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Abstract 

Existence of two types of singularities, namely, cusps and kinks, on a nonlinear wavefront and a shock front, are 
postulated when these fronts are two-dimensional. The basic conservation laws governing the propagation of kink 
type of singularities are derived. The time of formation of a kink on a weakly nonlinear wavefront in the high- 
frequency approximation and on a weak shock front are derived. Propagation of kinks, obtained from numerical 
solution, is discussed in some cases. This paper raises many open questions regarding these singularities. The 
singularities discussed here appear frequently in gas dynamics and other physical phenomena. Physical motivation 
fcc the derivation of equations governing them have been discussed by Whitham and also by the author in earlier 
publications. Here an attempt is made to develop a theory in which first geometry (without any reference to phys- 
ia) is used to derive as many kinematical results as possible and then physics is included in the form of transport 
equations. 

Keywords: Singularities, cusps, kinks, nonlinear wavefront, shock front. 

1. Introduction 

Singularities on wavefronts are very common physical phenomena. They appear on the 
surface of tea or coffee in a cup when the cup is placed at a suitable place relative to a 
source of light and also when the rays of light pass through a gravitational lens in cos- 
roological phenomena. In the linear theory of wave propagation in any medium governed b 

Y an arbitrary hyperbolic system of partial differential equations, the successive posi- ti

ons of a wavefront can be determined by the well-known Huygens' method of wavefront co n
v
struction using the secondary spherical waves starting from the various points of the 

wa  

tef ron t at any previous time'. Huygens' original method is equivalent to construction 
u_Ir th. e wavefront at any time, using the rays from the various points of the initial position 

th wavefront. We note three fundamental properties of linear wavefront propagation. 
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L'u zone  

FIG. 1. An initially smooth wavefront folds with a cusp type of singularity on a caustic. Rays are taken to be 
straight lines. 

3. Reversibility in time. According to linear propagation, where the amplitude of the 
wave has no influence, if a wavefront 	at time t 1  leads to a wavefront a, at time 
t2  ( >t 1 ), then by reversing the direction of propagation velocity we can get 12, 1  from £Z

. 

We shall point out later in this article the modification, if any, which nonlinearity 
produces on the above three properties of a linear wavefront. 

Continuing the discussion of Huygens' method of linear wavefront construction with 
the help of rays, we note that in many cases the rays envelope a caustic surface separat- 
ing an illuminated zone from a shadow zone. The wavefront folds itself on the caustic 
surface so as to remain in the illuminated zone and possesses a singularity which is a 
cusp (Fig. 1). Consider now a converging wavefront (for example, a wavefront which 
was initially a parabola); the caustic has two branches starting from an arete. In this 

case, the wavefront develops a pair of singularities as shown in Fig. 2. If all the rays 
converge to a point, the caustic degenerates into a focus. In the domain bounded by the 
two branches of the caustic, the linear wavefront crosses itself at a node. Study of very 

weak nonlinear effects on a node of a linear wavefront cannot be done in the single-m0

high-frequency approximation, which forms the basis of our study in this article. It also 
appears that nodes are rare when (genuine) nonlinearity is present. Nodes 
from the study of singularities in this article. 	

are excluded 

It is interesting to view the geometry of the successive positions of a plane wavefront 

after it is reflected from the interior surface of a circular cylinder (Fig. 3). The illumi - 

nated part of the caustic is the domain bounded by the reflecting surface and the caustic s  

surface. Soon after the reflection, say at the time t i , the wavefront develops a pair of 
cusps both of which approach the arete at a critical time t c . after which the singularities 
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FIG. 2. A caustic generally starts from an arete, which 
itself is a cusp of the caustic. 

FIG. 3a. Caustic on the surface of tea in a cup, ne- 
glecting multiple reflections of the rays. b. Four typi- 
cal shapes of the wavefront after a plane wavefront is 
reflected. 

disappear and the wavefront becomes smooth as shown at time t 4  > tc . This represents a 
Phenomenon in which the transition at t c  takes place in reverse order of that depicted in 
Fig. 2 when the wavefront just meets the arete. This is an important observation and 
shows that the propagation of a linear wavefront is a reversible process, which we shall 
show not to be correct in general for a nonlinear wavefront. 

Singularities do appear also on nonlinear fronts. Apart from the cusp singularities (we 
Postulate that they appear also on a nonlinear front), we encounter a new type of singu- ( 

ari t.Y on a nonlinear front and we call this singularity a kink, across which both the di- 
ectl°11  of the normal and the amplitude (or intensity) of the discontinuity suffer finite 

"jRIPs. The existence of a kink was first shown theoretically by Whitham in 1957 by an 
approximate theory called shock dynamics. He named a kink on a shock front as a 

.lic-shock. The first experimental results showing kinks on a shock front in gaseous 
ill'oen_ ea . W_ ere obtained by Sturtevant and Kulkarni 3 , and even today it is a great challenge 

th:ty various observed properties of the flow field containing these kinks, especially r If 

nsitton from the shock fronts containing kinks to the linear acoustic fronts con-taini ng Only Cusps.  

