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\bstract

- urizing the relevant observational data and the basic theoretical framework, this article discusses the
ﬁhﬂims made by the 11Sc group in the following three general problems: (i) properties of the solar dynamo

yeraing in @ thin layer at the base of the solar convection zone; (ii) formation of sunspots due to the buoyant rise
4 ibe toroidal flux created by the dynamo; (iii) evolution of the poloidal magnetic field produced by the dynamo.
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. Introduction

hwas noticed in the middle of the 19th century that the number of sunspots seen on the
olar surface increases and decreases with time in a cyclic fashion, the average period of
#h cycle being about 11 years. The sunspots were also seen to migrate towards the
wer solar latitudes with the progress of the solar cycle. In other words, most of the
%spots in the early phase of a solar cycle are seen between 30° and 40°. As the cycle
Wances, new sunspots are found at lower and lower latitudes. Afterwards a fresh cycle

Xgins again with sunspots appearing at high latitudes. Individual sunspots live from a
¥ days 10 2 few weeks.

h:ﬁ:;[ clue to the physical nature of the sunspots came in 1908 when Hale' used the
“Ficyal :nscm’ef_ed Zeeman effect to establish that sunspots have magnetic fields. Th}e
ﬁgnﬂicangICllF field of a large sunspot is about 3000 G. For comparison, the Earth’s
““%idcb;? (.Idls only about 0.3 G. Hale® also noted that often two la‘rge sun.s!)(}ts are
%*]oining ;:: and they are invariably found to have opposite magnetic polarities. The
Uty g centres of such a bipolar sunspot pair is usually found to be nearly paral-
i, With ®quator. Joy®, however, noticed that there is a very small systematic tllt' of
h“"ﬂthe [.ITCSPCCF to the equator which increased with higher latitude. The relation
| s of bipolar sunspot pairs and the latitude is often called ‘Joy’s law’.

iscugs the solar surface outside sunspots is usually quite weak (we
"Mm “bout the fibril flux tubes in this paper). With the development of the
4 and Babcock®, it became possible to study this weak magnetic
eld is the strongest near the poles (having values of the order
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of 10 G), where the polarity of the field reverses at the time of the maximum of the solar
cycle®. It was also found that this weak diffuse magnetic field migrates to higher Jay;.
tudes with the solar cycle in contrast to thc sunspots, which migrate towards lower ]ati.
tudes®’.

A proper theory of the solar cycle would involve an understanding of the origin of the
solar magnetic fields as well as of the behaviours of sunspots and weak magnetic fields
outside them. Only fragments of a full theory are available at present. There are severa]
other manifestations of the solar activity cycle (such as the shape of the corona, occur-
rence of solar flares, etc.), which will not be discussed here. It i1s to be noted that the
amplitude of the solar cycle has a period of 11 years, as seen from the sunspot number
counts. However, if we consider both the amplitude and the direction of the magnetic
field, then the actual period of the cycle is seen to be 22 years.

The aim of the present paper is to put together the contributions of the IISc group
over the last few years towards understanding various aspects of the solar cycle. This is
not a review of the complete field. After summarizing the theoretical background in the
next section, we highlight only those problems which have been studied by the 1ISc group.

2. Some theoretical considerations

Theoretical studies of the solar cycle are based on the equations of magnetohydrodynam-
ics (MHD), which combines fluid mechanics with electromagnetic theory. MHD was
systematically developed in the 1930s and 1940s by scientists like Alfvén, Cowling, El-
sasser, and finally was firmly established as an important new discipline with the publii-
cation of Alfvén’s classic monograph in 1950%. For an introduction to MHD, the readers
are referred to the books of Cowling®, Moffatt'®, Parker'' and Priest'’.

The evolution of the magnetic field in a conducting fluid is governed by the induction

equation, which is the central equation of MHD:

JB

= Vx(vxB)+nV’B, (1)
where 7= c%/4no is called the magnetic diffusivity (o is electrical conductivity). The
induction equation is exactly analogous to the equation satisfied by vorticity in an ord1-
nary incompressible fluid. The term nV’B implies that the magnetic field diffuses away
due to the electrical resistance of the medium. The other term V X (v X B) implies that
the magnetic field is ‘frozen’ in the conducting fluid and is carried with the fluid mo-
tions — a result similar to the Kelvin—-Helmholtz theorem for vorticity.

The subdiscipline of MHD, in which one studies whether motions of conducting ﬂfl'
1ds can sustain magnetic fields, is called the dynamo theory. The first important result 1
dynamo theory is a negative theorem due to Cowling”. Cowling in 1934 showed thal the
induction equation does not allow the sustenance of axisymmetric magnetic fields b
axisymmetric fluid motions. Hence, one must need more complicated fluid motion$
solve the dynamo problem. The first clear positive breakthrough came in 1955 when
Parker'® realized that turbulence may play an important role in the dynamo Pmblem‘
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Most astrophysical bodies have some angular momentum and are subject to convective
instﬂbilﬁy in son?e parts. Convetftwe turbulence in t‘he presence of rotation gives rise to
relical fluid motions. as we sec In cyclfmes al}d ant_tcyclones in the Earth’s atmosphere.
parker“ showed t!1at such helical fluid motions in a turbulent conducting fluid can
qaintain 2 magnetic field.

