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kfrasu mariiing the relevant observational data and the basic theoretical framework, this article discusses the 
.cteibutions made by the IlSc group in the following three general problems: (i) properties of the solar dynamo 

enringin a thin layer at the base of the solar convection zone; (ii) formation of sunspots due to the buoyant rise 
driorojaal flux created by the dynamo; (iii) evolution of the poloidal magnetic field produced by the dynamo. 
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1. Introduction 

hwas noticed in the middle of the 19th century that the number of sunspots seen on the 
Aar surface increases and decreases with time in a cyclic fashion, the average period of 
2ch cycle being about 11 years. The sunspots were also seen to migrate towards the 
lower solar latitudes with the progress of the solar cycle. In other words, most of the 
zispots in the early phase of a solar cycle are seen between 30 0  and 400 . As the cycle 
idvances, new sunspots are found at lower and lower latitudes. Afterwards a fresh cycle 
otians again with sunspots appearing at high latitudes. Individual sunspots live from a 

days to a few weeks. 

Afirst clue to the physical nature of the sunspots came in 1908 when Hale s  used the 
',discovered Zeeman effect to establish that sunspots have magnetic fields. The 
'TIN magnetic field of a large sunspot is about 3000 G. For comparison, the Earth's 
tig:_etie field is only about 0.3 G. Hale 2  also noted that often two large sunspots are 

Te.si itieby side and they are invariably found to have opposite magnetic polarities. The 
Ring the centres of such a bipolar sunspot pair is usually found to be nearly paral- 

Ani e s6ar equator. Joy3 , however, noticed that there is a very small systematic tilt of 
ukt 	ith respect to the equator which increased with higher latitude. The relation 

'ten the tilts of bipolar sunspot pairs and the latitude is often called 'Joy's law'. 
Non  . 

etic held on the solar surface outside sunspots is usually quite weak (we kt4etetruaiscuss about the fibril flux tubes in this paper). With the development of the 
„,P _

h b

y Babcock and Babcock's , it became possible to study this weak magnetic 
weak diffuse field is the strongest near the poles (having values of the order 
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of 10 G), where the polarity of the field reverses at the time of the maximum of the solar 

cycle5 . It was also found that this weak diffuse magnetic field migrates to higher lati- 
tudes with the solar cycle in contrast to the sunspots, which migrate towards lower lati- 
tudes6a . 

A proper theory of the solar cycle would involve an understanding of the origin of the 
solar magnetic fields as well as of the behaviours of sunspots and weak magnetic fields 
outside them. Only fragments of a full theory are available at present. There are several 
other manifestations of the solar activity cycle (such as the shape of the corona, occur- 
rence of solar flares, etc.), which will not be discussed here. It is to be noted that the 
amplitude of the solar cycle has a period of 11 years, as seen from the sunspot number 
counts. However, if we consider both the amplitude and the direction of the magnetic 
field, then the actual period of the cycle is seen to be 22 years. 

The aim of the present paper is to put together the contributions of the IISc group 
over the last few years towards understanding various aspects of the solar cycle. This is 
not a review of the complete field. After summarizing the theoretical background in the 
next section, we highlight only those problems which have been studied by the IISc group. 

2. Some theoretical considerations 

Theoretical studies of the solar cycle are based on the equations of magnetohydrodynam- 
ics (MHD), which combines fluid mechanics with electromagnetic theory. MHD was 
systematically developed in the 1930s and 1940s by scientists like Alfven, Cowling, El- 
sasser, and finally was firmly established as an important new discipline with the publi- 
cation of Alfven's classic monograph in 1950 8 . For an introduction to MHD, the readers 
are referred to the books of Cowling 9 , Moffatt l°, Parker" and Priest n . 

The evolution of the magnetic field in a conducting fluid is governed by the induction 
equation, which is the central equation of MHD: 

dB 
=Vx(vxB)+nV2B, 	 (1)  

dt 

where Ti = c2/4na is called the magnetic diffusivity (a is electrical conductivity). The 
induction equation is exactly analogous to the equation satisfied by vorticity in an ordi- 
nary incompressible fluid. The term nV 2B implies that the magnetic field diffuses away 
due to the electrical resistance of the medium. The other term V x (v x B) implies that 

the magnetic field is 'frozen' in the conducting fluid and is carried with the fluid mo - 

tions — a result similar to the Kelvin—Helmholtz theorem for vorticity. 