Sin gularhitie s  of wavefronts were first discovered by Huygens in 1654. In the solution 
linear 	

. d  

t det Perbolic partial differential equations, singularities have been stud 

	
in 

air but these are related to the characteristics of multiplicity higher than one. 
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We are interested in problems in which the multiplicity of the characteristics is Uni- 
formly equal to one. Recently, ArnoId s  has also studied singularities of caustics and 
wavefronts. However, our approach is different and it is not clear whether the time evo- 
lution of the singularities can also be studied by the approach followed by Arnold. 

Formation of singularities on a wavefront can be studied from the differential forms of 
suitable equations since, till the singularities are formed, the solution is either smooth or 
has discontinuities in higher-order derivatives. But as soon as a singularity appears on a 
wavefront, a discontinuity either in the amplitude or in the normal direction or in both 
comes into play. Hence propagation of singularities can be studied only from the conser- 
vation forms of the governing equations. In the next section we shall derive the conser- 
vation forms in the most general situation. Most of the material presented in this article 
is new. However, the research problems and the spirit of investigation of these is quite 
old and has been going on in our group for the last 20 years. Details of the derivation of 
many results here and related concepts can be found in the book by Prasad 6 . 

2. Conservation forms of the kinematical equations of a propagating curve 

Let a be a curve representing a wavefront which occupies different positions at differ- 
ent times. For discussion in this section, wavefront refers also to a shock front. Distinc- 
tion between a wavefront, across which state variables are continuous, and a shock front 
needs to be taken into account when we consider the dynamical equations. Associated 
with a wavefront f2„ there exists at every point of it a ray velocity x = 	x2). This 
gives a one-parameter family of curves, called rays, each one of which is traced by a 
point on a moving with velocity x. Expression for x can be obtained only from the 
properties of the medium in which £2, propagates and depends also on the unit normal 
n = (n i , n2) of a. We write the equation of 12, in the form 

Q. x = x(7 01 y = y(9 t), 	 (1) I. 

where constant values of I give the positions of the propagating curve £2, at different 
times and 4= constant represents a ray. In the case of isotropic wave propagation, rays 
are orthogonal to the family of wavefronts .C2,. When the equation of a is represented in 
terms of a ray coordinate system (4, t) as in eqn (I) the ray velocity x = (Xi, X2) is given 
by  

(xt, yt) = (xis x2). 

C, the speed of propagation of fz, is 

C = (n, X) a nai n212 

and the component T of the ray velocity in the direction of the tangent to a is 

T = —nal ± niX2- 

(2) 

(3) 

(4) 

Consider the curves £2, and a di . Let P' and Q' be the positions at time t + dt of P and.  
Q, respectively, on two rays at a distance gg on a (Fig. 4), where g is the associated 
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dx = (Cdt)Th — (gg + Tdr)n2, 

dy = (CdOn2 + (gg ± TdOni. 

obe the angle which the normal to 12, makes with the x axis (n 1  = cos 0, n 2  = sin 0). 

The above relation gives the Jacobian matrix of the transformation from 	t) plane to 
y) plane 

(x4  x: ) ,_  r—g sine 

y4 Y r 	g cos° 

Ccos0— Tsin0) 

Csin0+TcoseF (5a) 

Ogre 	
d 	a 

gdi sn2  dx 
+n 

 ay * 
	

(5b) 

The Jacobian, i.e., the determinant of the Jacobian matrix, is -gC, which shows that the 
transformation between 	t) and (x, y) is nonsingular as long as g and C are nonzero 
Lod finite. 

Following Prasad et al..?  we can derive a pair of kinematical relations in the conserva- 
tion form by equating xs  to x, 4  and y4, to y,4 : 

(g sin 0), + (C cos — T sin (3)= 0, 	 (6) 

(g cos t9), — (C sin e — T cos 6) 4 = 0. 	 (7) 

From these, we can deduce the following partial differential equations 

gr  = Ce4  + T{, 	 (8) 

1 	 (9) 
g 	g 

kinematical relations for any propagating curve 12,. Equations (8) and (9) or their 
liliesvatlon forms (6) and (7) represent a system of two equations involving four quan- 

E o IC and T. For a wavefront which can be defined only in the high-frequency 
giLlala j
ittngh-frequency assumption implies that the wavelength of the wave is small corn- 

to the radius of curvature of a and the length over which the state of the medium 
frotit  in k quantities C and T can be expressed in terms of an amplitude w of the wave- 

and its unit normal n. Therefore, to get a determined system of equations, we 

toklo
to 	

t 
an  these equations another evolution equation for w. Such an equation turns ou 

; a sport equation along a rays , which we shall discuss later in this articl e. 
e sh all n  

aracteristic 	• 
14tbich 	ow s" the equivalence of equations (8) and (9) to the ray equations (or 

equations) of a hyperbolic system 
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FIG. 4. P and Q' are positions at time t + dt of P and 	FIG. S. Geometry of wavefronts and rays on the two 
Q, respectively, on two rays at a distance of gc14 on 	sides of a kink. 