The turbulent dynamo lhef)ry is based on the equations satisfied by the mean mag-
retic field in the turbulent fluid. The mean field lhgory for the turbulent magnetic fields
was developed systematlcally b’y Stfeepbeck et .al: This theoretical framework gave a
rigorous justification to Parker’s original ‘heunstlc ideas. The equation satisfied by the
nean magnetic field in the presence of helical turbulence is the dynamo equation:

%:Vx(aB)+Vx(uxB)+nVZB, (2)

+here u is the mean fluid velocity. Although (2) resembles the induction equation su-
petficially, there are important differences. Firstly, B here is the mean magnetic field
and not the total magnetic field as in (1). Secondly, 1 now is the turbulent diffusivity
rther than the molecular diffusivity as in (1). The coefficient o is the measure of the
average helical motion (’0 -V X v) in the turbulence and is given in the so-called ‘first-
order smoothing approximation’ by

o —%(U-va)r, (3)

where 7 is the correlation time of the turbulence. The term V X (aB) is generally nonz-

eroin the interiors of rotating fluid bodies and is the crucial source term responsible for
he dynamo maintenance of magnetic fields.

One often has to solve the dynamo equation in axisymmetric astrophysical systems

wih spherical geometry. The fluid velocity in such systems can be written in spherical
toordznates as

u=u,+rsin 0 w(r, 6)é,, (4)

"‘h‘_’fe o(r, 6) is the angular velocity and u, is the meridional flow. Similarly, the mag-
"lic field can be expressed as

B =V x [A(r, 6)é,] + B(r, 0)é,, (5)
:hnpre Bé, is the toroidal component and V X [A€,] the poloidal component — often
“2;" a B,, SUbSIitUti“g (4) and (5) in (2), we find the evolution equations for the
62l and the poloidal components:
@'”““9(“ W -8 _ |- sin6(B. - VYo +Vx(aB,)+n| V- ! B, (6)
. d rsiné I P e P r2 sin29
oA 1
>t : ingA) = VZ- A. (7)
x rsine(u" V) (r sin6A) aB+n( = sinzﬂj
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It is clear from (7) that the source term for the poloidal field is aB, whereas (6) shows
that the toroidal field has two source terms rsin 6 (B, V)w (let us call it T)) and
V x (aB,) (let us call it T>). The term T, is nonzero only if there is differential rotation
which stretches out the poloidal field B, in the toroidal direction. If IT)| << ITl (as in the
case of nearly solid body rotation), then the dynamo is said to be an o dynamo. On the
other hand, if IT;! > T, (as in the presence of strong differential rotation), then we ca]|
it an @ dynamo. If neither of the terms is negligible, then the dynamo is said to be of
the &Z type. It is found that o’ dynamos can sustain nonoscillatory fields with compa-
rable toroidal and poloidal components, whereas @@ dynamos are responsible for propa-
gating wavelike oscillatory solutions with a predominant toroidal component (resulting
from the stretching of field lines due to the strong differential rotation). The planetary
dynamos are supposed to be of o’ type, whereas stellar dynamos are probably more like
aw type.

Where does the dynamo action take place in the interior of the Sun? Theoretical
models suggest that the inner core of the Sun, up to about seven-tenths of its radius (the
solar radius is 7 x 10'"® cm), is stable against convection. This is called the radijative
core, where heat is transported by radiative transfer. The outer envelope of the Sun,
called the convection zone, is convectively unstable, and heat is transported there by
convective motions. The sunspots appear cooler compared to surroundings because the
magnetic stresses inside the sunspots inhibit convective heat transport there. Since the
dynamo has to be fed by convective turbulence, it used to be assumed that the dynamo
action takes place in the convection zone of the Sun. In recent years, however, it has

been realized that there are difficulties in making the dynamo work in the convection
zone.

To see the nature of these difficulties, we first have to understand the very important
idea of magnetic buoyancy suggested by Parker'® in 1955 to explain the origins of the
bipolar sunspot pairs. Let us consider a horizontal cylindrical region of the conducting
fluid having a strong magnetic field B with very little magnetic field outside. Since 3
pressure balance has to be maintained across the surface of this cylindrical region,
keeping in mind that the magnetic field would have a pressure B*/8n, we write down

B? 8
Pout = Pin +E£! ( )
so that
Pin < Pouts

which very often, though not always, implies that material inside the cylindrical flux
tube must be lighter than the surroundings. Hence, such a magnetic flux tube is cXPeC‘eq
to be buoyant. If the differential rotation inside the Sun stretches out the nearly ‘froze”
field lines to produce a strong toroidal magnetic field, it is expected that parts of thal
strong field would become buoyant and rise in the form of a flux tube. Figure 1 sho%
the initial and final configurations of such a buoyant flux tube. Once the top of the flux
tube has passed through the solar surface, the flux tube intersects the solar surface in (WO
regions, which become the two sunspots. This scenario explains why the two sunspots
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» opposite polarities and why the line joining their centres

hav IS nearly parallel to the

cqu‘&lﬂl'-

Magnetic buoyancy i?, .particularly de§tabi1izing In the interior of the convection zone
here convective mstabll_}uy and magnetic buoyancy_ reinforce each other. Calculations o;‘
hyoyant rise by Pat_‘ker showed. tl?at ary magnetic field would be removed from the

wvection Zone quickly. Hence, it is difficult to make the dynamo work in the convec-

¢0 ; ,
jon ZOne, since the magnetic field has to be stored in the dynamo region for a sufficient

ime to allow dynamo amplification.

