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This p2per reviews the work of Prasad, Ravindran and co_llaboralors in the area of shock dynamics. It focuses on
siy there was need for a new theory of. shock dynar_mcs, and how this theory was developed. It justifies the
grelopment of the theory, gives some d;ta:ls of how this method can be carried over to 2 general hyperbolic sys-
o and fixes its attention on the equations of gas dynamics. It also mentions various applications and gives a
waplete bibliography of publications from this group.
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l. Introduction

The formation and propagation of shocks has been a challenging problem over the last
wocenturies. The list of investigators who have looked at this problem is most impres-
we—Poisson in the early 1800s, Stokes, Riemann, Rankine and Hugoniot in the late
18005, to the more recent studies of Lighthill, Whitham, Thomas, Maslov, Hunter, Anile
#d Russo, The problem is one which involves both mathematical concepts—ifor exam-
ﬂi weak soluti'ons of partial differential equations, differential geometry—and physical

r—%ntropy increase across shocks, coordinate invariance, etc. The equations of gas
ifi?;‘-‘j:;?\*; traditionally. been used to study shock propagation. However, they are not
lhebasil:: th. hmfgh we wﬂ.l always keep gas dynamics as the ﬁr?al goal of our theory,

cory will first be illustrated using a simple model equation.

The shock ip

0 the o, b;l:§elf %s an unknown boundary which is both inﬂuenFed by and influ-
Meraction with 1hmd " Nol}llnear effects are crucial, both geometric efﬁj:cts ar:nd the
"0 ang cnnd't«e flow behind. The position of the shock at any given time / is un-
tmengioy, and t-l 1ons have to be satisfied across this unknown bo%mdary. In one space
ufa“llmber of ;hme, the problem has received a great deal of attention and the SOIUFIOI‘IS
‘ ese—traffic flow, flood waves in long rivers, glacier flow and piston
"o i the hEIOCHHaVC been obtained. One of the most widely used approxima-
lhalhuld nn: T,rac{eristic rule’ of Whitham, where one merely transfers the relations
O eoyy ) dra?teri?’tic to the shock. It was found to give far more accurate resulFs
'M}.w Was nen:magme In a number of cases. However, a ‘full analysis (.)f the appronfll-
Els “Ppmxima;:, completed and ‘no really satisfactory explanation of thls_ was foun? :
veak N gave unbelievably good results in the case of geometrical acoustics

. Pulse ; ]
Hng throy hs, “onverging cylindrical or spherical shocks and for strong shocks propa
g 3 Stratified layer.

W
.“h cﬂﬂSl&l’lt v
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The first development of an approximate geometrical theory for shocks in two- o
three-dimensional space was with the help of ‘rays’. The ray tube approximation ip-
volved considering the propagation of each element of the shock down each elementary
ray tube as a problem of shock propagation in a tube with solid walls. It was also as-
sumed that the local Mach number will be a function of the ray tube area. This lead (o
the utopian case, where one could calculate successive positions of a shock without cal-
culating the flow behind the shock. This was too simple to be true! The rest of this arti-
cle reports on the work of Prasad, Ravindran and collaborators, who took up the problem
with the aim to propose a new theory of shock dynamics which would be both mathe-
matically and physically realistic and correct.

2. Need for a new theory

The characteristic rule for shock propagation simplified the problem to such an extent
that many researchers used it far beyond its region of validity. In this section, we con-
sider a simple example where the characteristic rule fails. This shows beyond doubt that
there is a need for a new theory of shock dynamics.

In a hyperbolic system, the equations can be expressed in characteristic form. This is
an exact representation. The approximation involved is in replacing the characteristic
velocity by the shock velocity in the relevant characteristic form of the equation and as-
suming that it is valid along the shock. The characteristic rule gives completely errone-
ous results when applied to the equation

2 47
u,+uu1+u 4 =0 for —n<x, t20, (1)
where 11 > -1,
n+1 <
A= Ax) = —n< 2)
(x) (x+n+1] y TS (
and the initial condition
X+ 2 & % &Y
u(x, 0) = (n+l) r THSEES (3)
0, otherwise.