Au, + B (1)ux  + B(2)uy  + F= 0 	 (10) 

when .0, is taken to be the projection on the (x, y) plane of the section of the characteris- 
tic surface 0(x, y, t) = 0 by t = constant plane. Here u and F(x, t, u) are n-dimensional 
column vectors and A(x, t, u,), 13 (1)(x, t, u,) and B(2)(x, t, u,) are n x n matrices. In this 
case C is a characteristic velocity, C = -4,I IVØ1 and n = Vtfr I I V01. The ray equations 
(equations (3.8) and (3.9) of Prasad 8 ) become 

...ear= 

dt 

18 (1) r _ 
Mr 

1 5-1.1  = 1B (2) r  

dt 	lAr 	= i2 
(11)  

and 

de _ 	1 	dA 	di3 (1) 	698(2) 	 (12) 
dt 	g(lAr) it" 	anl 	—n2 	r ' 

where 1 and r are left and right null vectors of AO, + B (1)0,-1- B(2)0y . Since 

C(lAr) = kna3 (1)  + n2B(2))r, n 1  = cos 0, n2 = sin 0 

1 	 1 	 (13) C — — 	1(CA n 13 (1)  — n2  13 (2) )r + 	1(an2 B(I )  + ni B (2) )r0 4 . — 	4 4 	4 	(r 4 	 e)   
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using eqns  (4) and (14), and noting that d/dt in the (, t) plane becomes the partial de- 

rivative did e', we find that eqn (12) reduces to eqn (9). To deduce eqn (8) from eqn (11), 

we differentiate g2  = .1 +A with respect to t to get 

ggt  = x4  X$  + Yc  Ye = X4 Xt4 + Y4 Yq• 

Substituting in the above the expressions for 

x Ig=en2 ,  )7 4 1g = ni, we get 
? 

x, and y, from eqn (11) and noting that 

gi  = —n2(x1) 4 + ni(X2) 4  

= (—nal  + n0(2) c  + (niX1 ± n2X2)0 4  , 

which is the relation (8). 

We can deduce a pair of kinematic equations in conservation form also in the (x, y) 
plane. The Jacobian of the transformation from (x, y) plane to (, t) plane is given by 

- g+(Csint9+ Tcos6) --k(Ccos0--Tsin0 

( 1'  t y 	*cos 0 	 *sine/ 	J . 
	 (14) 

Equating the partial derivatives ‘ to ),x  and txy to tyx 1 we get the conservation forms 

(cos0—(T/C)sin0) (sin0+(T/C)cos0)  

	

+ 	 = 0, 	 (15) 
g 	i 	g 	Y 

	

(sin()) 	(cos())  

	

C ) 	C ) = Cl. 	
(16) 

	

Ix 	 Y 

The conservation forms (15) and (16) with T = 0 were obtained by Whitham 2 . These con- 
servation laws are not suitable for studying the propagation of the singularities. How- 
ever, we shall show later that the two sets (6), (7) and (15), (16) are equivalent in the 
sense that both lead to the same relation between the jumps in 0, C and T. 

3. Two types of singularities and jump conditions across a kink 
W.  e start with an observation which we can take as a basic assumption: rays are neither 
los nor created. Thus, the variable introduced on a wavefront remains continuous even 
l
t} 

a singularity appears on the wavefront, which may get folded or suddenly bent. Now 
two cases arise. 

eine  a. .In the first case 0, g, C and T remain smooth functions satisfying the partial 
diff_e.rential equations but the Jacobian d(x, 0(2(4, 0 given by the determinant of (5) 
vani

shes in the (, 0 plane. This can happen at an isolated point in the (, t) plane or 
along 

a. curve m in the (, t) plane. We consider only the situation when the Jacobtan = — 
v:Ishes along the curve m. The situation is again complicated. —gC can vanish when 

' shes, an example of which is a sonic line in gas dynamics 9 7 where not only C but 
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also T vanishes for wavefronts which are orthogonal to the stream lines. We further re- 
strict our consideration to the case in which the Jacobian vanishes due to the vanishing 
of the metric g and C * 0. The image of m in the (x, y) plane is an edge. Consider now a 

point P on M. It can be proved")  that at P there exists an exceptional direction in the 

(4, t) plane such that the image of any curve passing through P in the exceptional direc- 
tion has a cusp on the edge in the (x, y) plane. This direction given by (4,i) is the right 
null vector of the Jacobian matrix at P. Since g = 0 at P, we get # 0, i = 0, showing 
that the wavefront (t = constant) itself is in the exceptional direction at the points P of m. 
Thus, the wavefront at any t remains in a domain only on one side of the edge and has a 
cusp on it. A ray is not tangential to the wavefront in the (4, 0 plane. Hence, the ray 
through P is not in the exceptional direction and is mapped into a curve which is tan- 
gential to the edge in the (x, y) plane. This shows that when g = 0 and C # 0, the edge is 
an envelope of the rays, i.e., a caustic and a wavefront 12, has a cusp type of singularity 
on t. Such singularities appear frequently in linear wave propagation. We postulate that 
cusps appear also on nonlinear wavefronts. 

