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Abstract

Exisence of two types of singularities, namely, cusps and kinks, on a nonlinear wavefront and a shock front. are
postulated when these fronts are two-dimensional. The basic conservation laws governing the propagation of itink
wpe of singularities are derived. The time of formation of a kink on a weakly nonlinear wavefront in the high-
frequency approximation and on a weak shock front are derived. Propagation of kinks, obtained from numerical
wiution, is discussed in some cases. This paper raises many open questions regarding these singularities. The
sngularities discussed here appear frequently in gas dynamics and other physical phenomena. Physical motivation
for the derivation of equations governing them have been discussed by Whitham and also by the author in earlier
mblications. Here an attempt is made to develop a theory in which first geometry (without any reference to phys-
i:s)i;uwd to derive as many kinematical results as possible and then physics is included in the form of transport

equations.
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l. Introduction

Sngularities on wavefronts are very common physical phenomena. They appear on the
Surface of tea or coffee in a cup when the cup is placed at a suitable place relative to a
mm_ of light and also when the rays of light pass through a gravitational lens in cos-
:;ﬁlﬁglcaliphmomena_ In the linear theory of wave propagation in any medium governed
liona: 0?:1‘:&“ hyperbolic system of partial differential equations: the successive posi-
ConStructio avefront can be determined by the well-known Huygens mthod of ‘wavcl;-ro:t
Yavefront :t using the- sccopdary spherical waves starting fr?m th? various points of the

¢ Wavef any PfﬁVIOl}s time'. Huygens’ original method is c-:quwalent o .Cfmstruti:tfon

ewavefmm at any time, using the rays from the various points of the initial position

ront. We note three fundamental properties of linear wavefront propagation.

L Self. _ _ .
Fp '9Pagation. This means that a linear wavefront is determined by the information

%y on
llhe Wavefront at any previous time and is not influenced by the w:avefronts
: “(’lor Precede it. For a linear wavefront, the information required 18 s:jmpli.( Eﬁe
“ ' of the
“avefron;. hence the geometry) of the wavefront and not even the amplituge

Local 4
eterm; : ;
MVefront ; "Minacy. This means that the motion of an

i
SIndependent of the neighbouring arcs.

arbitrary small arc of a linear
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Wavefront with a
singuiarity

— -
| —’

FiG. 1. An initially smooth wavefront folds with a cusp type of singularity on a caustic. Rays are taken to be
straight lines.

3. Reversibility in time. According to linear propagation, where the amplitude of the
wave has no influence, if a wavefront €, , at time r; leads to a wavefront €2, at time
t, ( >1,), then by reversing the direction of propagation velocity we can get £, from £2,.

We shall point out later in this article the modification, if any, which nonlinearity
produces on the above three properties of a linear wavefront.

Continuing the discussion of Huygens’ method of linear wavefront construction with
the help of rays, we note that in many cases the rays envelope a caustic surface separal-
ing an illuminated zone from a shadow zone. The wavefront folds itself on the caustic
surface so as to remain in the illuminated zone and possesses a singularity which is a
cusp (Fig. 1). Consider now a converging wavefront (for example, a wavefront whic‘h
was initially a parabola); the caustic has two branches starting from an aréte. In this
case, the wavefront develops a pair of singularities as shown in Fig. 2. If all the rays
converge to a point, the caustic degenerates into a focus. In the domain bounded by the
two branches of the caustic, the linear wavefront crosses itself at a node. Study of very
weak nonlinear effects on a node of a linear wavefront cannot be done in the single-mode
high-frequency approximation, which forms the basis of our study in this article. It also

appears that nodes are rare when (genuine) nonlinearity is present. Nodes are excluded
from the study of singularities in this article.

It is interesting to view the geometry of the successive positions of a plane *»‘I-’«‘a\’ﬂfr‘:"fl
after it is reflected from the interior surface of a circular cylinder (Fig. 3). The illumf-
nated part of the caustic is the domain bounded by the reflecting surface and the caustiC
surface. Soon after the reflection, say at the time f;, the wavefront develops 2 pair ©
cusps both of which approach the aréte at a critical time ¢, after which the singulariti®®
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Fc.2. A caustic generally starts from an aréte, which FiG. 3a. Caustic on the surface of tea in a cup, ne-
welf is a cusp of the caustic. glecting multiple reflections of the rays. b. Four typi-

cal shapes of the wavefront after a plane wavefront is

reflected.

isappear and the wavefront becomes smooth as shown at time t4 > .. This represents a
phenomenon in which the transition at t. takes place in reverse order of that depicted in
Fig. 2 when the wavefront just meets the aréte. This is an important observation and
shows that the propagation of a linear wavefront is a reversible process, which we shall
oW not to be correct in general for a nonlinear wavefront.