The 1nitial condition has a shock discontinuity at x = 1. A(x) could be treated as an area of
cross-section which varies with x only. The equation can be put in conservation form as

(uA2), + %(uﬂ A2) =0, (4)

giving the shock velocity

X(=U =y +u,)/2, ()

where u) and 4, are the values of u to the left and right of the discontinuity x = X(f).
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(1) can be solved with the help of the characteristic e
.ion by the pair of ordinary differential equations:
du u2 A’ dx

quation and the com.-

ation according to the characteristic rule is that we treat

rOXim .
The apP (6) to be valid on the shock with u replaced by u;:

the compati-
bﬂ!f)’ Condilion In

2 Al
dul__H|A g._X___
PR el e

Here, if we choose ur =0, i.e., the shock propagates into an undisturbed medium,
ea we have U = 1 /2, which gives

dlll _ HI?'A’ dX ”l 7

dr - A A2 (7)

The system (7) can be solved easily using A(x) as in (2) and %(0) = 1, X(0) = 1.

From (7) we can also deduce a general result: ,A? = constant, which is the A—M re-

lation for the problem. This gives the solution for the strength and position of the dis-
continuity as

i n+2
n(r) = 7 XO=-rpr—1 g ®)
3 - {
(1‘2(1112)) 1 2(n+2))

These expressions are valid only for a small range of values of 1, < (2/3)(1] + 2). As
'3 23)(n +2), both u and X tend to infinity.

Hﬂwever:, the situation is different if we consider the exact form of the equation for
e shock. The restriction of (1) to the left subdomain can be written as

u 1 ul A’
U +5 Uy == Ully ——

2 2

%ing the limit of this as we approach the shock from the left subdomain, we get

dy _ muy)) ufAT dX _w )
de 2 A’ dr 2

Thls differs from (7) in the pressure of the term _(1!2)5‘1(”;)1_ The system 1S not

™ (m?. iS an unknown, which is not specified. The presence of the defi_vat;;fe 1(‘5;)51

re;?:atmn for u, is typical in equations determining shock ﬁoqt posnlzl;cl; from
11'!lliml. nSems the effects on the shock of the waves which catch up w.lth.thc ; implicit
o o the : 1ca§e discussed here, (u,) can be evaluated by .di.fferemlat?u%d[ aemou[:lt to
¥ling (u,) Tution of (1) and (2). However, the characteristic rule W

=Y. We can solve (1)—(3) to get



520 RENUKA RAVINDRAN

-2
I{r , —M<x< X(0), (10)

=t

r(n+1)(x+n+l) HJ 41(x+1n) _
2t i M+ D2(x+n+1)

u(x,t) =+«

.

where x = X(f) is the position of the discontinuity at time 7. From this we deduce an ex-
pression of u(x, ¢) in the form

u.(x, 1) = il 1+ : —
AU 2 -Yem+ D) v
If this is used in (9), we get the position of the shock
X(0)=-m+D)+1/{1-(1/4)(n+1D2(s* +25)}, (12)
where s is the positive real solution of the quartic
3
s4 +is3—32 ; 7 =0. (13)
3 3 [(n+1)n+2)]
The solution u,(¢) satisfying ¥ (0) = 1 when X(0) =1 is obtained from the equation
3
HE’2—3(X+"]HI+2(X+”“) =0 (14)
n+1 n+2

It is easily verified that u,(t) given by (14) is the same as u(X(r), 1) as given by (10)
when x = X(7).

For t < | 111, the expressions for X(¢), u,(¢) as given by (12) and (14) agree with X(1),
u\(f) given by (8) up to O(*/n®). If the flow behind were uniform (i.e., 7 — ©°) then the
characteristic rule would give an accurate estimate of the shock position for £ = O(1). In
all other cases, there is a large error involved in choosing the characteristic rule ap-
proximation on the shock. For 0<1+ 7 < 1 and t=0(1), the exact value of
u~(2(n + 1)/31)'%, whereas the characteristic rule gives u ~ 1/(1-3#/2)*°, which i$
completely in error and is defined only up to r ~ 2/3. (For details see Prasad ef al.’).

For problems involving a hyperbolic system of two or more equations, such as g&
dynamics equations’, the normal derivative term (corresponding to the term —(1/2)us(u:)
in (9)) may be evaluated by the short-wave approximation. The accuracy in the shock

position will depend on the accuracy with which the normal derivative term has beef
evaluated.