The subdiscipline of MI-ID, in which one studies whether motions of conducting lb!' 
ids can sustain magnetic fields, is called the dynamo theory. The first important resultm 
dynamo theory is a negative theorem due to Cowling 13 . Cowling in 1934 showed that the 
induction equation does not allow the sustenance of axisymmetric magnetic fields by  to 
axisymmetric fluid motions. Hence, one must need more complicated fluid motions  

solve the dynamo problem. The first clear positive breakthrough came in 1955 when  
Parker" realized that turbulence may play an important role in the dynamo problem. 
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Most astrophysical bodies have some angular momentum and are subject to convective 

i

.fistability in some parts. Convective turbulence in the presence of rotation gives rise to 
helical fluid motions. as we see in cyclones and anticyclones in the Earth's atmosphere. 

showed that such helical fluid motions in a turbulent conducting fluid can parker" 
maintain a magnetic field. 

The turbulent dynamo theory is based on the equations satisfied by the mean mag- 

netic field in the turbulent fluid. The mean field theory for the turbulent magnetic fields 
was developed systematically by Steenbeck et al. "  This theoretical framework gave a 
rigorous justification to Parker's original heuristic ideas. The equation satisfied by the 
mean  magnetic field in the presence of helical turbulence is the dynamo equation: 

dB 
=Vx(aB)+Vx(ux/3)+TIV 2 B, 	 (2) dt 

where u is the mean fluid velocity. Although (2) resembles the induction equation su- 
perficially, there are important differences. Firstly, B here is the mean magnetic field 
and not the total magnetic field as in (I). Secondly, /I now is the turbulent diffusivity 
rather than the molecular diffusivity as in (1). The coefficient a is the measure of the 
average helical motion (v - V x v) in the turbulence and is given in the so-called 'first- 
order smoothing approximation' by 

a = --
1  

(v -V x v)r , 	 (3) 
3 

where r is the correlation time of the turbulence. The term V x (aB) is generally nonz- 
ero in the interiors of rotating fluid bodies and is the crucial source term responsible for 
the dynamo maintenance of magnetic fields. 

One often has to solve the dynamo equation in axisymmetric astrophysical systems 
with spherical geometry. The fluid velocity in such systems can be written in spherical 
coordinates as 

u = up  + r sin 0 w(r, 0)e c , 	 (4) 

where to(r, 0) is the angular velocity and u p  is the meridional flow. Similarly, the mag- 
netic field can be expressed as 

B = V X [A(r, WO + B(r, 0) (P ip , 	 (5) 

where Be, is the toroidal component 
written as Bp . Substituting (4) and (5) 
toroidal and the poloidal components: 

and V X [A eo the poloidal component — often 
in (2), we find the evolution equations for the 

as 
--cii+rsi n  0 (uB  

P ) --) = r sin 0(B - V)co +V x(aB )+ (V 2 	I  )8 6 
P n -n-  1 ( ) 

r sine 	 P 	 r sin 0 

BA 	1 
---+---, a. 	(u -V) (r sin OA) = a +ri(V 2  ----I  ) A. 	 (7) 
a r sin0 P 	 r2  sin2  0 
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It is clear from (7) that the source term for the poloidal field is aB, whereas (6) shows 
that the toroidal field has two source terms r sin 0 (B p  • V)0) (let us call it TO and 

V x (aB p ) (let us call it T2). The term TI  is nonzero only if there is differential rotation 
which stretches out the poloidal field Bp in the toroidal direction. If 1T 1 1 << 1T21 (as in the 
case of nearly solid body rotation), then the dynamo is said to be an a 2  dynamo. On the 
other hand, if iTO >> 1T21 (as in the presence of strong differential rotation), then we call 

it an ao) dynamo. If neither of the terms is negligible, then the dynamo is said to be of 

the a2 0,) type. It is found that a 2  dynamos can sustain nonoscillatory fields with compa- 
rable toroidal and poloidal components, whereas aw dynamos are responsible for propa- 
gating wavelike oscillatory solutions with a predominant toroidal component (resulting 
from the stretching of field lines due to the strong differential rotation). The planetary 
dynamos are supposed to be of a2  type, whereas stellar dynamos are probably more like 
aro type. 