Singularities do appear also on nonlinear fronts. Apart from the cusp singularities (we
IIJOS_luIa:e that they appear also on a nonlinear front), we encounter a new type of mngq-
:l.y o0 a nonlinear front and we call this singularity a kink, across '_"""h"Ch both the (.11-
ju“zm of the normal and the amplitude (or intensity) of the dlscc?ntmu;t?r suffer finite
&];pf: .The txistence of a kink was first shown theoretically l?y Whitham™ 1n 1f957 by at;
Shocki“:ate theory called shock dynamics. He nametfl a kink on a shock front Szzus
mcﬂiaimk' Tl‘{e first experimental results showing kinks on a spo:ck fronttu;hgazilenge

" ere gbtamed by Sturtevant and Kulkarni’, and even ‘tctday itis a gr;(:a Canchslly
e .. 2 ' ATiOUS observed properties of the flow field containing these Kinks, €sp

I =g - ‘ 4
lain; “WSition from the shock fronts containing kinks to the linear acoustic fronts con

§i - | :
ngularmes of wavefronts were first discovered by Huygens in 1654. In the solution

of ); B i
Eleamear "Yperbolic partial differential equations, singularities have been studied in
Udetaj)* 4 ’ Itiplicity higher than one.

but these are related to the characteristics of mu
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We are interested in problems in which the multiplicity of the characteristics is yp;.
formly equal to one. Recently, Arnold® has also studied singularities of caustics and
wavefronts. However, our approach is different and it is not clear whether the time ev.
lution of the singularities can also be studied by the approach followed by Arnold.

Formation of singularities on a wavefront can be studied from the differential formg of
suitable equations since, till the singularities are formed, the solution is either smooth or
has discontinuities in higher-order derivatives. But as soon as a singularity appears on 2
wavefront, a discontinuity either in the amplitude or in the normal direction or in both
comes into play. Hence propagation of singularities can be studied only from the conser-
vation forms of the governing equations. In the next section we shall derive the conser-
vation forms in the most general situation. Most of the material presented in this article
is new. However, the research problems and the spirit of investigation of these is quite
old and has been going on in our group for the last 20 years. Details of the derivation of
many results here and related concepts can be found in the book by Prasad®.

2. Conservation forms of the kinematical equations of a propagating curve

Let £2, be a curve representing a wavefront which occupies different positions at differ-
ent times. For discussion in this section, wavefront refers also to a shock front. Distinc-
tion between a wavefront, across which state variables are continuous, and a shock front
needs to be taken into account when we consider the dynamical equations. Associated
with a wavefront €2, there exists at every point of it a ray velocity ¥ = (¥1, X2). This
gives a one-parameter family of curves, called rays, each one of which is traced by a
point on £, moving with velocity y. Expression for y can be obtained only from the
properties of the medium in which €2, propagates and depends also on the unit normal
n = (ny, ny) of £2,. We write the equation of £2, in the form

2. x =x(€= £), Y =)’(‘5, £), (1)

where constant values of ¢ give the positions of the propagating curve £2, at different
times and & = constant represents a ray. In the case of isotropic wave propagation, rays
are orthogonal to the family of wavefronts €,. When the equation of €2, is represented In

terms of a ray coordinate system (&, 1) as in eqn (1) the ray velocity ¥ = (¥, X2) is g1ven
by

(e ) = (1, 12). -
C, the speed of propagation of €, is

C=(n2)=nx+np (3)

and the component T of the ray velocity in the direction of the tangent to £2, is

I'=—nyy, + nixa. @

Consider the curves €2, and €, , 4. Let P’ and Q’ be the positions at time ¢ + df of P 3"3
Q, respectively, on two rays at a distance gd& on £, (Fig. 4), where g is the associate
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v is the normal displaceme‘nl of £ in time d:. If the coor
oatric: P gy) then (dx, 4) is the displacement in the (x, y) plane ¢
prii (€, di) in the ray coordinate plane, so that
giplec”

dinates of Q are
Orresponding to a

dx = (Cdt)n; — (gd& + Tdr)n,,
dy = (Cdt)n,; + (gd& + Tdo)n,.

be the angle which the normal to {2, makes with the x axis (n,

Lﬂﬂwc celation gives the Jacobian matrix of the transformation
The 8

=C0s 8, n, =5sin @),
from (&, f) plane to

i, y) plane
xg X | (—8sin@ Ccos6-Tsinf
Ye Y B gcos8 Csin8+Tcos8) (3a)
where _?_——n _§_+n —a_
goé  tox l'ady’ (5b)

The Jacobian, i.¢., the determinant of the Jacobian matrix, is —gC, which shows that the

rnsformation between (&, ¢) and (x, y) is nonsingular as long as g and C are nonzero
ud finite.

Following Prasad et al.” we can derive a pair of kinematical relations in the conserva-
o form by equating x to x;, and y, t0 y,;:

(g sin ), + (C cos 6 — T'sin 6), =0, (6)
(g cos 8),— (C sin 6 — T cos 6),=0. (7)

o these, we can deduce the followin g partial differential equations

1 1 (9)
8, =—-—C,+—T76,,

Wﬂtm'fuim relations for any propagating curve £2,. Equations (8) an.d (9) or their
& Vation formg (6) and (7) represent a system of two equations involvlfl g four qu:(r:-
iy (gl;iBLC and T, For 3 wavefront which can be defined only in the h{gh‘ff:ﬂ“:()m)_’
eeq eirequency assumption implies that the wavelength of the wave 1S STl

. » il.!m
~Wthe radiys of curvature of €2, and the length over which the state of the med

' i i wave-
oy Q‘:z;tmmmes C and T can be expressed in terms of an amplitude W of the

. : . -
g iy IS unit normaj p. Therefore, to get a determined system of egunattll?::l b
lobeaua: these €Quations another evolution equation for w. Such an eq_uau::mc

Sport €quation along a l'ﬂ}’s, which we shall discuss later 11 this ar '

Ih“:i::a“ "OW show the
Weristic equati

ions (O
equivalence of equations (8) and (9) to the ray equation (

ons) of a hyperbolic system
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S Q4,4

X ‘Qf

Fi1G. 4. P’ and Q’ are positions at time 7 + dr of P and Fi1G. 5. Geometry of wavefronts and rays on the two
Q, respectively, on two rays at a distance of gd& on sides of a kink.