The characteristic rule is a good approximation when the flow behind the shock 1S
uniform at a given time r. When the flow behind the shock is nonuniform, the nonlin¢af
effects which catch up with the shock are accounted for poorly by the characteristic rule:
Although the characteristic rule allows for a simple elegant solution, it must be used
with great caution as its use is justified only for a very restricted class of problems. Un-

fortunately, its simplicity so fascinates its users that they do not bother to check its V&~
lidity.
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w theory of shock dynamics
ne _ ; . o
3 A the characteristic rule is not mathematically justified and could give erro-
The facl lh;; made it necessary to look for a new theory. For
u

this, we turned to the work
n .4 and Maslov®, who, for waves in elastic materials and nonviscous gases,
of Grinfel derived an infinite system of compatibility conditions along certain curves
8S ctiveI.Yv alled shock rays. These theories had attracted little attention and there
in space-time C work at all. It is, however, these compatibility conditions which pro-
was 1O foll::r‘n“eliy efficient system of equations to solve
vide an €X

shock propagation problems.
: 111 be illustrated first with the help of a model €quation;
f this method wi

u +['l"“2) =0, ((x,1)e RxR,
H 2 .

(15)
with initial condition 16
u(x,0)=¢(x), te R | 6
 that the solution is sufficiently smooth except for a single shock curve
such tha
x=X(1), te R.. -

. ] S rcp

u(x, t) = .201.! u; (1)(x — X (1))
= X(i), I=1 1, 2y sss Here
Wiere u; are spatial derivatives of u at the shock x=X(1)

0
& (ll '

Y
1 ' t. The shock velocity 1
Skaown, 5o that im, x40 #(x, 1) = u (¢) is a known function of
fiven by

(19)
de |1
ar ~ 72 ot i)

4 i=1.2. ... and equating vari-
Ututing (18) in the equation, setting v;(f) = u;(1)/i!, 1=1, <,
" powers of y _ x (1), we get

du

—

1
-&T--_-i(% Hu[)v[a

Vv, i+ 1 i+ 2 PR (] |- %
fh;hFi“ﬁﬂile

' f ordinary dif-
‘ he required set O
lia] System of eqns (19) and (20) constitutes t

h uo(?)
> . shock strengl
*2ons for the determination of the shock position X (1)
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and the spatial derivatives w;(f) = i! vi(t), 1 2 1. The initial values of X, uy and u; are
given by the initial data (16)

X(0) = Xou llo(o) = ¢(Xg - 0) = uqy ,

1 (dig _
Vf(0)=f!(dxi]x_+x L say, (21)
"

where X, is the value of x at which ¢(x) has the discontinuity.

If we set v, ., =0 in the (n+ 1)th equation in (20), then the first (n + 1) equations
form a closed system. Let X, 7y (r), %;(¢), i = 1, 2, 3, ... , n be the solution of the truncated
system of (n + 2) equations

dX 1 _
gr =7 (o ), (22)
diz 1 o
@ -z,
dv, i+l il |
--d—;-=—_'_2 (uo_u!')vf'l'l___z Vjvi_j_'_l’ 1"'—'112;"'¢n""1, (23)
j=
dv, n+l<x_
ar =" LT 24
j=1
with initial conditions as in (21):
Xo=Xo, H0)=up, v;(0)=vy, i=12,...n (25)

Since the right-hand side of eqns (22)-(24) are Lipschitz-continuous at any point in
(Xq.%.7,,...,V,) space, a unique solution of (22)-(25) exists on a suitable interval
(0, T). Using this, the function @(x, ¢) can be constructed as follows:

(

u(x,t)=:-

T () + Y Vi(x—X(@), x<X(@),

i=1

(26)

B(x), x> X(1).

. This is an approximate solution of the conservation law (15) with (16) in the follow-
Ing sense: on the approximate shock path x = X(1), the jump condition (22) 1s satisfied.
In the region behind the approximate shock, i.e., x < X(r), the substitution of 7(x,) 10
the conservation law (15) leaves a remainder containing a factor (i-— X (¢))" on the left-
hand side. This is small near x = X(¢). The accuracy with which the conservation 1aw is
satisfied in a neighborhood of the shock increases as n increases.

For numerical computation, two special cases are considered.
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Case l.
r X+ 2 X E(
@1(x) =<(_ﬁ'¥1_) » . 1),
0, elsewhere.
Case 2-

p (x)_{aeﬂ*,x<0,
5(x)=

0, elsewhere,

For ¢1(x), Xo = 1 and ¥,(0) = 0 for i > 3. Witho

ut loss of generali for
¢ a=1, f=1 because by a change of variables Y 10r ¢,(x), we can

!
lis can be obtained. Here Xo = 0 and 7,(0) = Vi) =1foralli> |,

The exact position of the shock in this simple case Can be obtained from the equation

92 +2[° o(u) du =0

(28)
where & = X—uyt. In Case 1 we have
4 3 _ 3
{811} L 2E+m3-(1+7) ) (29)
n+1 3 (1+n)2
ud in Case 2
€28 +2(ef - 1) =0, (30)
:hhic]l: give the value of . This in turn helps to evaluate the other quantities on the
ock:

p = ¢(S), v = P'c)