Where does the dynamo action take place in the interior of the Sun? Theoretical 
models suggest that the inner core of the Sun, up to about seven-tenths of its radius (the 
solar radius is 7 x 10 10  cm), is stable against convection. This is called the radiative 
core, where heat is transported by radiative transfer. The outer envelope of the Sun, 
called the convection zone, is convectively unstable, and heat is transported there by 
convective motions. The sunspots appear cooler compared to surroundings because the 
magnetic stresses inside the sunspots inhibit convective heat transport there. Since the 
dynamo has to be fed by convective turbulence, it used to be assumed that the dynamo 
action takes place in the convection zone of the Sun. In recent years, however, it has 
been realized that there are difficulties in making the dynamo work in the convection 
zone. 

To see the nature of these difficulties, we first have to understand the very important 
idea of magnetic buoyancy suggested by Parker 16  in 1955 to explain the origins of the 
bipolar sunspot pairs. Let us consider a horizontal cylindrical region of the conducting 
fluid having a strong magnetic field B with very little magnetic field outside. Since a 
pressure balance has to be maintained across the surface of this cylindrical region, 
keeping in mind that the magnetic field would have a pressure B 2/8m, we write down 

82 	 (8) 
Pout pin +—, 8n 

so that 

Pin < Pout, 

which very often, though not always, implies that material inside the cylindrical flux, 

tube must be lighter than the surroundings. Hence, such a magnetic flux tube is exPect ea, 
frozen t  to be buoyant. If the differential rotation inside the Sun stretches out the nearly 

tha field lines to produce a strong toroidal magnetic field, it is expected that parts of  
strong field would become buoyant and rise in the form of a flux tube. Figure 1 shetvis  
the initial and final configurations of such a buoyant flux tube. Once the top of the flux 
tube has passed through the solar surface, the flux tube intersects the solar surface in tv it: 
regions, which become the two sunspots. This scenario explains why the two sunspo 
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FIG. 2. The allowed region (shown by shading) in 

velocity shear G vs cc-coefficient parameter space 

(from Choudhuri 26 ). 
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have °Pt/site polarities and why the line joining their centres is nearly parallel to the 

equator. 
magnetic buoyancy is particularly destabilizing in the interior of the convection zone, 

where convective instability and magnetic buoyancy reinforce each other. Calculations of 

buoyant rise by Parker' showed that any magnetic field would be removed from the 

con; ection zone quickly. Hence, it is difficult to make the dynamo work in the convec- 
zone/ since the magnetic field has to be stored in the dynamo region for a sufficient Lion  

time  to allow dynamo amplification. 

It is expected that there is a thin overshoot layer (probably with a thickness of the or- 

der of 104  km) at the top of the radiative core just below the convection zone. This is a 

l ayer which is convectively stable according to a local stability analysis, but convective 
motions are induced there due to convective plumes from the overlying unstable layers 
overshooting and penetrating there. Several authors (Spiegel and Weiss 18 , van Ballegooi- 
jell') pointed out that this layer is a suitable location for the operation of the dynamo. 
Though there will be enough turbulent motions in this layer to drive the dynamo, mag- 
netic buoyancy will be suppressed by the stable temperature gradient there. There have 
also been other suggestions for suppressing magnetic buoyancy at the base of the con- 
vection zone. Parker 2°  proposed 'thermal shadows', whereas van Ballegooijen and 

Choudhuri 21  showed that an equatorward meridional circulation at the base of the con- 
vection zone can help suppressing the magnetic buoyandy there. In summary, the current 
belief is that the solar dynamo operates in a thin layer at the bottom of the convection 
zone, where magnetic buoyancy is at least partially suppressed. A support to this hy- 
pothesis comes from the recent helioseismology observations 22 , which indicate the pres- 
ence of strong differential rotation at the bottom of the convection zone. The IlSc group 

tab 
Et s 1

. The initial and final configurations of a flux e which has  
pierced through the solar surface from tThderneath. 
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has studied some of the implications of this hypothesis of a boundary layer dynamo h e_ 
low the convection zone. The next few sections describe the problems studied by thi s  
group. 