Case b. We shall show in the next section that eqns (8) and (9) along with the transport 
equation for the amplitude in high-frequency approximation imply that the quantities 
0, g, C and T, though continuous functions of 4 at t = 0, may become discontinuous at a 
point K(;(0, t) on JO,. For a fixed t, limits of these quantities (denoted by subscripts — 
and +) as we approach K from lower and higher values of to 4(t) are finite so that the 
jumps [0] = 0.— 0_, [0 = g+  — g_ , [C]= C..— C_ and [71 = 7:, — T_ are also finite. Since 
the jump [0] is nonzero, the curve 12, suffers a sudden change in the tangent direction at 
a point P which is the image in the (x, y) plane of K in the (4, t) plane, and since [8}* it 

(which can be seen from the results in a particular case in the next section), the point P 
is not a cusp of a but is a new type of singularity, which we call a kink. When we move 
on 12„ the Jacobian —gC of the transformation also suffers a finite jump as we cross a 
kink and neither of the values (—gC)_ and (—gC) +  is zero. Figure 5 represents a kink phe- 
nomenon in the (x, y) plane. The kink at P on a occupies a position Q' on 12+d:. The 

kink path separates two states + and —. PN' and Q`N are the normals from P and Q' to 
the negative side of a + dr and positive side of £2,, respectively. N'!"= T dt is the dis- 
placement of a ray along a +dt due to the tangential velocity T and g_ g is the distance 
along (2, 4. de  between P' and Q'. Corresponding quantities g + c14 and T + dt on the positive 
side are PQ and QN. 

Using the Pythagoras theorem we get 

(g+  d4 + T., dt) 2  + (C., dt) 2  = (g_ cg + T_ dt) 2  + C_ dt) 2  , 	 (17) 

which shows that the kink velocity K = d4Idt satisfies the quadratic equation 

(18) 

which has real roots if 

(19) (g_T+ — g +T_) 2  +(C 	e.)> a 
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The  kink velocity K in the .(, 0 plane can also be deduced from the conservation forms 

0) and (7). The jump relations obtained from these are 

—K[g sin el + EC cos 0 — T sin 01= 0, (20) 

K[g cos 9] + [C sin 0 + T cos 0]= 0. (21) 

Eliminating 0 from these two we get eqn (18). This shows that the two conservation laws 

(6) and (7) represent conservation of distance in the (x, y) plane and hence are physically 
realistic conservation laws. Eliminating K from eqns (20) and (21), we get the following 

flu goniot curve: 

Ceg- + Ca+  ±  g+ T- g-T  cos(e_ 	 + sin (e_--e k ). 	(22) —Of) Clig+ 	g+C_ + g_C+  

Let S be the slope of the path of the kink in (x, y) plane, i.e., S = (dy/dx)kink. The jump 
relation derived from conservation laws (15) and (16) give the following expressions for 

S: 

S = 
C

. 
cos 0

+ 	
— C

+ 
cos 0

- 	 (23a) 
C+  sin 0_ — C_ sin 0 +  

g+  sine_ — g_ sin0+  + (7:4+  / 	cos& —(T+ g_ / C+ )cose+  
S — 	 (23b) 

g+  cost — g_ cos 0+  + (T+ g_ /C) sin 0+  —(7_g / CI) sin 0_ 

respectively. Equating the two expressions for 5, we get the relation (22). Thus, the two 
sets of conservation laws (6) and (7) are equivalent in the sense that both lead to the 
same Hugoniot relation across a kink. 

It is possible to get one more interesting result using only the kinematical equations. 
Consider a wavefront with x axis as the line of symmetry (Fig. 6) with two kinks P i  and 
P2joining a straight disk (with 0 , C_, 71) of the wavefront and two wings (with ec, 
11.). The question arises: 'Do the kinks move away from or tend to approach one an 

Y 
cz.  0 	Wing L. 

i P 1 	Kink path, A : s 
.... _.9 l c,T ) 	 dx 

0 ---_______ 
Or- 0 X 

--Disk 
Pt " 

Ing 

N si t 

ha.6. 
The two kinks approach one another if S < 0.  
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other?'. To answer this, we note that the slope S of the upper kink path in (xl y) plane is 

negative if S < 0. We consider the whole configuration of the wavefront to be moving in the 
positive x direction, then C_ > 0 and since 0_ = 0 and 0~ <0, eqn (23) with S < 0 gives 

C_ cos 0, < C.f. 	 (24) 

Thus, a necessary and sufficient condition for the two kinks to approach each other is 
eqn (24). If a pair of kinks appears on an initially smooth converging wavefront sym- 
metric with respect to the x axis, then --m/2 < Oi. < 0. In this case eqn (24) gives the suf- 
ficient condition C_ < Ci. for the two shocks to approach. This sufficient condition was 
derived by Kelvahan l I . 

4. Formation of a kink 

In order to study the formation of a kink on a wavefront, we need to add to the kinemati- 
cal equations (2), (8) and (9) transport equations, for the amplitude of the wave and 
some other related variables along a ray. So far we have used the word wavefront only to 
represent a propagating curve 12,. In this section, we shall first clarify the meaning of 
wavefront and distinguish between two types of wavefronts. In general, the concept of a 
wavefront is an approximate one I2. It involves three length scales: the first one denoted 
by H is the length over which the ambient medium (in which the wave propagates) varies 
significantly; the second one denoted by R is of the order of the radius of curvature of the 
wavefront; and the third one denoted by L is the length in the direction normal to the 
wavefront over which the amplitude of the wave varies significantly, and is called the 
wavelength of the wave whether the wave is periodic or not. A wavefront can be defined 
only in high-frequency or short-wavelength limit which implies that the wavelength is 
small compared to the other two, i.e., LIH << 1 and LIR << I. The concept of a wave- 
front becomes exact when a plane wavefront propagates in a uniform medium, i.e., when 