1+19°(6)°
r 2
Vy = ¢”(‘=E) vy = ¢m(§) _ t[¢' (5)] = (31)
A1+197)) 1+1/&] 21 +1978)]
L)
e Case 1, Where ¢i(§) =0 for i > 3, we have
(=00 1-3-5.7... 21 - 3)[p(&)-1ri-2 2 (32)
<) | . _
. :'iiifti-; :tioznag i and gives a value for comparison with the approximate re

. ; k at
as¢ 1 are nonzero only in the interval (-7, 1), with a shoc
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Table 1
n =-0.5.
t=1.0 t=5.0 =10.0 h
u Error (%) u Error (%) & Error (%)
Exact  0.47390445 - 0.24232081 -~ 0.17572092 -
s 0.4421360  -5.6 0.21821789 -9.9 0.15617376 -11.0
n=2 0.47171239 —0.46 0.23787367  -1.8 0.17140803 -2.5
n=3 047366942 -0.50 x 10 0.24120493 -0.46 0.17440411 -0.75
n=>5 0.47390183 -0.56x 10"  0.24221465 -0.40 x 107" 0.17554484 -0.10
n=38 0.47390560 0.24x 10  0.24230783  -0.12x 107 0.17570887 -0.68 x 107
n=25  0.47390561 0.24x 107  0.24231136 0.24 x 107 0.17572129  0.22x 10

x=1. As N — oo, the disturbance behind the shock approaches a constant state u=1.
For 1 close to —1, ¢ increases very rapidly from O to 1 over a very short distance, so that
the spatial derivatives of u play an important role in this case. For numerical computa-
tion, we have chosen 11 = - 0.5. The initial data in Case 2 are not of compact support.

Tables I and II give the values of u for initial values corresponding to Cases 1 and 2
at t = 1.0, 5.0 and 10, n = k denotes that v, is set equal to O and &k + 2 egns (22)-(24)
with (25) are considered. For n =1 the error in u i1s sizeable, but for n =2 the error
drops rapidly (< 1% in Case 2), while for n=23 it is uniformly very small, as for
n=23, 8, 25 as well. Computation was done for Case 2 with =1, = 1.

For the equation u, + uu, = 0, with initial condition having a single jump discontinu-
ity, the shock position X(¢), shock strength uy(f) and the spatial derivatives at the shock
u;i(r) are given by an infinite set of ordinary differential equations. If this set is truncated
at any stage, involving five or more equations, this closed system of equations can be
easily integrated numerically to give very accurate results. This is in sharp contrast [0
the characteristic rule, where only two equations are considered and the error involved
could be extremely large.

For the accuracy of this theory for small r and for very large ¢, see Ravindran and
Prasad’ and Prasad and Ravindran®.

Table 11
p=¢x<0;6=0,x20 B
t=1.0 t=5.0 t=10.0
u Error (%) u Error (%) u Error (%)
Exact 0.73205081 - 0.46332497 - 0.35825757 -
n= 0.70710678 -3.4 0.40824829  -12 0.30151134 16
n=2 0.73372900  0.23 0.46777169 0.96 0.36157950  0.93
n=73 0.73200502 -0.63 x 10°? 0.46355666 0.50x 107" 0.35872978 -0.13 .
n=5 073205096 026x10* 046331988  -0.11 x 1072 0.35825020 -0.21x 10"
n=8 0.73205081 0O 0.46332497 0 035825765  0.22x 10
n=25  0.73205081 0 0.46332496 0 0.35825757 O i
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| The equations of gas dynamics

o model conservation law, by trur.]cat’ing the infinite system of compatibility condi-
" e new theory of shock dynamics is developed. The derivation is mathematically
um,,{ncing and gives extremely good results. This theory gives not only the shock
:;';“glh and shock position but also a few spatial derivatives behind the shock so that we

ancunﬂma the unknown solution at any time by using a finite Taylor series.