£2.

Au,+ BPu, + B®u, + F=0 (10)

when £, is taken to be the projection on the (x, y) plane of the section of the characteris-
tic surface @(x, y, t) =0 by ¢ = constant plane. Here u« and F(x, ¢, u) are n-dimensional
column vectors and A(x, ¢, u,), B"(x, 1, u,) and B®(x, t, u,) are n X n matrices. In this
case C is a characteristic velocity, C=-¢,/IV¢l and n=V¢/1V¢l. The ray equations
(equations (3.8) and (3.9) of Prasad®) become

g_x_ _ IBMy _ dy _ IB2)y _ (11)
" TIAr DAY W T A DA
and
0 _ 1 _(, .94 BM oD (12)
dr = ZUA) [icﬁf_"' A _96"] &

where [ and r are left and right null vectors of A¢, + B¢, + BP¢,. Since

CUAr) = I(nB'Y + n;B®™)r, ny=cos 8, n,=sin 6

1
(IAr)

1 :
Cy = ———1(CA; _”13?) —nzBéz))r+ I(~n, BY +n, B®)ré;. (13)

lAr
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Using 4DS (4) and (14), and noting that d/d¢ in the (&, r) plane becomes the partial de-
t. we find that eqn (12) reduces to eqn (9). To deduce eqn (8) from eqn (11)

. ative /0 -
:v.re differentiate g? = x; +y¢ with respect to ¢ to get

B8t = XKy Xyt Yo Yo = X Xpp + Vg Vi
qubstituting in the above the expressions for x, and y, from eqn (11) and noting that
x,/g =2 yel8 = mi, We get

& =—m(x1) + m(x2),
= (=mx) + mQa) + (niy + nxs)6,,
«hich is the relation (8).

We can deduce a pair of kinematic equations in conservation form also in the (x, y)
plane. The Jacobian of the transformation from (x, y) plane to (&, 1) plane is given by

I _ —2c(Csinf+Tcosf) —=(Ccos@-Tsinb -
=cos6 '

l .
T =sin@

Equating the partial derivatives &,, to &,, and 1, to t,,, we get the conservation forms

(msﬂ——(T/C)smG] +(sintf:'!+(T/C)c'as.t‘)] - (15)
X b4

g 4

sin@ cos@
( C l—( a ]y-O. (16)

The conservation forms (15) and (16) with T = 0 were obtained by Whitham?®. These con-
rvation laws are not suitable for studying the propagation of the singularities. How-
tver, we shall show later that the two sets (6), (7) and (15), (16) are equivalent in the
%nse that both lead to the same relation between the jumps in 6, C and T.

% Two types of singularities and jump conditions across a kink

T;:lsr::” with an observation which we can take as a basic assumptifm: rays are neither

. ' created. Thus, the variable € introduced on a wavefront remains continuous €ven

{w: legular-i[y appears on the wavefront, which may get folded or suddenly bent. Now
€S arise,

Case g, |

diﬁ‘“'ﬁnli:f.tl

vaﬂiShes iﬂ

the first case 0, g, C and T remain smooth functions satisfying the partial

quations but the Jacobian Ax, y)/X&, t) given by the determinant of (5)
alop the (&, 1) plane. This can happen at an isolated point in the (¢, 1) p!anc or
Ve min the (£, 1) plane. We consider only the situation when the Jacobian =—

gc Va i . -
*an?lzhes along the curve m. The situation is again compllcatecé. —gC can vanish when
1S, an example of which is a sonic line in gas dynamics’, where not only C but
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also T vanishes for wavefronts which are orthogonal to the stream lines. We further re-
strict our consideration to the case in which the Jacobian vanishes due to the Vanishing
of the metric g and C # 0. The image of m in the (x, y) plane 1s an edge. Consider now a
point P on m. It can be pmved'ﬂ that at P there exists an exceptional direction ip the
(&, 1) plane such that the image of any curve passing through P in the exceptional direc.
tion has a cusp on the edge in the (x, y) plane. This direction given by (&,f) is the right
null vector of the Jacobian matrix at P. Since g =0 at P, we get £#0, 7 =0, showing
that the wavefront (¢ = constant) itself is in the exceptional direction at the points P of m,
Thus, the wavefront at any ¢ remains in a domain only on one side of the edge and has a
cusp on it. A ray is not tangential to the wavefront in the (€, 1) plane. Hence, the ray
through P is not in the exceptional direction and is mapped into a curve which is tan-
gential to the edge in the (x, y) plane. This shows that when g = 0 and C # 0, the edge is
an envelope of the rays, i.e., a caustic and a wavefront £ has a cusp type of singularity
on t. Such singularities appear frequently in linear wave propagation. We postulate that
cusps appear also on nonlinear wavefronts.

