

x
i

- = 
dxi (4, 0  

(64) 
d4a 

for a fixed a gives the components of a vector tangent to the surface 1(t) along the di- 
rection of 4a . 

Given a function F, which is a function of spatial coordinates x i  and time t such that 

on either side of the moving surface 1(0, 	t) and its derivatives are sufficiently 
smooth; then the jump in the covariant derivatives of F can be obtained in terms of the 

normal derivatives: 

	

[Fi r = Ai ni  + 240.04 , 	 (65) 

(66) [ 	=F.-] 	A 2 n.n • + Aa  (n - x.4  + n .xta)+ Aafixice.  x -13 '  . /Y 	1 	 ./- 	J I. 	 J.  

where [ 14-  denotes the jump across 1(f): [G] = G+ 	ni  are the components of a unit 

vector normal to the surface, b 	xtani  are the components of the symmetric second 

fundamental form of the surface E(t), and 

Ao  a [Fr, Ai  az [Fjrni, A2 .-[Fpijrn inj,  

Aa  iti;a  + kief3.  Ao;fi, Aas Ao;ap — Albas . 

Using Grinfei'd's formula, jumps in partial derivatives with respect to time can also 
be expressed in terms of special time derivatives of normal derivatives: 
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rew-r=_Alc+ a
dt 	 Aoy 	 (67) 

I [ddtf:i  = ni (–CA 2 +—:/41 + Aocr; C;„)+xf!(–Cil i  +-8  -A0  

	

at ) a ' 	(68) 

where C is the normal surface velocity and 

8F (X(, t), 	dF (x,  
St 	a 	Cnk FA!' . 

Using these expressions, if a smooth shock manifold 1(0 propagates in a polytropic 
oas, then jumps of the gas-dynamic equations across 1(t) are considered. This, on using 
the geometric and kinematical jump conditions, gives the first set of compatibility con- 
ditions. To obtain the (N + 1)th set, N = 1, 2, 3, ... , we differentiate the gas-dynamic 
equations with respect to 	xiti and convolute with nit 	. An infinite system of 
compatibility conditions can thus be obtained. The first two equations of this system are 
precisely those mentioned in the previous section. For each N 1 suitably defined Nth 
derivatives of density, velocity and pressure can be expressed as linear functions of a 
scalar flp,44, t) and nonlinear functions of the scalars 110(4, I), 	, 17N_ 1 (4, t) and their 
derivatives with respect to surface coordinates. Each of these compatibility conditions 
can be suitably combined to give a single equivalent equation in the scalars //,, 
i=0,1, 2, 	. The first two of these are 

5 

	

—St no = Kont gA2n1 	 (69) 

8 	 . a 	, 
(70) —11 =Kn n a+K 12 2 +K n + K r-q+K,a,+Kon0;a  . -42n29 st  t 	os,a o;  . 	21 	311 	4 

where Ki,i = 0,1,...,6, and g, 2.2 are functions of 110  only and R = kff,122  = boor . The 

terms on the left-hand side, namely, 517015t and 801 /8t are the rate of change of 110  and 

lib respectively, as we move along the normal to the surface at). By a suitable choice of 

"surface coordinate system, for fixed r, xi  = xi  (4, 0 is a curve normal to the succes- 

sive positions of the front, and for scalars 171 

8 
---17.=—

d
17• i= 0 1 2 ... 

St 	a 	1, 	 7 9 

2,s 

 

the case of the new theory of shock dynamics, the infinite system of equations 
"uiscalarbestiriuncated and a closed system of partial differential equations obtained for the 

i 5N. Details of this approach can be found in Lazarev etal. 

APPlications of the theory 
(4iilLitazbarev 	

have used the new theory of shock dynamics to study the al.13 	 flow pro- 

Y 

a 

Piston starting with a nonzero positive velocity and nonzero acceleration. The 
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flow ahead of the piston consists of two regions: region I consisting of a constant state 
bounded by t = 0 and the shock path, and region H bounded by the shock path and the 
piston path. Comparing the results obtained by the new theory of shock dynamics in the 
general approach with a finite difference scheme, they observed that at the shock front 
there is very good agreement between the two, but there is some deviation of flow behind 
the shock. The finite difference scheme, however, gives good and stable results only 
when the perturbation from the uniform flow is small. It fails in the case of large accel- 
eration of the piston and gives large errors for the decelerating piston. This method also 
requires complex grid refinement for large times. 