One could now carry over the th'eor}_r to the equations of gas dynamics in two space
jmensions and time = (x, y, ). Denivation of the compatibility conditions is extremely
omplex and requires not only very careful mathematical calculations but also utmost care in
e change of the order of certain differential operators, since they do not commute.

we consider the propagation of a shock front in a polytropic gas with ¥ as the con-
qnt ratio of the specific heats. For simplicity, we assume that the motion is two-
timensional, that there exists only one smooth shock manifold €2 in space-time (R’) and
pat the fluid velocity ¢ = (u, v), pressure p and density p are C™(R’) functions except for
ydiscontinuity of the first kind on £2. We further assume that the shock front propagates
aoa gas in a uniform state and at rest ahead of the shock, i.e., g, = (0, 0), p, = po and
4= py, Where pg and po are constants. The state behind the shock manifold €2 is denoted
by g5 = (i, Vb), Pb aNd Py These functions, defined only in the domain behind the shock,
e then extended as C functions on the whole of ®°. The extended functions gy, p, and
pare nonunique in the domain ahead of the shock.

Let S(x, y, 1) = 0 denote the equation of the shock surface €2 in space-time. For a
dock in an ideal gas with constant specific heats, it has been shown” '’ that the function

Scan be obtained by solving any one of a number of shock-manifold partial differential
quations (SME), one of which is

S, +C(S2+82)12 =0, | >
Wilh
c2 =FPb Po~ Po .
Po Pv ~Po
Wiere p, and Py are in C™(R?).
We define a function
- ——y - (35)
Po

0 alye on Qre

kg presents the shock strength. A shock front denoted by £, at any time

¢ .
Urve in the (x, y) plane and is given by S(x, y, )= 0, in which ¢ appears as a pa-

er. : :
The R"““k'“@--Hug(rvnic:;t conditions give the following relations on £2:
1/2
a=ao 222" &
N2-(r-Du) |,
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P L vaa.).
Pbﬂ_p()z_(y_])p .Q* (37)
(ub,vb)la=ﬂu%(N1,N2)Q’ (33)

where a? =y p,/p, and (N;, N3) = (cos O, sin ©) is the unit normal to the shock front Q.
The relations (36)—(38) are not valid in R> but only on £2. The SME is valid in R° and
hence it is possible to define @ in R* with the help of the relation

(5 5

(N, No) =57 sy R
The derivative
d o J d
T —&+N1C§+N2C-5 (40)

represents the time rate of change as we move along a characteristic curve of the eqn
(33). When C is evaluated on £2, then this is the time rate of change along a shock ray
and is an interior derivative in 2. We denote the normal and the tangential derivatives

for the shock front by d/dN, d/dT, that is

0 dJ J dJ J
—=N; — —_— i Mok . A 41
v =~ Mo +N dy’ oI N2 o - dy o

We also denote the normal and tangential components of the fluid velocity by A and
B, respectively; then

Al =HE (42)
1+u |,
and

We write the equations of conservation of mass, momentum and energy behind the
shock as follows (after dropping the subscript b):

dp ap S AN | ap B 0O (44)
P oAy B g 28 OO | g0, S8 O 6
ar + )3N+p(8N A3T)+_BJT+p[3T+BaN)_
da 94 1 dp do 00 JdA _dO|_ (45)
? +(A-0C) N +p8N +B[W+(A—C) N +3T +B——j|—01
@ 90 (A-CYoB 1dp 1[dB _9B . _o00]_ (46)
ar TA-O%y [ A ]aN_pAar_A[d:J“BW_ABFT_]"O’
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dp . _~9P Yp(dp op J 3
-&T+(A C) N " p (dr +(A-C);?-ﬁ)+ B[é—’—%%}

[n each of the above equations,_either the quantity in the square bracket or its coeffi-
cient vanishes on €2 (dB/dT =0 since B =0 on 2 and 9/9T is an interior derivative).
Equations (44), (45) and (47) on £ ﬁ:?rrn a system of equations in the unknowns p, A and
p not involving B. From these equations, the quantities dA/ON and dp/oN can be elimi-
nated to give on £2

dp a4 2 YPLdp _moel_ 0
_a_r_..p(A C) dr+{(A ) pHdrHA C)c?N pA(A—C)2§T—=O. (48)

In (48) C, p, A, p on (2 are known functions of u (see (35)—(38)) and the derivative
d/dr is an interior derivative in £2, so that (35) to (38) can be used to determine dp/dt and
dA/dt in terms of i and du/de:

= (47)

d 4 d
df = Po ! 3 (ff : (49)
Q {2-(y-Dyu} 0
dA 4+3u—yu du| .
Sunic’ [ , (50)
dr o~ 20+ w22 -y - D) dr]g

where we have used the fact that N2 + N7 = 1. This leads to the first compatibility condi-
tion on £2 along the shock rays:

ldu Q] 00 (y+1) du .
EW"”?[Z.&T I+ 4 aN] - 1)

where
Q0=2-u(y-1), S=8+5u-3uy+p2(y?-0. (52)

e . .9
The characteristic equations for the shock-manifold partial differential eqn (33) give
the shock ray equations:

ax . (53)
ar = M g =N
and
de _ dC (54)
dr 4T
On ©, €qn (54) reduces to
1do _ y+] Ju (55)