Case b. We shall show in the next section that eqns (8) and (9) along with the transport
equation for the amplitude in high-frequency approximation imply that the quantities
0, g, C and T, though continuous functions of & at t = 0, may become discontinuous at a
point K(&,(1), ) on £,. For a fixed ¢, limits of these quantities (denoted by subscripts -
and +) as we approach K from lower and higher values of & to &,(z) are finite so that the
jumps [6]=6,-6_, [gl=g.—g-, [C]=C,—-C_ and [T] =T, - T_ are also finite. Since
the jump [8] is nonzero, the curve £, suffers a sudden change in the tangent direction at
a point P which is the image in the (x, y) plane of K in the (&, r) plane, and since [6] # T
(which can be seen from the results in a particular case in the next section), the point P
1s not a cusp of £, but is a new type of singularity, which we call a kink. When we move
on £2, the Jacobian ~gC of the transformation also suffers a finite jump as we Cross 2
kink and neither of the values (—gC). and (—gC), is zero. Figure 5 represents a kink phe-
nomenon in the (x, y) plane. The kink at P on £, occupies a position Q” on £ +a: The
kink path separates two states + and —. PN’ and Q’N are the normals from P and Q' 1o
the negative side of €, 4, and positive side of £2,, respectively. N'P’ = T_ dt is the dis-
placement of a ray along £2, . 4, due to the tangential velocity 7_ and g_ d& is the distance

along Q, . 4, between P’ and Q’. Corresponding quantities g , d€ and T, dr on the positive
side are PQ and ON.

Using the Pythagoras theorem we get
(g d& + T, dn? + (C, dr)? = (g_dE + T_dn? + C_do)?, (17)
which shows that the kink velocity K = d&/dr satisfies the quadratic equation

(82~ g1K? +2(g_T_ - g,T,)K +(C2 - C2) + (T2 ~T2) =0, (18)

which has real roots if

(3—T+_3+T-)2 +(C$ -CE)(gE—gf)r»O. (19)
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e kink velocity K in the (&, 1) plane can also be deduced from the conservation forms

) and (7). The jump relations obtained from these are

( :
—K[ g sin 8] + [C cos 8- T sin 6] =0, (20)
K[gcos 8] +[Csin 8+ T cos 8] =0. (21)

Eliminating g from these two we get eqn (18). This shows that the two conservation laws
(6)and (7) represent conservation of distance in the (x, y) plane and hence are physically
ealistic conservation laws. Eliminating K from eqns (20) and (21), we get the following
Hugoniot CUrVe.

_C.g +C.2, + Bl —g.T,

cos(f_-6,)= Cze. 3C.e 2.C +eC. sin(@_-6.). (22)

Let § be the slope of the path of the kink in (x, y) plane, i.e., § = (dy/dx)yinx. The jump
«lation derived from conservation laws (15) and (16) give the following expressions for

§:

_C_cos@, —C, cosf_

4 C, sin8_—C_sin@, ’ (23a)

=8¢ sin@_—g_sinf@, +(T_g, /C_)cos@_ —(T,g_/C,)cosb,
g, c0s6_—g_cos@, +(T,g_/C,)sinb, ~(T_g, /C.)sinf_

(23b)

respectively. Equating the two expressions for §, we get the relation (22). Thus, the two

sets of conservation laws (6) and (7) are equivalent in the sense that both lead to the
ame Hugoniot relation across a kink.

Itis possible to get one more interesting result using only the kinematical equations.
Consider a wavefront with x axis as the line of symmetry (Fig. 6) with two kinks P; and
Py joining a straight disk (with 6., C_, T.) of the wavefront and two wings (with 6,, C,,
). The question arises: ‘Do the kinks move away from or tend to approach one an

wing

Kink path, 9 - g
dx
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other?. To answer this, we note that the slope S of the upper kink path in (x, y) plape o
negative if S < 0. We consider the whole configuration of the wavefront to be moving in the
positive x direction, then C_> 0 and since 6. = 0 and 0, <0, eqn (23) with § < 0 gives

C_ COS 9+ < C+.. (24)

Thus, a necessary and sufficient condition for the two kinks to approach each other js
eqn (24). If a pair of kinks appears on an initially smooth converging wavefront Sym-
metric with respect to the x axis, then -n/2 < 6, < 0. In this case eqn (24) gives the suf-
ficient condition C. < C, for the two shocks to approach. This sufficient condition was
derived by Kelvahan''.