On the other hand, the new theory of shock dynamics in the general approach is effi- 
cient and accurate in all cases up to an intermediate time range (t not too large) both for 
large accelerations and large decelerations of the piston. Besides, it is far more economi- 
cal than the finite difference method with regard to computational time. 

(ii) Kevlahan 14  studied the weak shock problem for a decaying N-wave and expand- 
ing cylindrical shock wave, using the new theory of shock dynamics. For the plane shock 
with an N-wave profile propagating into a fluid at rest, he showed that the theory pre- 
dicts that the slope of the N-wave decreases like C 1  for large times, the shock strength 
decreases as r 1/2  and the width of the N-wave increase as t 1/2 . These results agree with 
those obtained by Courant and Friedrichs 15  and Whitham l . 

For the expanding cylindrical shock wave, Kevlahan 14  showed that in the weak-shock 
approximation, the strength of the shock decays as t-314  while the width of the wave be- 
hind the shock increases as 1 114 , in agreement with the earlier findings of Landau 16 . 

(iii) Kevlahan 14  considered the challenging problem of an initially straight shock 
propagating into a steady sinusoidal velocity field, using the new theory of shock dynam- 
ics. In this case, the shock rays are no longer straight lines as in (ii). The nonuniformity 
of the upstream flow eventually causes the shock to focus and form two shock—shocks 
(discontinuities in shock strength) separated by a flat shock disk. The shock rays are 
curved and the weak-shock fails, indicating infinite shock strength at the focus. 

In comparison with another purely numerical scheme, the new theory of shock dy- 

namics up to second order gave remarkably good agreement even after the formation of 
shock—shocks. It thus stood the severe test of predicting correctly the shock—shock con- 
figuration. It can also be used to predict whether two shock—shocks will move towards 
each other or apart. 

Germain and Guiraud n  claimed that the presence of viscosity is a singular perturba- 

tion to the Euler equations and must always be included in the description of curved 
shocks. This is equivalent to saying that the thickness of curved shocks may never 
be neglected in deriving equations governing its propagation. Kevlahan has shown tha t  
the new theory of shock dynamics describes the shock—shock phenomenon accurately 
where the curvature is infinite at the kink, although it assumes that the shock strength is 
negligible. 
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7, Conclusions 

The 
new  theory of shock dynamics provides an efficient, simple and, abinc all, reliable 

met h od for studying the propagation of shocks in fluid media. With the help of a model 

eq

'aim, the theory was tested in a number of cases where the exact solutions are avail- 

ahl e . The results are incredibly good. In the case of fluid-dynamic equations, an infinite 

„tern of compatibility conditions which are valid on the shock front can be derived. By 
suitably truncating the system, one obtains a closed system involving the flow variables 
and their derivatives up to any desired order. Using the general approach, 

Ofit obtains at 
each order a single equation in a scalar quantity, from which the flow variables and their 
derivatives behind the shock can be calculated. 

The shock equations cannot be solved exactly, except in a few simple cases. In the 
case of a plane N-wave weak shock and an expanding cylindrical weak shock, the ana- 
lytical solution of the shock equations compare exceedingly well with the known solu- 
tions. The numerical solution of the shock equations was checked against a powerful 
numerical flow solver for the case of an initially plane shock propagating into a sinusoi- 
dal shear flow. The agreement was 'excellent', even at the time of focus when shock- 
shocks develop. The numerical flow solver actually resolves the shock structure, while 
the shock equations assume that the shock is discontinuous. The good agreement be- 
tween the two indicates that one may neglect shock thickness, even in the case of curved 
shocks. 

The new theory of shock dynamics holds a lot of promise for further theoretical and 
numerical work. For the reader interested in general reading and/or further details of the 
topics discussed here, a number of references 18-32  are given at the end of the reference 
list. 
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