{tis expected that there is a thin overshoot layer (probably with a thicknesé of the or-
der of 10* km) at the tf)p of the radiative‘core just below the convection zone. This is a
layer which is convectively stable accordlpg to a local stability analysis, but convective
qotions are induced there due to convective plumes from the overlying unstable layers
wershooting and penetrating there. Several authors (Spiegel and Weiss'®, van Ballegooi-
jen”) pointed out that this layer 1s a suitable location for the operation of the dynamo.
Though there will be enough turbulent motions in this layer to drive the dynamo, mag-
getic buoyancy will be suppressed by the stable temperature gradient there. There have
Jlso been other suggestions for suppressing magnetic buoyancy at the base of the con-
vection zone. Parker” proposed ‘thermal shadows’, whereas van Ballegooijen and
Choudhuri?' showed that an equaterward meridional circulation at the base of the con-
vection zone can help suppressing the magnetic buoyancy there. In summary, the current
belief is that the solar dynamo operates in a thin layer at the bottom of the convection
wne, where magnetic buoyancy is at least partially suppressed. A support to this hy-
pothesis comes from the recent helioseismology observations®®, which indicate the pres-
ence of strong differential rotation at the bottom of the convection zone. The I15c group

Gls™")

| ]

1 10
i, | a (en/s)
‘lb;-.;h;rhe initial and final configurations of a flux Fic. 2. The allowed region (shown by shading) in

"“ﬂcme: has pierced through the solar surface from  velocity shear G vs a-coefficient parameter space
| th. .26
(from Choudhuri ).
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has studied some of the implications of this hypothesis of a boundary layer dynamo pe.
low the convection zone. The next few sections describe the problems studieqd by this

group.

3. The dynamo generation of magnetic fields

In order to solve the dynamo equations (6) and (7), one has to specify @, 71, and the ve.
locity field. In what is called the kinematic approach, all these quantities are specified
on the basis of some plausibility arguments and then the ensuing solutions of the dy-
namo equations are studied. In principle, one can try to solve the problem sejf-
consistently by solving as well for the velocity field, which satisfies Navier-Stokes
equation with one additional Lorenz force term due to magnetic stresses. Although there
have been some attempts at numerical simulations of velocity and magnetic fields simul-
taneously (Gilman23, Glatzmaier®®, Brandenburg et al.®®), it is extremely difficult to
carry out detailed simulations for sufficiently realistic models of astrophysical systems
~ and the subject of numerical dynamo simulations is still in its infancy.

Choudhuri®® carried out kinematic calculations for the dynamo in a thin layer. The
local properties of the dynamo in a region can be found by considering a local Cartesian
frame. The dynamo equations in a local Cartesian frame without any meridional flow
(i.e., u, = 0) are slightly simpler than the equations (6) and (7) in spherical coordinates.
Still one ends up with a formidable dispersion relation for a Fourier mode of the solu-
tion. Determining the appropriate boundary conditions to be applied is also a tricky
question. The readers are referred to the original paper for a discussion of the boundary
conditions. By solving the dispersion relation numerically, it is eventually possible 10
find how the period and wavelength of the dynamo are related to each other.

We know that the dynamo must have a period of 22 years. Looking at the distribution
of sunspots in latitude, one concludes that the half-wavelength of the dynamo should bﬁ
of the order of about 40° in latitude. If we demand that the dynamo operating in the thin
layer at the bottom of the convection zone has the appropriate period and wavelength,
then Choudhuri?® showed that the various parameters spectfied in the kinematic calcul?‘-
tions (such as ¢, 7, the velocity shear) are restricted to have values within certa.lzlg
ranges. Figure 2 shows the range of & and the velocity shear G which Choudhurt
found. On the basis of crude mixing length arguments, the ranges of various quantilies
suggest a rather small length scale of turbulence (a few hundred km) - much smallef
than all the relevant lengths and scale heights in the dynamo layer™® 21 parker™ worked

out a model of a layer dynamo with the regions of shear and c-effect separated 7
found similar values for various dynamo parameters.

The permissible ranges of various dynamo parameters seem to indicate tha! the dy-
namo is more probably of the o w type rather than of aw type®®. Since an ¥ dynan;j'
produces a much weaker poloidal field compared to the toroidal field and the polar fie
of the Sun is much weaker than the sunspot fields (a manifestation of the roroidal coml;
ponent), it used to be assumed in the early years of dynamo research that the Sun I?as ic
aw dynamo operating in the convection zone. However, if the dynamo operates If [
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layer, then we can allow for an @’® type dynamo which produces more s!lb-
1aidai field, since that field may not be able to leak to the solar surface easu!y.
oof the poloidal field will be discussed more in Section 5. We will now dis-

gument for the dynamo being of o’  type.