4. Formation of a kink

In order to study the formation of a kink on a wavefront, we need to add to the kinemati-
cal equations (2), (8) and (9) transport equations, for the amplitude of the wave and
some other related variables along a ray. So far we have used the word wavefront only to
represent a propagating curve £2,. In this section, we shall first clarify the meaning of
wavefront and distinguish between two types of wavefronts. In general, the concept of a
wavefront i1s an approximate one'?. It involves three length scales: the first one denoted
by H is the length over which the ambient medium (in which the wave propagates) varies
significantly; the second one denoted by R is of the order of the radius of curvature of the
wavefront; and the third one denoted by L is the length in the direction normal to the
wavefront over which the amplitude of the wave varies significantly, and is called the
wavelength of the wave whether the wave is periodic or not. A wavefront can be defined
only in high-frequency or short-wavelength limit which implies that the wavelength is
small compared to the other two, i.e., L/H <« 1 and L/R < 1. The concept of a wave-
front becomes exact when a plane wavefront propagates in a uniform medium, i.e., when
H = o0 and R = oo, or when L =0, i.e., the wavefront carries either discontinuities in the
normal derivatives of the amplitude (characteristic waves, more commonly known a5
weak discontinuities) or discontinuities in the amplitude itself for a system governed by
first-order equations (shock waves or contact discontinuities). In any case, a high-
frequency or short-wave assumption implies that all state variables of the system On 4
wavefront can be expressed in terms of the unit normal n of the wavefront and an ampli-
tude variable w. This result is well known for a shock wave and has been shown 10 be
true also for a high-frequency wave (either a continuous wave or a weak discontinit”
ity*'*!%. In this article we are interested in the propagation of a shock front as well 8
that of a one-parameter high-frequency nonlinear wavefronts across which the ampli“.’de
of the wave changes continuously from one nonlinear wavefront to the neighbouring

8 : : !
ones”. We study the formation of a kink on these two types of fronts separately. For de
tails of the derivation of the equations, see Prasad®.

4.1. Nonlinear wavefront (NLWF) in a polytropic gas

For a NLWF which is self-propagating, there appears only one transport equation alolﬂ g
the ray, namely, the equation for the amplitude w on the wavefront. Consider the poly
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ic 8as medium in which the density, particle velocity and

' pressure are denoted b
tr o @) and p, respectively. The ray velocity is given by i
q:—' I 4

X =(q +an,, g+ any),

(25)
nere d iS the local velocity of sound. Then
¥
C=a+mq +nyq,, (26)
T'=-nyqi + mq,. (27)

For NLWF running into a medium in a uniform state at rest (P=po, g=0, p=p,,
;= ag) the perturbations due to a small-amplitude high-frequency wavefront are given by

q = nw, P"'Po=poaowr P"Pgr‘%“’g (28)
so that +1 -
C=a{,+y2 w, T=0, (29)

shere yis the constant ratio of the specific heats. The transport equation along a nonlin-
ar ray (associated with the NLWF) 1s

w, = -—%g—aowﬁé. (30)

We nondimensionalize the x and y coordinates by a typical length R in the problem
(say, the radius of curvature of the NLWF at ¢t = 0 at a suitable point), w by the sound
vlocity ay and time by R/ay and denote the nondimensional quantities also by x, y,  and

v.We also introduce a Mach number m of the NLWF (we shall reserve the symbol M to
enote the Mach number of a shock front) by

"quations (8), (9), (29) and (30) give
g=(m-1)"e""" Y, -

:[h:[ “We have removed the dependence of g on & by redefining &. Successive positions
"onlinear wavefront and the distribution of w on ¢ are finally given by

X; = m cos 6, y, = m sin 6, (33)
1 34

9‘ +E ‘5:0, ( )

m +2"1g, =0, (35)
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subject to the initial values

x(t, 0) = x0($ ), y(t, 0) = )’0(5) (36)
for the NLWF position at ¢ = 0, and initial distribution of amplitude

m(t, 0) = mo(5). (37)
Equation (36) should be consistent with the initial value of 6

6(z, 0) = 6o(3). (38)

The system of eqns (34) and (35) is elliptic for m <0. For m< 1, i.e., w<0, eqn (28)
shows that the nonlinear wave is an expansion wave. In this case, a singularity in the
form of a kink cannot appear on the wavefront. We assume in the sequel that m > 1, j.e,,
the wave is a compression wave. Then the characteristic velocities of the system (34) and
(35) are

€, G =% , (39)

which are real and distinct.

Simple wave solutions of eqns (34) and (35) can easily be obtained by choosing the
initial data (37) and (38) such that the Riemann invariants 8 2, /(y +Dw=r, 5 are
constant. In a simple wave, we can relate m, at any time on a characteristic to its initial
value m(&). In the simple wave with r as constant, a discontinuity in m (as a function of

¢) appears if m(£) < 0, in which case m, tends to —eo at some point on the wavefront at
a critical time given by

t. =22 min {(mo ~ 1)3/2 e2(mo-1) |t (E)(5+ d(my — 1))}, (40)

where § is the set of points on the initial line where m§(£)< 0. Thus, in this special
simple wave solution of eqns (33)-(38), a kink on the wavefront appears at #..