H = co and R = 00, or when L = 0, i.e., the wavefront carries either discontinuities in the 

normal derivatives of the amplitude (characteristic waves, more commonly known as 

weak discontinuities) or discontinuities in the amplitude itself for a system governed by 

first-order equations (shock waves or contact discontinuities). In any case, a high- 

frequency or short-wave assumption implies that all state variables of the system on .a 

wavefront can be expressed in terms of the unit normal n of the wavefront and an ampli - 
tude variable w. This result is well known for a shock wave and has been shown to be 
true also for a high-frequency wave (either a continuous wave or a weak discontinu - 
48,13,14

. In this article we are interested in the propagation of a shock front as well as 
that of a one-parameter high-frequency nonlinear wavefronts across which the amplitude 
of the wave changes continuously from one nonlinear wavefront to the neighbouring 
ones s . We study the formation of a kink on these two types of fronts separately. For de- 
tails of the derivation of the equations, see Prasad 6 . 

4.1. Nonlinear wavefront (NLWF) in a polytropic gas 

For a NLWF which is self-propagating, there appears only one transport equationalo n g 

the ray, namely, the equation for the amplitude w on the wavefront. Consider the Poi Y 
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m ic gas medium in which the density, particle velocity and pressure are denoted by p, 
tiv r  i n  q2 ), and p, respectively. The ray velocity is given by 
et w it 

x = (q i  ani, q2  + an2), 	 (25) 

where a 
is the local velocity of sound. Then 

C= a + nig' -4- n2 q2, 	 (26) 

T= –n2q1 + niq2. 	 (27) 

For a NLWF running into a medium in a uniform state at rest (p = Po, q = 0, p = Po, 
a , ao) the perturbations due to a small-amplitude high-frequency wavefront are given by 

= Mv, P Po = Poclow,  
Po 

P Po = 7
0 

w= (28) 

y+1 	n  
C=ao  +— 2  w, =u, (29) 

where yis the constant ratio of the specific heats. The transport equation along a nonlin- 
ear ray (associated with the NLWF) is 

– — a
° 
we

4 • 	
(30) 

– 2g
1 
  

We nondimensionalize the x and y coordinates by a typical length R in the problem 
(say, the radius of curvature of the NLWF at t = 0 at a suitable point), w by the sound 
velocity ao  and time by Rlao  and denote the nondimensional quantities also by x, y, t and 
w. We also introduce a Mach number m of the NLWF (we shall reserve the symbol M to 
denote the Mach number of a shock front) by 

	

m = 1+ 
 y +1  

2 
w. 	 (31) 

Equations (8), (9), (29) and (30) give 

g = (m – 1)-2e-2(nt- 1) , 	 (32) 

141,ele we have removed the dependence of g on by redefining 	Successive positions 

°I a nonlinear wavefront and the distribution of w on t are finally given by 

x, = m cos 61, 	y, = m sin 0, 
	 (33) 

	

Q + —m 4  = 0, 
	 (34) 

m + 
m – I 

0 =0, 
2g 

(35) 
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subject to the initial values 

x(t, 0) = xo()) 	Y(t, 	= Yo() 	 (36) 

for the NLWF position at t = 0, and initial distribution of amplitude 

m(t, 0) = 	 (37) 

Equation (36) should be consistent with the initial value of 0: 

e (t, 0) = eo(). 	 (38) 

The system of eqns (34) and (35) is elliptic for m < 0. For in <1, i.e., w < 0, eqn (28) 
shows that the nonlinear wave is an expansion wave. In this case, a singularity in the 
form of a kink cannot appear on the wavefront. We assume in the sequel that m > I, i.e., 
the wave is a compression wave. Then the characteristic velocities of the system (34) and 
(35) are 

ism-1 
(39) C2 =_\/ 2g2  2g 2 ' 

which are real and distinct. 

Simple wave solutions of eqns (34) and (35) can easily be obtained by choosing the 
initial data (37) and (38) such that the Riemann invariants UT- 24(y +1)w = r, s are 

constant. In a simple wave, we can relate rtz 	at any time on a characteristic to its initial 
value m(g). In the simple wave with r as constant, a discontinuity in m (as a function of 

appears if tn6© < 0, in which case rrz tends to —00 at some point on the wavefront at 
a critical time given by 

te  = 2J min {(mo  — 0 3/2  e2(rno -1)  I Mb (4)1(5+ 4(mo  —1)))-1, 	(40) 
4Es 

where S is the set of points on the initial line where m6()< 0. Thus, in this special 

simple wave solution of eqns (33) (38), a kink on the wavefront appears at t. 