3. The dynamo generation of magnetic fields 

In order to solve the dynamo equations (6) and (7), one has to specify a, n, and the ve- 
locity field. In what is called the kinematic approach, all these quantities are specified 
on the basis of some plausibility arguments and then the ensuing solutions of the dy- 
namo equations are studied. In principle, one can try to solve the problem self- 
consistently by solving as well for the velocity field, which satisfies Navier—Stokes 
equation with one additional Lorenz force term due to magnetic stresses. Although there 
have been some attempts at numerical simulations of velocity and magnetic fields simul- 
taneously (Gilman 23 , Glatzmaier24, Brandenburg et al.25 ), it is extremely difficult to 
carry out detailed simulations for sufficiently realistic models of astrophysical systems 
and the subject of numerical dynamo simulations is still in its infancy. 

Choudhuri26  carried out kinematic calculations for the dynamo in a thin layer. The 
local properties of the dynamo in a region can be found by considering a local Cartesian 
frame. The dynamo equations in a local Cartesian frame without any meridional flow 
(i.e., up = 0) are slightly simpler than the equations (6) and (7) in spherical coordinates. 
Still one ends up with a formidable dispersion relation for a Fourier mode of the solu- 
tion. Determining the appropriate boundary conditions to be applied is also a tricky 
question. The readers are referred to the original paper for a discussion of the boundary 
conditions. By solving the dispersion relation numerically, it is eventually possible to 
find how the period and wavelength of the dynamo are related to each other. 

We know that the dynamo must have a period of 22 years. Looking at the distribution 

of sunspots in latitude, one concludes that the half-wavelength of the dynamo should be 
of the order of about 40° in latitude. If we demand that the dynamo operating in the thin 
layer at the bottom of the convection zone has the appropriate period and wavelength ,  

then Choudhuri26  showed that the various parameters specified in the kinematic calcula- 
tions (such as a, n , the velocity shear) are restricted to have values within certag 
ranges. Figure 2 shows the range of a and the velocity shear G which Choudhure 
found. On the basis of crude mixing length arguments, the ranges of various quantities 
suggest a rather small length scale of turbulence (a few hundred km) — much smaller 
than all the relevant lengths and scale heights in the dynamo layer 26' 27 • Parker28  
out a model of a layer dynamo with the regions of shear and a-effect separated an 

	

found similar values for various dynamo parameters. 	

worked 

The permissible ranges of various dynamo parameters seem to indicate that the 
dy- 

namo is more probably of the a2  co type rather than of cap type26. Since an WI) 
produces a much weaker poloidal field compared to the toroidal field and the polar fiel

d: 

of the Sun is much weaker than the sunspot fields (a manifestation of the toroidal CO 
ponent), it used to be assumed in the early years of dynamo research that the Sun has  ,a0 , 
aco dynamo operating in the convection zone. However, if the dynamo operates in the 
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oot layer, then we can allow for an ot2 co type dynamo which produces more sub- 
v 

ci
ersh 

t 'ant ia
l poloidal field, since that field may not be able to leak to the solar surface easily. 

Ths-  e 
 physics of the poloidal field will be discussed more in Section 5. We will now dis- 

cuss another argument for the dynamo being of &co type. 