The formation of a kink in a general solution of eqns (33)-(38) has also been studi_cd
recently by Monica and Prasad (unpublished), which we present below. Consider 2 dl?'
continuity in the first derivatives of 8 and m moving with the characteristic velocity ¢ 1f

a continuous arbitrary unsteady solution. Then the jumps in the first derivatives arc re-
lated by

[Br] = - C|[e¢], [m,] = - Cy [m{] (41)

Further, if r be the right vector of the characteristic matrix of eqns (34) and (35), ¢ if

(m-1/2g —¢, |||

which leads to the choice
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rn=1, r, = gcy, (42)

then
[me] = gci[6,]. (43)

oiffe centiating with respect to 7, the characteristic compatibility condition of eqns (34)
1
and (35):

(m; + cymy) + gc\(6, + ¢,6,) =0,

(44)

wcgf:[
—1 d8 14+4m m-—1 1
d m-1dY, —<m:m, + |———— b -
3,"""’\/: & ' 2J2(m-Dg { e 2 m.mg} 2J2(m-1)"“(9'+c‘9€) %
(45)

where _fi___f_)__l_ _‘?_

it "o VGE (46)

ince m itself is assumed to be continuous across the characteristic curve, the jump [m,]
atisfies

. . 4
—m =< [m]. (47)

Let the subscript + denote the value of the quantity in the unsteady state just ahead of the
fscontinuity. Taking the jump of eqn (45), writing the jump of the product terms like

m 8 as
[m, 6,) = [m)[6,] + m,[6,] + 6,,[m], (48)
ud using eqns (40) and (43), we get
1+4m |

d 1 1+ 2m
..._[ = 2
& Sy ) +2{2ﬂ(m—1) nt 3y B

__(1+3m) | +4m
m-1 """ 2g.f2(m—-1)

m§+} [m:] = 0. (49)

an & [ ] - ] L] -
i saﬁn;}te that the state (8, m,) on the positive (with respect to & increasing direc-
] an; 1¢s the original eqns (34) and (35) so that we can express and 6,; in terms
- The transport equation for the discontinuity in m, reduces to

%[%H L, (t)[m, 1+ N,(t)[m,}* =0, (50)
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1 2m
Led = 43{ m=1) +(2+5m)9¢+} (51)
and
1+4

Once the solution on the positive side of the discontinuity is known (note that m and g
being continuous, m = m,, g = g+), the coefficients in the transport egn (50) are known
functions of ¢ along the characteristic curve and hence eqn (50) can be solved. A kink on
the NLWF can possibly appear only when [m,]; - ¢ > 0, which from egn (40) implies that
[m;=0 < 0. The critical time ¢ when a kink appears on the NLWF can be found by
solving the eqn (50) numerically.

4.2. Shock front in a polytropic gas

A shock front is not self-propagating since the waves from behind catch up with the
shock and influence its motion. This is mathematically represented by the existence of an
infinite system of compatibility conditions'’ for the amplitude i and the quantities
i=1, 2, ....The first of these, namely, y,, is given by

ﬂ:=(N1‘§7+N2%')#v (53)

where (N;, N,) represent the unit normals to the shock front and u is given in terms of
the densities p and p, behind and ahead of the shock, respectively, by

_ P—Pu_ (54)

3 Po

For a weak shock 0 < 4 < 1 propagating into a medium in uniform state and at rest, the
problem can be solved approximately by only two compatibility conditions®, which can
be written in terms of the Mach number M of the shock and its normal derivative N,

_ Y +1 ¥ +1 d .
M = — = — e -
,(“ 1 “Lm, " { 3 (”'ax”zay)“}

where x and y are appropriately nondimensionalized here. The two compatibility condr
tions or the transport equations along a shock ray are

M -1 ) (56)
3C 96 +(M-1DN =0

| (55)
shock

M, +

and

N (57)

N, +§5—9¢ +2N? =0,
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G denotes the metric g for the shock front and 6 for a shock front is denoted by ©.
:‘?ﬁe[iminale o, from the above two equations and eqn (8) (with T=0, g=G and
¢

) and get tWO relations from which we can derive a homogeneous relation between
f" N, and G, in the form
npy

i (M -I)N

ZNM, 260M Gr _(M“I)Nf =0.

(58)

cor 2 weak shock, 0 <M -1 K 1 we can ;‘eplace ((M - 1)/M) by M — 1 and get an inte-
l of eqn (38) 17 the form G(M — 1)" N™* = h(&), where h(£) can be obtained from the
= tution of & M and N on the initial position of the shock front. By changing £ to
i:::,;e; function of & we can choose h(E) = 1. In this case, we get'ts

G=N" M- 1)" (59)

e differential equations governing the successive positions of a shock front and the
ggribution of intensity on it can be obtained by solving the equations

x,=Mcos ©, y,=M sin 6, (60)
(M___l)4 é
61’ N2 M§=0’ (61)
(M -1)°
M, +="5—0g +(M-1N =0, (62)
(M -1)*
N +~5 Of +2N? =0. (63)

The system of three equations (61)~(63) is hyperbolic with characteristic velocities in
& (1) plane: 0, +/(M -1)/2G? . Following the procedure used for the equations of
% wonlinear ray theory, we can derive the transport equation for a jump in the first de-

mie across a characteristic curve moving with velocity (M —=1)/2G? in an arbi-
yusteady flow. The equation is

d
-Jf[Mf]+['2(f)[M;]+Nz(f)[M;]Z =0, (64)
M . . .
Elh“":h:%fﬁc:ents L, and N, are known functions of ¢ along the characteristic curve
oW solution and the derivatives M e+s 0. and N, ahead of the characteristic

m::?;(i)) la“d (64) give the evolution of a discontinuity along a characteristic
1y i ﬁrr:l unsteady solution of the equations of the NLRT or shock ray theory.
i sﬂlutiorl;helr ste_-fdy solutions (i.e., solutions which depend only on &). The
Mg gng g m=m(&), 0=08(&) of eqns (34) and (35) of the NLRT is
iy = constant, which represents a plane wavefront with a uniform dis-