Theformation of a kink in a general solution of eqns (33)—(38) has also been studied 

recently by Monica and Prasad (unpublished), which we present below. Consider a dis- 
continuity in the first derivatives of 0 and m moving with the characteristic velocity ct 
a continuous arbitrary unsteady solution. Then the jumps in the first derivatives are re - 
lated by 

[es] = — c i [(94], 	[Ind = ci [ny. (4 1) 

Further, if r be the right vector of the characteristic matrix of eqns (34) and (35), L e" if  

(m-1 ) / 2g 

1 / g][r i  
=0, 

r2  

which leads to the choice 



• 

A NONLINEAR WAVEFRONT AND A SHOCKFRONT 	 549 

r2  = ges t , 	 (42) 

then 	
[me] = gc 1 [041. 	 (43) 

Differentiating with respect to t, the characteristic compatibility condition of eqns (34) 

and (35): 
(in, + c 1 nz 4) + gc ) (0, + c 1 94) = 0, 	 (44) 

we get 

d 	rintis  de, + _ 1+4m 
--gli 4 1 2 di 	212(m — 1)g 
dt 

1  
V 2 

m,me  1 + 
2. 42(m— 1)

- mr (9, + 44 ) = 0, 

(45) 

where 
d _ d 	d 

(46) --&---rci  ,t7  .  

since m itself is assumed to be continuous across the characteristic curve, the jump [in,] 

satisfies 	 , 

[add mt ] . _did tmi I  . 
(47) 

Itt the subscript + denote the value of the quantity in the unsteady state just ahead of the 
discontinuity. Taking the jump of eqn (45), writing the jump of the product terms like 
*et] as 

	

fm, 00 = fm,1[041+ mi4 [04] + Oam,J, 	 (48) 

'Musing eqns (40) and (43), we get 

d 	1 + 4m 	I 1 	 1  	1+2m, ______En, ]2 	 o t+ + 	174, 
2 2j2(m— 0 	2g 

+  

(1+ 3m) 	1+4m  
m + 	ME + 1[170 = O. 	(49) 

mei t+  2u2(m — 1) ' 

"now , note that the state (0+ , m+) on the positive (with respect to increasing direc- 
)sattsfies the original eqns (34) and (35) so that we can express m, and O +  in terms 
t' and Mr. The transport equation for the discontinuity in m, reduces to 

d 
it [m, ] + Li  (t)[m, ] + N I  (t)fm, 12  = 0, 	 (50) 
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1 	2m  uk+ Li  0) = Tr?'1 j2(m  — 1) 
+(2 + 5m)0 4+ } 

(51) 

and 
1+4m  <0. 	

(52) 

Once the solution on the positive side of the discontinuity is known (note that m and g 
being continuous, m = m+, g = g+), the coefficients in the transport eqn (50) are known 

functions of t along the characteristic curve and hence eqn (50) can be solved. A kink on 
the NLWF can possibly appear only when [m,], = 0  > 0, which from eqn (40) implies that  

<0. The critical time t, when a kink appears on the NLWF can be found by 
solving the eqn (50) numerically. 

4.2. Shock front in a polytropic gas 

A shock front is not self-propagating since the waves from behind catch up with the 
shock and influence its motion. This is mathematically represented by the existence of an 
infinite system of compatibility conditions '5  for the amplitude p and the quantities p i , 
i = 1, 2, ... . The first of these, namely, p h  is given by 

dx 	- dy 	
(53) 

where (N1 , N2 ) represent the unit normals to the shock front and p is given in terms of 
the densities p and p0  behind and ahead of the shock, respectively, by 

P —  Po  
P = 

Po 
(54) 

For a weak shock 0 < p << 1 propagating into a medium in uniform state and at rest, the 
problem can be solved approximately by only two compatibility conditions 6, which can 

be written in terms of the Mach number M of the shock and its normal derivative N, 

M = (
i 	+1 ) 
1+

y
— p 	N ={ 7±1 (N i ed  +N a)} 	 (55) 

4 	 4 	dx 	2  Ty ki  shock I  ) shock, 

where x and y are appropriately nondimensionalized here. 
tions or the transport equations along a shock ray are 

M 1

i-  

— 
M, + 	04 +(M —1)N = 0 

2G 

The two compatibility cond 

(56) 

and 

(57 ) N N ci  
+ 2N 2  = 0, 

n t + 2G t'4  
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lere G denotes the metric g for the shock front and 8for a shock front is denoted by e. 
wi  
We 

eliminate  e, from the above two equations and eqn (8) (with T =0, g = G and 
ho and get two relations from which we can derive a homogeneous relation between 

d G in the form 
if Ng an  

2NMI + 
(M –I)N  

2GM 
- G

s (M –1)N, = 0. 

by M – 1 and get an inte- gar a weak shock, 0 < M – I 	1 we can replace ((M 01M) 
; of eqn  (58) in the form G(M –0 4  N-2  = h(4), where h(4) can be obtained from the 

-distribution of g, M and N on the initial position of the shock front. By changing to 

another function of we can choose h(e) = 1. In this case, we get 16  

G = N2  (M 1)-4. 	 (59) 

The differential equations governing the successive positions of a shock front and the 
distribution of intensity on it can be obtained by solving the equations 

	

x, = m cos e, y, = M sin e, 	 (60) 
_ lys 

e,+ 	0, 	 (61) 
N 2  

m t  + 
 -05  

2N 
e4  +(M —1)N = 0, 	 (62) 

( 	1)4 
t 	

2N 
0

4 
+2N 2  =O. 	 (63) 

'the system of three equations (61)–(63) is hyperbolic with characteristic velocities in 
itt(,t) plane: 0, ±i(M –1)12G2  . Following the procedure used for the equations of 
knonlinear ray theory, we can derive the transport equation for a jump in the first de- 

Itative across a characteristic curve moving with velocity Al(M –1)/ 2G 2  in an arbi- 
illy unsteady flow. The equation is 

—
dt

EM
E
D-L2 (0[M,HN2 (tHM,J2  =0, 	 (64) 

'teeth e Coefficients L2 and N2 are known functions of t along the characteristic curve 
14  known solution and the derivatives M 0 and N ahead of the characteristic e 

Itticilis (5°) and (64) give the evolution of a discontinuity along a characteristic 
ttlisla general unsteady solution of the equations of the NLRT or shock ray theory. 