Although the solar magnetic cycle is roughly periodic, one finds noticeable irregu- 
larities superposed on it. The most famous irregularity is a prolonged stretch of time 
during the 17th century (often called the Maunder minimum), when sunspots were not 

en at all. If a, q and the velocity field are assumed to be given, then dynamo equations 
se  
(6 ) and (7) are linear and lead to regular periodic solutions. Actually, however, the Lo- 
renz force of the magnetic field is expected to back-react on the fluid flows and inhibit 
the turbulence. Hence, the full dynamo problem is an intrinsically nonlinear problem as 
can be seen in the simultaneous simulations of magnetic and velocity fields. Within the 

framework of kinematic approach, Stix 29  studied the quenching of the a-effect by the 

magnetic field by taking 

ao  a = 	 (9) 
1+1B12 //31, 

Several other nonlinear calculations 3°-33  have been carried out by incorporating the 
feedback of the magnetic field in the kinematic equations in similar fashions. Although 
limited evidence of chaos has been found in some toy models 34 , the nonlinearities seem 
to make the regular solutions more stable rather than producing sustained irregularities. 
This is because a sudden increase (decrease) in the magnetic field would inhibit 
(enhance) the dynamo source term and make the field. decrease (increase) again. Thus, it 
has not been possible to model the irregularities of the solar cycle satisfactorily by look- 
ing for deterministic chaos due to the nonlinear terms'. 

Since the dynamo equation is obtained by averaging over turbulence, the stochastic 
fluctuations of different quantities around the Mean may be another source of irregulari- 
ties (see Hoyng 35). Choudhuri 36  carried out numerical studies of a one-dimensional dy- 
namo model in which the a-coefficient was taken to be stochastically varying around a 
mean value. Although the correlation time for such fluctuations is expected to be a few 
mon3

ths, the irregular patterns in the solar cycle often persist for a few decades. Choud- 
hun found that this type of qualitative behaviour can be obtained for a9 2 01 dynamos if 
the nonlinearities are not very strong. act) dynamos are not much affected by the sto- 
ehastic fluctuations, whereas cr 2  dynamos become completely irregular. Figure 3 shows 
the solutions for stochastic fluctuations in a having an amplitude of 10% around the 
mean. The three panels correspond to aco, a2 0.), and ot2  dynamos. The middle panel 
qualitatively resembles the solar cycle. It is to be noted that the stochastic fluctuations 

t  

g suppressed 
if the nonlinearities are made sufficiently strong. 

buritlyYng37 christened this as thoudhuri's problem' and showed that many of Choud- 

the  Other hand results can be understood from the theory of stochastic equations. On  hand, Moss et al. 38  carried out simulations in more complex three-dimensional inedels and 
found the results similar to Choudhuri's. 
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FIG. 3. The variation in magnetic field due to a dynamo with stochastic fluctuations in the a 

three panels correspond to aw, tau, and a2  dynamos (from Choudhuri36). 	

-coefficient. The 

39 
The readers are referred to the recent reviews on the solar dynamo by Brandenburg 

 

or Schmitt°  for discussions of other aspects of the problem. 

4. Flux tube dynamics in the convection zone 

If the dynamo operates in a stable layer at the bottom of the convection zone, then ohne 
te 

 

expects that parts of the toroidal field created there would occasionally come out M  f  
stable layer due to turbulent fluctuations. Such strands of magnetic field coming 0ut ° 



MHD MODELLING OF SOLAR CYCLE 	 567 

layer would be subjected to magnetic buoyartcy and would rise in the form of 
the s table 

flux  tu
bes as indicated in Fig. I. Hence, to understand the formation of bipolar sunspot 

pa i rs
, one has to study the dynamics of flux tubes rising from the bottom of the convec- 

tion zone due to magnetic buoyancy. Starting from the full MHD equations, Spruit 4I  de- 

f
ived an equation for the dynamics of `thin flux tubes' embedded in an ambient medium. 

Her
e 'thin' means that the cross-sectional radius of the flux tube has to be small com- 

par
ed to various scale heights. For such a flux tube of interior density p (with external 

density Pi the acceleration at a point is given by t 

dv 	A vp 	* d i+  tntA 	 (10) 
p 	 P+Pe 	P±Pc 

vibere I is the unit tangent vector, k, the curvature Vector and V A  = B/(4itp)" 2  is the 
Alfven speed inside the flux tube. The last term in (10) corresponds to magnetic buoy- 
ancy and the last but one term to magnetic tension. Choudhuri 42  noted a slight inconsis- 
tency in Spruit's derivation of (10) and hence a correction has to be applied to this 
equation. This correction, however, is based on slightly subtle arguments and does not 
change the results of calculations qualitatively. So we shall not discuss the correction 

here. 