The physics
cuss ﬂl'lo{hef ar | |
Although the solar magnetic cycle is roughly periodic, one finds noticeable irregu-

i erposed on 1t. The most famous irregularity is a prolonged stretch of time
gt ?luprnh century (often called the Maunder minimum), when sunspots were not
- 11;’: If o, 17 and the velocity field are assumed to be given, then dynamo equations
o El:13(7-) are ’Iinear and lead to regular periodic solutions. Actually, however, the Lo-
[6)31; rce of the magnetic field is expected to back-react on the fluid flows and inhibit
lr;:Mm:']lbulcence:. Hence, the full dynamo problem is an intrinsically nonlinear problem as
;,; be seen in the simultaneous simulations of magnetic and velocity fields. Within the
eamework of kinematic approach, Stix?? studied the quenching of the a-effect by the

magnetic field by taking
d

= : (9)
1+|BI* /B

Several other nonlinear calculations®®™>? have been carried out by incorporating the
feedback of the magnetic field in the kinematic equations in similar fashions. Although
limited evidence of chaos has been found in  some tay models®, the nonlinearities seem
to make the regular solutions more stable rather than producing sustained irregularities.
This 1s because a sudden increase (decrease) in the magnetic field would inhibit
(enhance) the dynamo source term and make the field decrease (increase) again. Thus, it
has not been possible to model the irregularities of the solar cycle satisfactorily by look-
ing for deterministic chaos due to the nonlinear terms. |

Since the dynamo equation is obtained by averaging over turbulence, the stochastic
f}uﬂuations of different quantities around the mean may be another source of irregulari-
es (see HUYDE35). Choudhuri®® carried out numerical studies of a one-dimensional dy-
lt:;? :ﬂtlrdel In which the o-coefficient was taken to be stochastically varying around a
mﬂnthsatlll-z ‘Althmngh the corrfelatlon time for such ﬂuctua_ltlons 1s expected to be a few
hur;6 f'flundl:]:cgu;r patterns in t!]f: s',olar cyclf: often persist fotr a few decades. Choud-
the n““linearit?t this type of qualitative behaviour can be obtained for o dynamos if
iy ﬂuctuatiis are not very strong. aw dynamos are not @uch affect?d by the sto-

¢ solutions for nsj’ \;herf:as o dyl}amos: become'complete]y 1‘rregular. Figure 3 shows
Mean, The 1 ochastic fluctuations in o having an amplitude of 10% around the

f¢€ panels correspond to aw, &’w, and o’ dynamos. The middle panel

Qualitatjve
- Suppre:y :;ef-embles th_e solar cycle. It is to be noted that the stochastic fluctuations
Sed if the nonlinearities are made sufficiently strong.

Hoyng®? o, ‘
Ui's ¢ ugme:il:;nftened this as ‘Choudhuri’s problem’ and showed that many of Choud-
al results can be understood from the theory of stochastic equations. On

€ other ha
nd1 MO 38 1 : * .

M0delg gn,g fotnd ]s;s et al, carried out simulations in more complex three-dimensional

the results similar to Choudhuri’s.
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FiG. 3. The variation in magnetic field due 10 a dynamo with stochastic fluctuations in the a-coefficient. The
three panels correspond to aw, & w, and o dynamos (from Choudhuri®®).

| 39
The rea;t(i]ers are referred to the recent reviews on the solar dynamo by Brandenburg
or Schmitt™ for discussions of other aspects of the problem.

4. Flux tube dynamics in the convection zone

, €
If the dynamo operates in a stable layer at the bottom of the convection zone, then Oﬁe
expects that parts of the toroidal field created there would occasionally come oul of tof
stable layer due to turbulent fluctuations. Such strands of magnetic field coming oul
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¢ layer would be subjected to magnetic buoyarfcy and would rise i.n the form of
indicated in Fig. 1. Hence, to understand the formation of bipolar sunspot
fiux e ;Ss to study the dynamics of flux tubes rising from the bottom of the convec-
pairs: Oneduac to magnetic buoyancy. Starting from the full MHD equations, Spruit“ll de-
. :on for the dynamics-of ‘thin flux tubes’ embedded in an ambient medium.
«thin’ means that the cross-sectional radius of the flux tube has to be small com-
L :o various scale heights. For such a flux tube of interior density p (with external
w-i the acceleration at a point is given by

the S[ﬂbl

dv I - _PUA PP N g
oA +f*g]l+ A_ g+ P Penfxgyxl, (10)
dr { p " p+p.  prp. t

where [ is the unit tangent vector, k, the curvature vector and v, = B/(4np)V? is the
Alfvén speed inside the flux tube. The la}st ten:ﬂ in (]0} corrcfzponds to magnetic buoy-
ancy and the last but one term to magnetic tension. Choudhuri’” noted a slight inconsis-
tency in Spruit’s derivation of (10) and hence a correction has to be applied to this
equation. This correction, however, is based on slightly subtle arguments and does not
change the results of calculations qualitatively. So we shall not discuss the correction

here.