?1t an
d 

tosofliuntdionthe(m  = mb  their 	(i.e., solutions which depend only on 4). The 

%%Ill a d - 	8 = -6(4)) of eqns (34) and (35) of the NLRT is 
1% ot ,, n 0  = constant, which represents a plane wavefront with a uniform dis- 

"fie amplitude on it. For the shock ray equations (61)–(63) we note first that 

(58) 
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a constant solution (N = o, e= constant, M = constant; for this we consider the equa- 
tions in terms of the operator dIdA defined in eqn (5b) and not in terms of ; see com- 
ments in the next paragraph) representing a plane shock front moving with a uniform 
velocity is always a solution. For N # 0 and M # 1, a t-independent solution of eqns (56) 
and (57) implies an inconsistency, N = 0. Therefore, the only 1-independent solution of 
the equation of the shock ray theory gives a shock of constant strength with N = 0, in 
which case the ray coordinate system is not valid. Therefore, the transport equation (64) 
is valid only for unsteady basic solution. 

Before we pass on to a discussion of propagation of the kinks, we make an important 
observation regarding the role of the ray coordinate system. In the case of a linear wave- 
front, the right-hand sides of eqns (11) and (12) are independent of w and hence the rays 
are uniquely determined when the initial position of the wavefront is given. can be 
chosen arbitrarily on the initial wavefront, which implies that the initial value of g can 
also be prescribed arbitrarily. Once this value of g is prescribed on the initial wavefront, 
its value at t > 0 is completely determined from eqn (8) written in the form 

aT 
( &= gC-d---

19 
 +— A It} 

where didA, is defined in eqn (5b). The metric g becomes singular at points where cusp 
type of singularities appear on the linear wavefront. The situation for a nonlinear wave- 
front and a shock front is different. Here the geometry of the wavefront and the intensity 
distribution on it mutually interact. The metric g tends to infinity as m or M tends to I. 
Therefore, even though the equations in this section are written for a small-amplitude 
wave, these cannot be used to discuss the problem when the wave intensity tends to zero. 
One has to go back to the equations written in terms of the operator dl dA. The problem 
of shock propagation becomes much more complex due to the fact that G --> 0 as N -4 0. 

One may then be tempted to use again the formulation in terms of the operator dIdA, but 

this formulation is not found to be as good as the use of the ray coordinate system for 
numerical computation. 

The above theory of shock propagation is a particular case of the new theory of shock 
dynamics (NTSD to distinguish it from Whitham's shock dynamics, 1957) for a weak 
shock, with only two compatibility conditions retained. We shall return to this theory in 
Section 6. 

5. Propagation of a kink on a nonlinear wavefront 

The nondimensional form of the two general conservation laws (6) and 
propagation of a kink on a weakly nonlinear wavefront in terms of 0, m reduces to 

(7) for the 

(g sin 0), ± (m cos 0) 4 = 0 	 (65) 

and 

(66) (g cos 0), — (m sin 0)4 = 0, 
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where 	a function of m is given by eqn (32). The kink velocity K in the (4, t) plane slatiesrfyie g  ng eqn (18) with C = m and T = 0 is given by 

K2  = m2 m4_2 

2 	2 ' g+ g- (67) 

The  pair of conservation laws (65) and (66) with relation (32) is sufficient to give the 
complete history of a kink in the ray coordinate system. The mapping to 

(x, y) plane ob- 
tained by integrating eqn (33) gives the successive positions of the nonlinear wavefront 
with kinks, whenever and wherever they appear. Here are three examples. 

(a) A comparison of linear and nonlinear wavefronts starting from an initially 
parabolic shape is shown in Fig. 7. This solution was obtained numerically by Ramana- 
than ". This is a very interesting solution, which shows that the central nonlinear 
rays first tend to diverge and after crossing the arete start converging again. The 
nonlinear defocusing first prevents caustic formation but in the process the wave 
strength in the central region weakens considerably and, in fact, become less than 
the outer adjoining regions so that nonlinearity itself produces a focusing effect. 
The result of limited computation (in 1984, we did not have conservation forms and 
hence the numerical computation could not be carried out when the kinks appeared) 
shows that a pair of kinks have already appeared on the nonlinear wavefront at the 
points P and Q. 
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0 	10 	20 	30 	40 
X 

Ho. 8. Exact solution of the equations of nonlinear 
ray theory with a pair of kinks: (- - -) linear wavefronts 
and rays; (—) NLWF and nonlinear rays. 