Since (10) is nonlinear, one usually has to study the dynamics of flux tubes by nu- 
merically integrating it. Moreno-Insertis 43  developed the first code to integrate Spruit's 
equation in two dimensions and showed that the intuitive scenario sketched in Fig. 1 
indeed follows from detailed calculations. The magnetic buoyancy factor (p- 
pt)1(p + pc ) in (10) is related to the magnetic field inside the flux tube and hence one 
has to specify an initial value of the magnetic field to start the simulations. It is expected 
that the dynamo will produce a magnetic field roughly in equipartition with fluid turbu- 
knee, i.e., 

B 2 	1 	2 
—

8n 2 

— Pv 	 (11) 

The typical equipartition field is not more than about 104 G20. We shall see brlow rea- 
sons to expect the starting magnetic field to be as strong as 10 5  G. The calculations of 
the Mc group described below always were done for a range of values of the initial 
magnetic field. 

The buoyant rise time of 10 4  G flux tubes is of the order of several weeks. Since the 
it."11, 1" Period of the Sun is about 27 days, Choudhuri and Gilman 44  pointed out that the zolis force due to the Sun's rotation would play a very important role in the dynamics 

ese flux tubes. To illustrate the effect of the Coriolis force, Choudhuri and Gilman Consi,,
dered flux rings symmetric about the rotation axis which are released at the bottom n

_e.convection zone at different latitudes. Figure 4 shows the trajectories of such flux f,g8_,I 
that  the solar convection zone for three values of the initial magnetic field. It is ioh
tat the dynamics of flux rings with equipartition magnetic fields is completely 

'Rated by the Coriolis force. They move parallel to the rotation axis to emerge at 
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FIG. 4. Trajectories of flux rings starting from different latitudes at the base of the convection zone. The three 
cases are for the initial magnetic fields of 1.7 x 10 4  G (left), 5.4 x 10 4 G (middle) and 1.7 x 105 G (right) (from 
Choudhuri and Gilman"). 

latitudes much higher than the typical sunspot latitudes. Only when the starting mag- 
netic field is made of the order of 10 5  G is the magnetic buoyancy sufficiently overpow- 
ering and the flux rings starting from low latitudes rise radially to emerge at low 
latitudes. 

Choudhuri 45  developed the first three-dimensional code for solving Spruit's equation 
in spherical geometry with the Coriolis force. This code was used to study the evolution 
of a nonaxisymmetric undulated flux ring of which the lower parts remained anchored in 

the stable layer under the convection zone and the upper parts rose due to magnetic 
buoyancy. Figure 5 shows the results for such a nonaxisymmetric flux ring starting from 
5° latitude with an initial magnetic field of 1.7 x 10 4  G. Figure 5a is a polar plot of the 
successive configurations in the (r, 0) plane, whereas Figure 5b shows the trajectories in 
the (r, 0) plane of the highest and the lowest points of the flux ring with the growing 
loops. We still find that we are unable to get the flux out at typical sunspot latitudes, 
unless we take the initial magnetic field to be much larger than the equipartition value 
of 104  G. 

D'Silva and Choudhuri 46  looked at the tilts of the bipolar sunspots which would re- 
sult from the rising upper parts of the flux tubes. Figure 6 gives a plot of the observa - 

tional dependence of tilt on latitude and the theoretical plots which one gets for differen t_ 

values of the initial magnetic fields. The observational plot is based on the analysis of 
Wang and Sheeley47 . It is seen that an initial magnetic field of 10 5  0 (for which the LIP - 

per part of flux tube will rise more or less radially) gives a good fit with observation s; 

This constitutes the first quantitative theoretical model of Joy's law nearly three-quart eife  
of a century after its discovery. For weaker magnetic fields, the Coriolis force makes tu r  
flux to emerge only at high latitudes with tilts at variance with Joy's law. On the 0th_es i  
hand, the tilt becomes negligible for stronger fields, which rise so fast that the Corio.ltis 
force does not have enough time to produce an appreciable tilt. We get the correct tilts  
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h. 