C dr 200 +p) dT’

Equalions (53 : upled system of four equa-
i ) (restricted to ), (55) and (51) form a coup
b for the position (x, y) of the shock, the inclination @ of the normal to the shock and
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the shock strength y. Since 9/dT is an interior derivative on €2, du/dT and 00/aT are
known on £ if 4 and © are known on €. The system, however, is not closed due to the
presence of the normal derivative du/oN in (51). The presence of such a normal deriva-
tive rendering the system incomplete is typical of the compatibility conditions on Q'

To obtain the second compatibility condition, the normal derivative of each of the
equations of mass, momentum and energy is considered. The terms are then rearranged
to give the following three equations on {2 (corresponding to eqns (44), (45), (47) in the
first compatibility condition):

d (dp N2A A _d(oB)  J(o@
d:(aﬁj“‘q"oam”’amwar oN )~ PAoT\aN

A 3@)3,0 (d@ 20 3B)ap

+(2'a_ﬁ"‘ar v e "N TN T

.

ar

+2P3N N —pA -éh_f- ———=0 on Q, (56)

0B 00 _ (90Y _ (90 __ 9JA IO
p PON or

d (A
dr\ N

)-r-(A—C) N2 +paN2 +
oB ( dO 00) 1 dp(dA o
+3N(dr+(A_C)WJ+p9N(

R2A 1 Np (d@ 3@+9BJ8A (aa)z
)=0 on £, (57)

J
d (dp _yp d ap d?p yp d%p de _3_8_
d:(aw) p d:(aN)“A‘C)( - Hlar ¢

x(c?p Yp ég) dA (ap Yp 3p]+ 0B (3;?_ Y P 3P]

T por ) oN\oN p oN ) aN\ar ~p or
» 1 ap _ P 8p dp 8,0 _ 58)
T[p N P2 aN:][-(F-l-(A_C)W]_O on 2. (

The fourth equation, corresponding to (46) in the first compatibility condition, is of
interest only for evaluating the third compatibility condition. The expressions for dA/oN,
0B/AN and dp/dN on Q can be obtained in terms of u, owoT, du/oN, 0O/oT and 39@\1
from (45)—(47) and (51) and (55). These expressions are then substituted for all interior
derivatives in eqns (56)—(58). The terms 9°A/ON* and 9°p/dN? are eliminated from the
three eqns (56)—(58) to give the following equation:

1 d (3}1)=_ 1 r';1(1+}r) a2 2 3& 2+C du Jd@
C d1\oN Ci120+u)3 N2 " P2 N 3ON ar
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where the coefficients &, &y, ..., {5 are known functions

of ¥and u. These i o
jre expressed in terms of 0y, &, ..., & and B, B,, ..., B, coefficients

which appear in the equations

1d{dp)_ r d ( ou ou \ u 00
—T(FWJ"”"C & df(aNJ"“Cﬁz(‘aW) " CPs

C oN oT

AN 5?2 .
+Cﬁ4 (-ﬁ) + CBS -c?_rjzi + Cﬁﬁ(%) on 2 (60)

and

2
ld(c?A)=5 d(&pJ+Caz(3pJ +C8, u IO

Cdt\ oN bdrl oN ON ON IT
Cé %)’ c5. H L cs o)’ 0
+( 04 ﬁ + 5‘3"}'_‘?4‘ 6 E,;‘ on iZ. (61)

The expressions for all these coefficients are known functions of Y and g and are
available in Ravindran and Prasad’’.

We define a quantity p; (i=1, 2, 3, ...) by

* du |
H; ={ Y iC.NIN3 Fy ey b (62)

sy

r+s=t

Obviously, u, = 3u/oN and it is easy to verify that
d? au 0@
e+ 2 =y,
N2 JT JON
The second compatibility condition (59) finally becomes

dy _ 1 p+y) ) o0
- [2(l+p)3u2 + G M +§3ﬂ1“37

1
Cdr "7

OV 92 oY’
+c4(-ﬁ) +¢5§%+cﬁ[§J on £2 =

Elnc?:; grst tompatibility condition (43) was originally incomplete dL{c to the _aﬁpear:

Moveq g, i}nd Op/ON = M on the right-hand side. The shock ray equations partially r:-

tiog f; © Incompleteness by providing the equation (55) for ©. T.he searf:h for an equ
" Hled 1o the second compatibility condition (63), which 1s also incomplete due
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to the presence of u,. The search for an equation for u, leads to the third compatibility
condition® containing u3 and the process could continue, leading to an infinite system of

compatibility conditions.