(b) Nonlinear wavefronts (with kinks) obtained from an exact solution of the equations 
of the nonlinear ray theory and 
in Fig. 8. On the initial NLWF 
are given by 

{— 03sin(it), 
eo(40) = 

(68) 

and 

0 0  + 212010  - = 1.45, 

00  — 21/2(M0  —1) = —1.45, 

(69) 

These initial data give rise to two simple wave solutions symmetrically situated with re - 
„ 

spect to the 4 axis and separated by a constant state region in which the rays are parallel 
to the x axis'. A pair of kinks appear in the solution and propagate on the NLWF. 

linear wavefronts at the corresponding times are shown 
the distributions of 61 (, 0) = 00(4) and m(4, 0) = nlA) 
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6.  propagation of a kink on a shock front by NTSD 

We rewrite the equations governing the propagation of a weak shock front with a kink. 
These consist of two equations in conservation form 

(G sin 0), + (M cos 69 4  = 0, (70) 

(G cos 0), - (M sin 0) 4 = 0, (71) 

and a partial differential equation 

M —1  
(73) 2G 

and an algebraic relation between G, M and N, namely, eqn (59). This is a very special 
and new situation in which a discontinuous solution is to be considered of a system 
consisting of equations not all of which are in conservation form. Mathematical theory 
of such a system does not exist. However, we believe that the above system is sufficient 
to study any initial or boundary value problem in which a kink appears. Equations (70) 
and (71) give the kink velocity in the 	t) plane, which can be used to fit the kink into 
two states: one ahead of it and another behind it. The two smooth states in the overlap- 
ping domains, each containing the kink path in the 	t) plane, can be found at least in 
theory by solving the partial differential equations (61)—(63). This formulation, which 
has been just developed, is being tried iim extensive numerical computation in the De- 
partment of Mathematics of the Institute. We present below the results of numerical 
computation of the differential equations of the NTSD and its extensions to include the 
sinusoidal state ahead of the shock to simulate the interaction of a shock front with tur- 
bulence) by Kevlah an 11 . 

(I) Figure 9 presents a comparison of the results from the NTSD with the experimental 
results of Sturtevant and Kulkarni 3 . M0 represents the shock strength on an initially 
concave parabolic shock. We note that the shock at 1.14 in (b) with two kinks completely 
agrees with the experimental shock. 

0 	1.0 	2.0 
X 

(a) 	 (b) 	 Cc) 
1/49 - Shock 
(CQC15)); II  iCCUSing (time is normalized suitably): a. Ma, = 1 (acoustic discontinuity at t = 0.6, 0.8 and 1.0 

1.0, 1.14 (with a pair of kinks); c. Experimental shock Ato = 1.2 at t = 1.14. 
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FIG. 10. Computation of the shock shape in a sinusoidal shear flow (at a time when kinks have clearly appeared) 
as predicted by NTSD (continuous line) and that by DNS (shown by circles) for Af ro = 1.2. The diameter of the 
circle is roughly the width of the DNS shock. 

(ii) Figure 10 presents a comparison of the results of the NTSD with direct numerical 
simulation (DNS) of full gas-dynamic equations. Equations of the NTSD for an initially 
plane shock running into steady sinusoidal velocity field 

ria  (x, y) = — 0.3 cos y, 	lia  = 0 	 (73) 

were derived and solved numerically. It is found that numerical computation in NTSD 
takes only a fraction of time taken by DNS, depending upon the size of discretization. 
This is because in NTSD the number of space dimensions is reduced by one. 

(iii) Separation of the kinks on a shock front at a fixed time. Consider an initially 
parabolic shock x = 4-y2  with initial N = 0 and M 50 = constant. A pair of kinks always 
appears and the shock strength in the central disk is uniform. Let AY, be the kink sepa- 
ration at a particular time. Then Kevlahan l I  deduced the following empirical result: 

AY, oc (Mso — l f' s 	for M so < 1.1. 	 (74) 

For Mv3 > 1 . 1 , tlY, increases more slowly. 

(iv) Mean shock velocity. For a curved shock with a periodic shape, the mean speed of 

the shock can be defined. It is found that an initially plane shock always travels faster in 
a nonuniform flow than in a uniform flow. 

(v) Shock turbulence interaction. When a plane shock passes through a turbulent 
flow, Kevlahan l I  also tried to answer the question 'does the shock distort on the large 
(energetic) length scale or small (vortical) length scale?'. He found that the overall 
shape of the shock is determined by the energetic length scale but kinks on the shock 
front form at some extremum points of the vortical fluctuations. He also found that the 
vortical kinks form before energetic kinks. 	 . 
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in this section we have presented above only some of the results obtained numerically 

	

NT 	
Kevlahan's thesis contains many more results. 

	

by I  . - 	 ' 

7. Conclusion 

it  is clear from the above discussion that we have a very satisfactory theory for the for- 

mation and propagation of cusps and kinks on wavefronts. Kinks are nothing but shocks 

of 
the conservation laws in the ray coordinate system. Therefore, as discussed by 

prasad6, kinks represent irreversible phenomena and local determinacy breaks down. It 
has also been shown in this reference that an NLWF is self-propagating but a shock front 
Is not. The system of equations of the NLRT or the shock ray theory have at least two 
distinct characteristic speeds in (, t) plane and hence the range of influence of a point 
on the initial line increases with time (at least for a short time). Therefore, local deter- 
minacy breaks down for an NLWF and a shock front. Thus, we conclude that 

(i)a linear wavefront has all the three properties of self-propagation, local determi- 

nacy and time reversibility; 

(ii)an NLWF has the self-propagation and time reversibility properties as long as a 
kink does not appear but an NLWF with a kink has only one of the three properties, i.e., 
that of self-propagation; and 

(iii)a shock front has none of the above three properties. 
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