Ro. 5. Evolution of a partially anchored flux ring with an initial magnetic field 1.7 x 10 4  G. The successive 

configurations in (a) or the dots in (b) are at intervals of 14 days (from Choudhuri 45 ). 

only when the magnetic field is of such value that the magnetic buoyancy force and the 
Coriolis force become comparable. It was also noted that a bipolar pair with smaller 
separation will be subject to stronger magnetic tension and hence will have less tilt. 
Howard°  was almost immediately able to verify this prediction of D'Silva and Choudhuri 46  
using the data already in his possession. Fan et a/. 49  developed a code similar to Choud- 
huri's to model the asymmetries of the bipolar sunspot pairs. 

The theoretical models seem to fit the observational data well if the magnetic field at 
the bottom of the convection zone is taken to have a value of 10 5  G. But is such a high 
value reasonable? It is not clear if the dynamo can produce such a strong field or if the 
dynamo can even operate in the presence of such a strong field which would inhibit the 
a-effect completely. Hence, the IISc group has also considered several special mecha- 
nisms for suppressing the Coriolis force in the case of more moderate fields of 10 4  G 

+ + 4 + 
10 US i 

• 
-01 

- 
0 

02 0 4 	 0 6 	 0 a 
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6 . 
Plots of sin(tilt) against sin(latitude) obtained ct 

 different initial values of the magnetic field 
indi- clued  i

n 1/4G thorn D'Silva and Choudhuri46). 
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such that the flux tubes with such fields may be made to rise radially. Choudhuri and 
D'Silvam  found that if the cross-sectional radius of the flux tube is sufficiently small (a 
few hundred km), then there may be sufficiently rapid exchange of angular momentum 
with the surroundings to suppress the Coriolis force. For flux tubes of such small cross- 
sectional radius, D'Silva and Choudhuri 51  later found another way of suppressing the 
Coriolis force: Kelvin—Helmholtz instability coupled with the drag of giant convection 
cells. D'Silva 52  showed that some of these mechanisms can make the bipolar sunspots 
appear with the correct tilt. However, all these special mechanisms for suppressing the 
Coriolis force assume some special characteristics of convective turbulence and it is not 
completely clear if these mechanisms are really operative. The small cross-sectional ra- 
dius demanded for these mechanisms to be operative may be a result of the fragmenta- 
tion of a large flux tube during rise 53 154 . Such a fragmentation can account for many 
aspects of the emergence of sunspots 55 . 

The arguments for and against both 104  and 105  0 magnetic fields are discussed by 
Moreno—Insertis 56  in the fist invited review of flux tube dynamics in an important con- 
ference. With review articles being written and several groups around the world (Hawaii, 
Berkeley, Kitt Peak, Freiburg, Tenerife, Budapest) working on it, the subject of flux tube 
dynamics has suddenly gained prominence. This gives us great pleasure and company as 
the IISc group was the only one in the world working on this subject for several years. 
Fan a cd.49  recognized our contribution by providing a long summary of our work before 
presenting the results obtained with a code similar to ours. 

5. Evolution of the weak diffuse field 

It has already been mentioned that the weak diffuse fields outside sunspots migrate 
polewards. Even when averaged over latitude, one finds predominantly one polarity in_a_ 
belt of latitudes which drifts towards the pole 7 157 . There is some observational evidence' s  

for a meridional circulation which is poleward at the surface and hence is expected to be 
equatorward at the bottom of the convection zone. Presumably this circulation plays an 
important role in the poleward drift of weak diffuse fields. 