Since (10) is nonlinear, one usually has to study the dynamics of flux tubes by nu-
merically integrating it. Moreno-Insertis*’> developed the first code to integrate Spruit's
equation in two dimensions and showed that the intuitive scenario sketched in Fig. 1
ndeed follows from detailed calculations. The magnetic buoyancy factor (p -~
pY(p + p.) in (10) is related to the magnetic field inside the flux tube and hence one
Ias to specify an initial value of the magnetic field to start the simulations. It is expected

::lthc dynamo will produce a magnetic field roughly in equipartiticn with fluid turbu-
e, L.e.,

8t 2 \l)

gﬂzl{)’pical equipartition field is not more than about 10* G?°. We shall see brlow rea-

e Hg:lpw the starting magnetic field to be as strong as 10° G. The calcuiations of

B . BToup described below always were done for a range of values of the initial
gnetic field.

,u;]_“ buoyant rise time

i o -0! he Sun

" 1§ fOTCc due to the S

of 10* G flux tubes is of the order of several weeks. Since the
Is about 27 days, Choudhuri and Gilman** pointed out that the
fux tubes, T < un’s rotation would play a very important role in 'the dynfunics
idereq g1,y ri:{ 01 lustra}c the effect of th_e Coriolis force, Choudhuri and Gilman
°flhe Onvection gs SYmm.etnc about the rotation axis which are released at the bottom
5 i (e solarzone at d_lfferent latitudes. Figure 4 shows the trajectories of such flux
fw that the dynzﬂqvectlnn zone for three values of the initial magnetic field. It is
e py ¢y > le_cs.ﬁf flux rings with equipartition magnetic fields is completely
oriolis force. They move parallel to the rotation axis to emerge at
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)

FiG. 4. Trajectories of flux rings starting from different latitudes at the base of the convection zone. The three

cases are for the initial magnetic fields of 1.7 x 10* G (left), 5.4 x 10* G (middle) and 1.7 x 10° G (right) (from
Choudhuri and Gilman**).

latitudes much higher than the typical sunspot latitudes. Only when the starting mag-
netic field is made of the order of 10° G is the magnetic buoyancy sufficiently overpow-

ering and the flux rings starting from low latitudes rise radially to emerge at low
latitudes.

Choudhuri®’ developed the first three-dimensional code for solving Spruit’s equation
in spherical geometry with the Coriolis force. This code was used to study the evolution
of a nonaxisymmetric undulated flux ring of which the lower parts remained anchored in
the stable layer under the convection zone and the upper parts rose due to magnetic
buoyancy. Figure 5 shows the results for such a nonaxisymmetric flux ring starting from
5° latitude with an initial magnetic field of 1.7 x 10* G. Figure 5a is a polar plot of l{lﬁ
successive configurations in the (r, ¢) plane, whereas Figure 5b shows the trajectories If
the (r, 6) plane of the highest and the lowest points of the flux ring with the growine
loops. We still find that we are unable to get the flux out at typical sunspot latitudes,

unlesgs we take the initial magnetic field to be much larger than the equipartition value
of 10" G.

D’Silva and Choudhuri*® looked at the tilts of the bipolar sunspots which would I
sult from the rising upper parts of the flux tubes. Figure 6 gives a plot of the observé-
tional dependence of tilt on latitude and the theoretical plots which one gets for diffffrcnt
values of the initial magnetic fields. The observational plot is based on the analysts .
Wang and Sheeley®’. It is seen that an initial magnetic field of 10° G (for which the upr
per part of flux tube will rise more or less radially) gives a good fit with observations:
This constitutes the first quantitative theoretical model of Joy’s law nearly three-quarters
of a century after its discovery. For weaker magnetic fields, the Coriolis force makes 1h°
flux to emerge only at high latitudes with tilts at variance with Joy’s law. On the O_th?r
hand, the tilt becomes negligible for stronger fields, which rise so fast that the Corio™
force does not have enough time to produce an appreciable tilt. We get the correct tilt
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b.

fic. 5. Evolution of a partially anchored flux ring with an initial magnetic field 1.7 x 10* G. The successive
m.ﬁg;:miuns in (a) or the dots in (b) are at intervals of 14 days (from Choudhuri*).

only when the magnetic field is of such value that the magnetic buoyancy force and the
Coriolis force become comparable. It was also noted that a bipolar pair with smaller
separation will be subject to stronger magnetic tension and hence will have less tilt.
Howard*® was almost immediately able to verify this prediction of D’Silva and Choudhuri*®
ssing the data already in his possession. Fan et al.*’ developed a code similar to Choud-
huri’s to model the asymmetries of the bipolar sunspot pairs.

The theoretical models seem to fit the observational data well if the magnetic field at
the bottom of the convection zone is taken to have a value of 10° G. But is such a high
value reasonable? It is not clear if the dynamo can produce such a strong field or if the
dynamo can even operate in the presence of such a strong field which would inhibit the
e-eflect completely. Hence, the IISc group has also considered several special mecha-

usms for suppressing the Coriolis force in the case of more moderate fields of 10° G
09

bep
[ 348

o

&0
b 0
- 3 -

Fi . Sin {Aem) |
'V Plogg B .