5. General approach

In this approach, we use the theory of ‘singular surfaces’ to study the propagation of
discontinuities in general. The theory is based on a simple idea. From the governing
system of equations, compatibility conditions are derived along singular surfaces. This

involves a detailed study of

1. geometrical jump conditions associated with the surface,
2. kinetimatical conditions involving a specially defined time derivative, and

3. an infinite system of dynamical compatibility conditions.

This technique is based on the theory of moving singular surfaces and the theory of
Grinfel’d®. Consider a moving surface () defined by equations x' = X’(&°, 1), where (x')
is a fixed curvilinear coordinate system in Euclidean space and & are the surface coor-
dinates (Latin indices take the rules 1, 2, 3 and Greek 1, 2). The term defined by

;. _oxt(& 1)
Xa = 3§a (64)

for a fixed & gives the components of a vector tangent to the surface 3(¢) along the di-
rection of &°. :

Given a function F, which is a function of spatial coordinates x' and time ¢ such that
on either side of the moving surface 2(t), F(x, t) and its derivatives are sufficiently
smooth; then the jump in the covariant derivatives of F can be obtained in terms of the
normal derivatives:

[F:f ]i = A + Ag.pxf (65)

+
[Fﬂ' ]_ = Apnin; + "‘t:v("‘z"x:;‘:.r e b Aaﬁxfxf ; (66)

where [ ]* denotes the jump across Z(¢): [G]t = G, ~ G_, n; are the components of a unil
vector normal to the surface, baﬁ = x‘&_ﬂnl. are the components of the symmetric secﬁﬂd
fundamental form of the surface 3(¢), and

do=[FL%, A =[F]'wi, ay =[]

Ag = Ag +b££‘40:ﬁr App = Ap,ap _Albaﬂ ;

Using Grinfel’d’s formula, jumps in partial derivatives with respect to time can also
be expressed in terms of special time derivatives of normal derivatives:
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[ET ==AC+ :
o | l Ot Ao, (67)

oF; 1" [ 8 « ) 5
—| =n -CA, +—A, + .C.,[z 1 P piel
[ 2 ] n 2 5 M Ap.C.p |+ x ( CA, +8t AO).H' (68)

Jhere C is the normal surface velocity and
OF(x(E,1),t) OF(x, I)I
= k
5 > | +Cn*F,ly ,

Using these expressions, 1f a smooth shock manifold X(r) propagates in a polytropic
gas, then jumps of the gas-dynamic equatio_ns across {(r) are considered. This, on using
the geometric and kinematical jump conditions, gives the first set of compatibility con-
diions. To obtain the (N + [)th set, N=1, 2, 3,..., we differentiate the gas-dynamic
equations with respect to xh,...,x'» and convolute with nh ... niv. An infinite system of
compatibility conditions can thus be obtained. The first two equations of this system are
precisely those mentioned in the previous section. For each N 2 1 suitably defined Nth
derivatives of density, velocity and pressure can be expressed as linear functions of a
scalar IT(E, 1) and nonlinear functions of the scalars I(E, 1), ..., IIv.1(&, t) and their
derivatives with respect to surface coordinates. Each of these compatibility conditions
can be suitably combined to give a single equivalent equation in the scalars [T
i=0,1,2, ... . The first two of these are

)

§'HG=K0.(21 —g/'l.zﬂl ’ (69)

8 -
E;Hl = Klnﬁ;anﬂf % Kzglz +K3n1Q1 + K4n|2 + KSQZ + Kﬁl'lo;u ﬁ.l' = /12“2, (70)

Mere K, i=0,1,...6, and g, A, are functions of ITp only and @ =b?, € =byb™. The

ms on the left-hand side, namely, 8/1,/8t and 811,/8t are the rate of change of Il and

”"respmi"ﬂy, as we move along the normal to the surface Z(¢). By a suitable choice of

lslilz:urf:.:c:e coordinate system, for fixed £, x' = x' (&, 1) is a curve normal to the succes-
Positions of the front, and for scalars [T,

o Jd . .
<M;==1I; i=0,12,...
ot = ot I, 1=0,
m‘tm the case of the new theory of shock dynamics, the infinite system of equations