It is natural to interpret the weak diffuse field as the poloidal component produced by 

the dynamo. However, the early researchers 59-63 , who modelled the solar dynamo to be of 
aw type and to operate in the convection zone, found that the toroidal and poloidal com- 
ponents are strongly coupled together and drift in the same direction. Hence, these clas- 
sical models could not account for the sunspots (resulting from toroidal component) and 
diffuse fields (resulting from poloidal component) migrating in opposite directions in 
view of this failure, a flux transport model has been developed in which the weak diffuse 
field is thought to be due to the decay of bipolar sunspot regions. Leighton" suggested 
that turbulent diffusion would make the magnetic flux to disperse from sunspots and the 
inclinations of bipolar sunspot pairs could account for one polarity predominantly dah1s". 
ing to higher latitudes. A detailed model of flux transport incorporating the meridional 
circulation has been developed by the NRL group (see Wang a al. 57  and the references 
therein). Though this model had remarkable success in matching magnetogram data ,  3 
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tually unsatisfactory aspect of the model is that it treats the magnetic field as a 
concep 
sc

alar residing on the solar surface and satisfying a two-dimensional advection—diffusion 
equation. It is not clear if this model can be extended to three dimensions to take note of 

the vector nature of the magnetic field. 
Since the dynamo is now believed to operate at the bottom of the convectian zone, 

Dikpati and Choudhuri 65  pointed out that the toroidal and poloidal components should 
be coupled only there and not inside the convection zone. This again opens up the pos- 
sibility of regarding the weak diffuse field as the poloidal component of the dynamo. 

Dikpati and Choudhuri 65  have developed a detailed model to study the evolution of the 

poloidal field in the convection zone by solving (7) with a= 0 (because there is no dy- 

namo action in the convection zone). A running wave corresponding to the dynamo is 
taken as the bottom boundary condition and acts as the source or the poloidal field. The 

upper boundary condition is that the field lines smoothly match a potential field outside 
the Sun. Figure 7 shows the successive configurations of poloidal field lines during a 
half-cycle obtained by solving (7) with a suitable u p  which is equatorward at the bottom 
of the convection zone and poleward at the top. The strong toroidal field (which pro- 
duces bipolar sunspots due to magnetic buoyancy and is coupled to the poloidal field in 
the dynamo layer) must be propagating equatorward at the base of the convection zone to 
account for the equatorward drift of sunspots. The weaker poloidal field, for which mag- 
netic buoyancy can be shown to be much less important (because it goes as B 2), is seen 
in Figure 7 to drift poleward at the top of the convection zone, although the lower parts 
of the poloidal field lines move equatorward with the dynamo. After demonstrating that 
the model works, we are now trying to find the best combination oVvarious parameters 
which will fit the observational data properly 66 . 

It may be noted that the magnetic fields outside sunspot regions are responsible 
for transporting energy to the corona via MI-ID waves which eventually dissipate and 
raise the coronal temperature to values much higher than the Sun's surface temperature. 
Choudhuri a al.°  developed a model for this energy transport (see also Choudhuri et 
al. 8). Muller a al.69  recently used this model to analyse their observational data and 
found that there will be enough energy transported to the corona to account for the high 
temperature there. 

6. Conclusion 

Although the aim of this paper has been to present the work done by the IISc group, we 
trust that it will give the reader some general idea of the current status of theoretical 
modelling of the solar cycle. We can observe only the sunspots and the diffuse fields on 
the solar surface. Any inference about the interior processes has to be purely theoretical. 

is quite remarkable that the hypothesis of a layer dynamo at the interface between the 
radiative core and the convection zone can provide a unified scenario for so many as- 
Pects of the solar cycle. The sunspots are supposed to result from the toroidal component 
Produced by the dynamo, whereas the weak diffuse field probably results from the poloi- aai e.

omponent. It should be emphasized that many pieces of the jigsaw puzzle are still 
rni  

s
s 

g. 
A cloud of uncertainty hangs over the value of the magnetic field produced by 
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FIG. 7. Four successive configurations of poloidal field lines during a half-cycle (from Dikpati and Choudhuri 65 )t 

the dynamo. In spite of such shortcomings, the progress in the last few years towards 
understanding the solar cycle has been noteworthy. 
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