&’ﬂiﬂerm; i?u‘_'u‘:l‘(hh) against sin(latitude) obtained

U0 kG (from v, V€S Of the magnetic field indi-
om D’Silva ang Choudhuri*é),
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such that the flux tubes with such fields may be made to rise radially. Choudhur; and
D’Silva®® found that if the cross-sectional radius of the flux tube is sufficiently smaj) (a
few hundred km), then there may be sufficiently rapid exchange of angular momentum
with the surroundings to suppress the Coriolis force. For flux tubes of such small crogs.
sectional radius, D’Silva and Choudhuri®' later found another way of suppressing the
Coriolis force: Kelvin—Helmholtz instability coupled with the drag of giant convectigp
cells. D’Silva®? showed that some of these mechanisms can make the bipolar sunspots
appear with the correct tilt. However, all these spectal mechanisms for suppressing the
Coriolis force assume some special characteristics of convective turbulence and it is not
completely clear if these mechanisms are really operative. The small cross-sectional ra-
dius demanded for these mechanisms to be operative may be a result of the fragmenta-
tion of a large flux tube during rise>>**. Such a fragmentation can account for many
aspects of the emergence of sunspots>>,

The arguments for and against both 10° and 10° G magnetic fields are discussed by
Moreno-Insertis®® in the fist invited review of flux tube dynamics in an important con-
ference. With review articles being written and several groups around the world (Hawaii,
Berkeley, Kitt Peak, Freiburg, Tenerife, Budapest) working on it, the subject of flux tube
dynamics has suddenly gained prominence. This gives us great pleasure and company as
the IISc group was the only one in the world working on this subject for several years.
Fan et al.*’ recognized our contribution by providing a long summary of our work before
presenting the results obtained with a code similar to ours.

5. Evolution of the weak diffuse field

It has already been mentioned that the weak diffuse fields outside sunspots migrate
polewards. Even when averaged over latitude, one finds predominantly one polarity inj%
belt of latitudes which drifts towards the pole’’. There is some observational evidence
for a meridional circulation which is poleward at the surface and hence is expected t0 be
equatorward at the bottom of the convection zone. Presumably this circulation plays an
important role in the poleward drift of weak diffuse fields.

It 1s natural to interpret the weak diffuse field as the poloidal component produced by
the dynamo. However, the early researchers®®**, who modelled the solar dynamo (o be of
o type and to operate in the convection zone, found that the toroidal and poloidal com-
ponents are strongly coupled together and drift in the same direction. Hence, these clas-
sical models could not account for the sunspots (resulting from toroidal component) and
diffuse fields (resulting from poloidal component) migrating in opposite directions. In
view of this failure, a flux transport model has been developed in which the weak diffuse
field is thought to be due to the decay of bipolar sunspot regions. Leighton“ suggested
that turbulent diffusion would make the magnetic flux to disperse from sunspots aﬂfi the
inclinations of bipolar sunspot pairs could account for one polarity predominantly 'd'_ffusi
ing to higher latitudes. A detailed model of flux transport incorporating the meridiond
circulation has been developed by the NRL group (see Wang et al.’” and the referenc®
therein). Though this model had remarkable success in matching magnetogram data, 4
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' ' i as a
1y unsatisfactory aspect of the model is that it treats the magnetic ﬁez,lt; _
eoncep the solar surface and satisfying a two-dimensional advection—diffusion

iding on _ ;
scalar. reﬁﬁ isgnot clear if this model can be extended to three dimensions to take note of
equallﬂn.

the vector nature of the magnetic field.

Since the dynamo is now believed to operate at the bottom of the convectian zone,
in

: : : ' Id
Dikpati and Choudhuri® pointed out that the toroidal and poloidal components shou

aly there and not inside the convection zone. This again opens up the pos-
::bfl?;'pl‘;f rzga);ding [hgs weak diffuse field as Ehe poloidal comgonilnt of ;h:a' iyt:;n:&
Dikpati and Choudhuri haw_ve developed a df:talled mf)del to study the cvl;) utio -
poloidal field in the convection zone by solvu*lgt(,?) with =0 (bef:ause there 1s no dy-
qamo action in the convection zone). A running wave corresponding to l_;he dynamo is
aken as the bottom boundary condition and acts as the source of the po]f:ndal field. 'I:he
upper boundary condition is that the field lines smoothly match'a potcntla! field 0u_ts:dc
the Sun. Figure 7 shows the successive configurations of poloidal field lines during a
half-cycle obtained by solving (7) with a suitable u, which is equatorward at the bottom
of the convection zone and poleward at the top. The strong toroidal field (which pro-
duces bipolar sunspots due to magnetic buoyancy and is coupled to the poloidal field in
the dynamo layer) must be propagating equatorward at the base af the convection zone to
account for the equatorward drift of sunspots. The weaker poloidal field, for which mag-
netic buoyancy can be shown to be much less important (because it goes as B%), is seen
in Figure 7 to drift poleward at the top of the convection zone, although the lower parts
of the poloidal field lines move equatorward with the dynamo. After demonstrating that

the model works, we are now trying to find the best combination ofsvarious parameters
which will fit the observational data properly®.