Yalarg t;;uncated and a closed system of partial differential equations obtained for the

s 12
i 1 SN. Details of this approach can be found in Lazarev ef al.
6, :
Aoblications of the
f;l)l ey of al 3
by 4 Piston

theory

study the flow pro-

have k dynamics to :
used the new theory of shock dyn acceleration. The

Starting with a nonzero positive velocity and nonzero
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flow ahead of the piston consists of two regions: region I consisting of a constant State
bounded by ¢ = 0 and the shock path, and region II bounded by the shock path ang the
piston path. Comparing the results obtained by the new theory of shock dynamics ip the
general approach with a finite difference scheme, they observed that at the shock frop
there is very good agreement between the two, but there is some deviation of flow behing
the shock. The finite difference scheme, however, gives good and stable results only
when the perturbation from the uniform flow is small. It fails in the case of large accel-
eration of the piston and gives large errors for the decelerating piston. This method also
requires complex grid refinement for large times.

On the other hand, the new theory of shock dynamics in the general approach is effi-
cient and accurate in all cases up to an intermediate time range (¢ not too large) both for
large accelerations and large decelerations of the piston. Besides, it is far more economi-
cal than the finite difference method with regard to computational time.

(ii) Kevlahan'* studied the weak shock problem for a decaying N-wave and expand-
ing cylindrical shock wave, using the new theory of shock dynamics. For the plane shock
with an N-wave profile propagating into a fluid at rest, he showed that the theory pre-
dicts that the slope of the N-wave decreases like ! for large times, the shock strength
decreases as +'/? and the width of the N-wave increase as 7'/, These results agree with
those obtained by Courant and Friedrichs'®> and Whitham'.

For the expanding cylindrical shock wave, Kevlahan'* showed that in the weak-shock
approximation, the strength of the shock decays as r"* while the width of the wave be-

hind the shock increases as "%, in agreement with the earlier findings of Landau'®.

(iii) Keviahan'® considered the challenging problem of an initially straight shock
propagating into a steady sinusoidal velocity field, using the new theory of shock dynam-
ics. In this case, the shock rays are no longer straight lines as in (ii). The nonuniformity
of the upstream flow eventually causes the shock to focus and form two shock—shocks
(discontinuities in shock strength) separated by a flat shock disk. The shock rays arc
curved.and the weak-shock fails, indicating infinite shock strength at the focus.

In comparison with another purely numerical scheme, the new theory of shock dy-
namics up to second order gave remarkably good agreement even after the formation of
shock—shocks. It thus stood the severe test of predicting correctly the shock—shock cor-

figuration. It can also be used to predict whether two shock—shocks will move towards
each other or apart.

Germain and Guiraud'’ claimed that the presence of viscosity is a singular perturba-
tion to the Euler equations and must always be included in the description of curve
shocks. This is equivalent to saying that the thickness of curved shocks may never
be neglected in deriving equations governing its propagation. Kevlahan has shown thal
the new theory of shock dynamics describes the shock—shock phenomenon accurately

where the curvature is infinite at the kink, although it assumes that the shock strength 13
negligible.
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1 Conclustons

w theory of shock dynamics provides an efficient, simple and, atvsve all, reliable

thod for studying the pr0pag:at10n of shocks in fluid media. With the help A a model
me ion, the theory was tested tn a number of cases where the exact solutisms are avail-
ab;l: The results are.increditfly good. 'In the case-: of fluid-dynamic equations, an infinite

em of compatibility conditions Wthl‘.l are valid on the shock front can be derived. By
zuitabl y truncating the system, one obtains a cl{r{sed System involving the flow variables
and their derivatives up to any desired order. Using the general approach, one «dxains at

ach order a single equation 1n a scalar quantity, from which the flow variables and their
derivatives behind the shock can be calculated.

The ¢

The shock equations cannot be solved exactly, except in a few simple cases. In the
ase of a plane N-wave weak shoc!< and an expanding cylindrical weak shock, the ana-
lytical solution of the shock equations compare exceedingly well with the known solu-
tions. The numerical solution of the shock equations was checked against a powerful
aumerical flow solver for the case of an initially plane shock propagating into a sinusoi-
dal shear flow. The agreement was ‘excellent’, even at the time of focus when shock-
shocks develop. The numerical flow solver actually resolves the shock structure, while
e shock equations assume that the shock is discontinuous. The good agreement be-
tween the two indicates that one may neglect shock thickness, even in the case of curved

shocks.

The new theory of shock dynamics holds a lot of promise for further theoretical and
numerical work. For the reader interested in general reading and/or further details of the

topics discussed here, a number of references!®>? are given at the end of the reference
fist.
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