of th :
" 2mplitude on it. For the shock ray equations (61)-(63) we note first that
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a constant solution (N =0, @ = constant, M = constant; for this we consider the equa-
tions in terms of the operator d/dA defined in eqn (5b) and not in terms of §; see com.
ments in the next paragraph) representing a plane shock front moving with a uniform
velocity is always a solution. For N # 0 and M # 1, a t-independent solution of eqns (56)
and (57) implies an inconsistency, N = 0. Therefore, the only t-independent solution of
the equation of the shock ray theory gives a shock of constant strength with N =0, iy
which case the ray coordinate system is not valid. Therefore, the transport equation (64)
is valid only for unsteady basic solution.

Before we pass on to a discussion of propagation of the kinks, we make an important
observation regarding the role of the ray coordinate system. In the case of a linear wave-
front, the right-hand sides of eqns (11) and (12) are independent of w and hence the rays
are uniquely determined when the initial position of the wavefront is given. & can be
chosen arbitrarily on the initial wavefront, which implies that the initial value of g can
also be prescribed arbitrarily. Once this value of g is prescribed on the initial wavefront,
its value at ¢ > 0 is completely determined from eqn (8) written in the form

_ (98, 9T
5 =81 o )

where d/dA is defined in eqn (5b). The metric g becomes singular at points where cusp
type of singularities appear on the linear wavefront. The situation for a nonlinear wave-
front and a shock front is different. Here the geometry of the wavefront and the intensity
distribution on it mutually interact. The metric g tends to infinity as m or M tends to l.
Therefore, even though the equations in this section are written for a small-amplitude
wave, these cannot be used to discuss the problem when the wave intensity tends to zero.
One has to go back to the equations written in terms of the operator d/dA. The problem
of shock propagation becomes much more complex due to the fact that G = 0 as N = 0.
One may then be tempted to use again the formulation in terms of the operator d/dA, bul

this formulation is not found to be as good as the use of the ray coordinate system for
numerical computation.

The above theory of shock propagation is a particular case of the new theory of shock
dynamics (NTSD to distinguish it from Whitham's shock dynamics, 1957) for a weak

shock, with only two compatibility conditions retained. We shall return to this theory 1t
Section 6.

5. Propagation of a kink on a nonlinear wavefront

The nondimensional form of the two general conservation laws (6) and (7) for the
propagation of a kink on a weakly nonlinear wavefront in terms of 8, m reduces to

(g sin 6), + (m cos 6),=0 (65)

and

(g cos 6), — (m sin 6), =0, (66)
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where g as @ function of m 1s given by eqn (32). The ki o

elocity X in the
fying eqn (18) with C =m and T = 0 is given by (&, ©) plane

satls

_m2—m?
g2—g%"’ (67)

KZ

The pair of conservation la?ws (65) and (66) with relation (32) is sufficient to give the
complete history of a kink In the ray coordinate system. The mapping to (x, y) plane ob-

ained by integrating eqn (33) gives the successive positions of the nonlinear wavefront
with kinks, whenever and wherever they appear. Here are three examples.

(a) A comparison of ?inez.lr and l?onlinear wavefronts starting from an Initially
parabolic shape 1s shown 1n Flg._ 7. This solution was obtained numerically by Ramana-
than'’. This is a very interesting solution, which shows that the central nonlinear
rays first tend to diverge and after crossing the aréte start converging again. The
nonlinear defocusing first prevents caustic formation but in the process the wave
swength in the central region weakens considerably and, in fact, become less than
the outer adjoining regions so that nonlinearity itself produces a focusing effect.
The result of limited computation (in 1984, we did not have conservation forms and
hence the numerical computation could not be carried out when the kinks appeared)

shows that a pair of kinks have already appeared on the nonlinear wavefront at the
ponts P and Q.

010 = t'=0

f'=0.05
w. ‘ $'=0.10
0.05 ~; = 0.15 £t_6.50

.ii““o'z ) --!‘ '..:.'I‘.'.O-ZS 0-30 ?

_.r'.,..l'

S |

010

6, 7
' : lei' - - L] a
l(nm]w:"far Wavefronts starting from an initially parabolic shape y? = 0.5x and amplitude distribution

. D=0.1 exp(- 16 1) with y=1.4: (...) linear wavefronts and rays; (—) NLWF and nonlinear

o
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FiG. 8. Exact solution of the equations of nonlinear
ray theory with a pair of kinks: (- - -) hinear wavefronts
and rays; (—) NLWF and nonlinear rays.

(b) Nonlinear wavefronts (with kinks) obtained from an exact solution of the equations
of the nonlinear ray theory and linear wavefronts at the corresponding times are shown
in Fig. 8. On the initial NLWF the distributions of 8(&, 0) = 6(&) and m(&, 0) = mo(6)

are given by

and

90(50) =

90 _Z‘JZ(MO -1) = —145, é‘( 0. |

—03sin(ré), 1€1< L,
—03E/IEI, 1E1> 1,

E>0,)

(68)

| (69)

These initial data give rise to two simple wave solutions symmetrically situated with fe'l'
spect to the § axis and separated by a constant state region in which the rays ar¢ paralle
to the x axis’. A pair of kinks appear in the solution and propagate on the NLWF.