[t may be noted that the magnetic fields outside sunspot regions are responsible
fOf iransporting energy to the corona via MHD waves which eventually dissipate and
raise the coronal temperature to values much higher than the Sun’s surface temperature.
Ch;:;udhun et al.’ developed a model for this energy transport (see also Choudhuri e
al™). Muller et al.®® recently used this model to analyse their observational data and

found that there will be enough energy transported to the corona to account for the high
lémperature there.

6. Conclusion

Alt : :
lru:totl;lga[: til:ewz;:tln (}if this paper has been to present the work done by the IISc group, we
odelling of (. Sgl;;e the reader some general idea of the current status of theoretical
solar purfue. z ar _cycle. We can obsen:ve only the sunspots and the diffuse fields on
oo remarl;ab?y 1;1fcrcncc about 1lfw Interior processes has to be purely theoretical.
adiative oqe e : that the pypothcms of a layer dynamo at the interface between the
pcts of e ol le tonvection zone can provide a unified scenario for so many as-
Moduce . }I'lcac. The sunspots are supposed to result from the toroidal component
] component | ynamo, whereas the weak diffuse field probably resuits from the poloi-
; . 1t should be emphasized that many pieces of the ii o (?1
J1gsaw puzzle are still

ssing. A cloud of uncertai
rtainty hangs over the value of the magnetic field produced by
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(a) t = 0 year {b) t = 2.75 years

)

()t = 5.5 years

|
(d) t = B.25 vears 4 [\ g
FI1G. 7. Four successive confi ' i i ; i ‘ ).
nfigurations of poloidal field lines during a half-cycle (from Dikpati and Choudhun

the dynamo. In spite of such shortcomings, the progress in the last few years towards
understanding the solar cycle has been noteworthy.

Acknowledgements

Much of the work presented here would not have been possible without the dedicated
efforts of my students, Sydney D’Silva and Mausumi Dikpati. [ also thank my other col-
laborators, Herve Auffret, Dipankar Bannerjee, Peter Gilman, Eric Priest and Aad van



573
MHD MODELLING OF SOLAR CYCLE

' body else: Gene
I re indebted to one man than to any
o 2o e he beauty of MHD. Though I have never

inki ] to
: - i left on my way of thinking continues
. » with him, the deep influence he _
coijlabo;aii‘:earch perspective. Last, but not the least, Roddam Narasimha deserves the
uige M

ks of all fluid dynamicists on the 1ISc campus for taking the responsibility of
thanks

g out this special 1ssue.

- mtell
ooijen. 1 am nte
gaalllccegr who first opened my eyes to 1

bringin
References

| HALE G.E. Astrophys. J., 1908, 28, 315-343.

» HaLe G.E. Astrophys. J., 1913, 38, 27-98.

3 Jov. A. H. Astrophys. J., 1919, 49, 167.

4 Bapoock. H. W AND Astrophys. J., 1955, 121, 349-366.

BaBoocK, H. D.

5. Basoock, H. D. Astrophys. J., 1959, 130, 364-3635.

6. BumBa, V. AND HOWARD, R. Astrophys. J., 1965, 141, 1502-1512.

7. HowARD. R. AND LABONTE, B.J. Solar Phys., 1981, 74, 131-145.

8. ALAFVEN, H. Cosmical electrodynamics, 1950, Oxford Univ. Press.
9. CowLiING, T. G. Magnetohydrodynamics, 2nd edn. 1976, Adam Hilger.
10. MoOFFATT, H. K. Magnetic field generation in electrically conducting fluids, 1978,

Cambridge Univ. Press.
11. PARKER, E. N, Cosmical magnetic fields, 1979, Oxford Univ. Press.
12. PriesT, E. R. Solar magnetohydrodynamics, 1982, D. Reidel.
13. CowLing, T. G. Mon. Not. R. Astron. Soc., 1934, 94, 3948,
4. PARKER, E. N, Astrophys. J., 1955, 122, 293-314,
15. ST:EENBECK, M., KRAUSE, F. AND  Z. Naturforsch., 1966, 21, 369-376.
RADLER, K.-H. '
'6. Parker, E. N. Astrophys. J., 1955, 121, 491-507.
I7. Parker, E. N.

Astrophys. J., 1975, 198, 205-209.
SPIEGEL, E. A. AND WEISS, N. O.  Narture, 1980, 287, 616-617.
VaN BALLEGOOUEN, A. A.

18,

19.
Astron. Astrophys., 1982. 113, 99-112.

20. Parker
» E. N. Astrophys. J., 1987, 312, 868-879.

2. Van BaLL
EGOOUEN, A.
CHoubHuRy, A. R. B Astrophys. J., 1988, 333, 965-977.
2. Dziempow
SKI, W. A,
GooDE, P. R anp Astrophys. J., 1989, 337, L53-L57.
LiBsrECHT, K. G.
23, GiLma
N, P A _
% Astrophys. J., Suppl., 1983, 53, 243268

GLATZMAIER G
» QL A, Astrophys. J., 1985, 291, 300-307.



574

25.
26.
27.

28.

29.
30.
31.
32.

33.
34.

35.
36.
37
38.
39.

40.

41.
42,

43.
44,

45,
46.

47.

48.
49,

50.

S1.

32.

BRANDENBURG, A. ef al.
CHOUDHURI, A. R.