A NONLINEAR WAVEFRONT AND A SHOCKFRONT 555

G propagati‘)“ of a kink on a shock front by NTSD

We rewrite the equations _gover:ning the propagation of a weak shock front with a kink
These consist of two equations in conservation form

(G sin ©), + (M cos 0), =0,

(70)
(G cos ©),~ (M sin ©),=0, (71)

and @ partial differential equation
M, + 2G O +(M -DN =0, .

and an algebraic relation between G, M and N, namely, eqn (59). This is a very special
and new situation in which a discontinuous solution is to be considered of a system
consisting of equations not all of which are in conservation form. Mathematical theory
of such a system does not exist. However, we believe that the above system is sufficient
o study any initial or boundary value problem in which a kink appears. Equations (70)
and (71) give the kink velocity in the (&, ¢) plane, which can be used to fit the kink into
wwo states: one ahead of it and another behind it. The two smooth states in the overlap-
ping domains, each containing the kink path in the (&, #) plane, can be found at least in
theory by solving the partial differential equations (61)-(63). This formulation, which
has been just developed, is being tried in extensive numerical computation in the De-
partment of Mathematics of the Institute. We present below the results of numerical
computation of the differential equations of the NTSD and its extensions to include the

sinusoidal state ahead of the shock to simulate the interaction of a shock front with tur-
bulence) by Kevlahan''.

(1) Figure 9 presents a comparison of the results from the NTSD with the experimental
results of Sturtevant and Kulkarni’. My, represents the shock strength on an initially

toncave parabolic shock. We note that the shock at 1.14 in (b) with two kinks completely
agrees with the experimental shock.

1 1.0f
: y of
1.0 ] lem
L 08N\ 08 1.0} 0.6\_0.8
- | o ;
0 1.0 2.0
X
(a) (b) (c)

9. $h
ock - ' : : 5
‘ W) b, ¢ '::c:‘ Sing (time is normalized suitably): a. My, = 1 (acoustic disconttnuity at /= 0.6, 0.8 and 1.0
2,1=0.6,0.8, 1.0, 1.14 (with a pair of kinks); c. Experimental shock My = 1.2 at 7= 1.14.
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Fic. 10. Computation of the shock shape in a sinusoidal shear flow (at a time when kinks have clearly appeared)
as predicted by NTSD (continuous line) and that by DNS (shown by circles) for M, = 1.2. The diameter of the
circle is roughly the width of the DNS shock.

(i1) Figure 10 presents a comparison of the results of the NTSD with direct numerical
simulation (DNS) of full gas-dynamic equations. Equations of the NTSD for an initially
plane shock running into steady sinusoidal velocity field

Z,(x,y)=-03cosy, 7,=0 (73)

a

were derived and solved numerically. It is found that numerical computation in NTSD
takes only a fraction of time taken by DNS, depending upon the size of discretization.
This is because in NTSD the number of space dimensions is reduced by one.

(iii) Separation of the kinks on a shock front at a fixed time. Consider an initially
parabolic shock x = g-yz with initial N =0 and M, = constant. A pair of kinks aiways
appears and the shock strength in the central disk is uniform. Let AY, be the kink scpa-
ration at a particular time. Then Kevlahan'' deduced the following empirical result:

AY.0c M- 1% for Mg < 1.1, (74)

For My > 1.1, AY, increases more slowly.

(iv) Mean shock velocity. For a curved shock with a periodic shape, the mean speed of

the shock can be defined. It is found that an initially plane shock always travels faster In
a nonuniform flow than in a uniform flow.

(v) Shock turbulence interaction. When a plane shock passes through a turbulent
flow, Kevlahan'' also tried to answer the question ‘does the shock distort on the 1arge
(energetic) length scale or small (vortical) length scale?’. He found that the overall
shape of the shock is determined by the energetic length scale but kinks on the shock

fron} form at some extremum points of the vortical fluctuations. He also found that the
vortical kinks form before energetic kinks.
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(his section We have presented above only some of

‘ : : the results obtained numerically
: NTSD. Kevlahan’s thesis contains many more results.
y

It is clear from the a_bove discussion tl}at we have a very satisfactory theory for the for-
ation and prop.a‘gatmn of (ELISpS and kinks or} wavefronts. Kinks are nothing but shocks
of the conservation law§ in thfa ray coordinate system. Therefore, as discussed by
G458 4. kinks reprB§En1 :.rrcvermble phenomena anq local determinacy breaks down. It
has also been shown in this Fefe*rence that an NLWF is self-propagating but a shock front
< not. The systerm ?f equations of the NLRT or the shock ray theory have at least two
distinct characteristic speeds in ({f: t) plane and hence the range of influence of a point
on the initial line increases with time (at least for a short time). Therefore, local deter-
ninacy breaks down for an NLWF and a shock front. Thus, we conclude that

(i) a linear wavefront has all the three properties of self-propagation, local determi-
ncy and time reversibility;

(ii) an NLWF has the self-propagation and time reversibility properties as long as a
kink does not appear but an NLWF with a kink has only one of the three properties, i.e.,
that of self-propagation; and

(iii) a shock front has none of the above three properties.
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