CHOUDHURI, A. R.

PARKER, E. N.
Stix, M.

JEPPS, S. A.
YOSHIMURA, H.

KLEEORIN, N. 1. AND
RUZMAIKIN, A_ A.

BRANDENBURG, A. et al.

WEISS, N. O., CATTANEO, F.

AND JONES, C. A,
HOYNG, P.
CHOUDHURI, A. R.
HoYNG, P.

Moss, D. et al.

BRANDENBURG, A. AND.
TUOMINEN, 1.

SCHMITT, D.

SPRUIT, H.
CHOUDHURI, A. R.
MORENO-INSERTIS, F.

CHOUDHURI, A. R. AND
GILMAN, P. A.

CHOUDHURI, A. R.

D’SiLva, S. AND
CHOUDHURI, A. R,

WANG, Y. M. AND
SHEELEY, N. R.

HOwWARD, R,

FAN. Y. FISHER, G. H. AND
Detuca.E. E.

CHOUDHURI, A. R. AND
D’'SiLva, S.

D’SiLva, S. AND
CHOUDHURI, A. R,

D’'SiLvA, S.

A. R. CHOUDHURI

Astron. Astrophys., 1990, 232, 277-291.
Astrophys. J., 1990, 355, 733-744.

In Basic plasma processes on the Sun, IAU-Symp, No 142, (E. r
Priest and V. Krishnan, eds), 1990, p. 51, D. Reidel. o

Astrophys. J., 1993, 408, 707-719.
Astron. Astrophys., 1972, 20, 9-12.
J. Fluid Mech., 1975, 67, 625-646.
Astrophys. J., 1978, 226, 706-719.
Geophys. Astrophys. Fluid Dyn., 1981, 17, 281-296.

Astron, Astrophys., 1989, 213, 411-422.
Geophys. Astrophys. Fluid Dyn., 1984, 30, 305-341.

Astrophys. J., 1988, 332, 857-871.

Astron. Astrophys., 1992, 253, 277-285.
Astron. Astrophys., 1993, 272, 321-329.
Astron, Astrophys., 1992, 265, 843-849.

In The Sun and cool stars: activity, magnetism, dynamos (1. Tuominen,
D. Moss and G Riidiger, eds), Lecture Notes in Physics, 1990,
380, pp. 223-233.

In The cosmic dynamo, IAU-Symp. No. 157 (F. Krause, K.-H. Rédler
and G. Riidiger, eds), 1993, p. 1. Kluwer.

Astron. Astrophys., 1981, 98, 155-160.
Astron. Astrophys., 1990, 239, 335-339.
Astron. Astrophys., 1986, 166, 291-305.
Astrophys. J., 1987, 316, 788-800.

T ey
* i ﬁ-

Solar Phys., 1989, 123, 217-239,
Astron. Astrophys., 1993, 272, 621-633.

Astrophys. J., 1991, 375, 761-770.

Solar Phys., 1993, 145, 105-109.
Astrophys. J., 1993, 405, 390-401.

Astron. Astrophys., 1990, 236, 326-334.

Solar Phys., 1991, 136, 201-219.

Astrophys. J., 1993, 407, 385-397.



53.
54.

55.

56.

57.

58.
59.

61.
62.
63.

65.

67.

68.

69.

MHD MODELLING OF SOLAR CYCLE 575

SCHOSSLER, M.
TsinGaNos, K. C.

CHOUDHURI, A. R.
MORENO-INSERTIS, F.

WANG, Y. M., NasH, A. G. AND
SHEELEY, N. R.

ULricH, R. K. ef al.

STEENBECK, M. AND KRAUSE, F.
ROBERTS, P. H.

KOHLER, H.

YOSHIMURA, H.

Stix, M.

LEIGHTON, R. B.

DIKPATI, M AND
CHOUDHURI, A. R.

DIkPATI, M. AND
CHOUDHURI, A. R.

CHOUDHURI, A. R, AUFFRET, H.
AND PrIEST, E. R.

CHOUDHURI, A. R., DIKPATI, M.
AND BANERJEE, D.

MULLER, R. e? al..

Astron. Astrophys., 1979, 71, 79-91.
Astrophys. J., 1980, 239, 746-760.

In Sunspots: Theory and observations, (J. H. Thomas and N. O. Weiss,
eds), 1992, p. 243, Kluwer.

In Sunspots: Theory and observations (J. H. Thomas and N. Q. Weiss,
eds), 1992, p. 385, Kluwer,

Astrophys. J., 1989, 347, 529-539,

Solar Phys., 1988, 117, 291-328.

Astron, Nachr., 1969, 291, 49-84,

Phil. Trans. R. Soc. Lond., 1972, 272, 663-697.
Astron. Astrophys., 1973, 25, 467-476.
Astrophys. J., Suppl., 1975, 29, 467—-494.
Astron. Astrophys., 1976, 47, 243-254.
Astrophys. J., 1964, 140, 1547-1562.

Astron. Astrophys., 1994, 291, 975-989.

Solar Phys., 1995 (in press).

Solar Phys., 1993, 143, 49-68.

Astrophys, J., 1993, 413, 811-825.

Astron. Astrophys., 1994, 283, 232-240.






