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Abstract 

A class of mixed boundary-value problems, for the two-dimensional Laplace's equation, occurring in the study of scatter- 
ing of surface water waves by vertical barriers, is attacked for their solutions with the aid of multiple integral equations 
involving trigonometric kernels. These multiple integral equations are solved by utilizing the natural singular behaviour of 

one of the integrals at the tuning points and the final solutions are observed to depend on the solutions of certain simple 

Abel-type integral equations of the first kind. Known results are recovered and are presented in concise form. 
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I. Introduction 

The problems of scattering of surface water waves, in the linearised theory, by vertical barri- 
ers', have attracted the attention of many workers 2-6  to develop increasingly interesting 
mathematical methods to handle a class of mixed boundary-value problems associated with 
Laplace's equation, in two dimensions, having the special features that the conditions at in- 
finity are not known fully (the so-called 'reflected' and 'transmitted' waves). The solutions of 
the three basic problems, involving (i) a fully submerged barrier, (ii) a partially immersed 
barrier, and (iii) a submerged finite plate, have been obtained by a number of researchers 2-6  by 
using methods all of which, in some sense, depend on the solution of singular integral equa- 
tions with Cauchy-type kernels and therefore, on the details of the complex function theory 
and allied ideas inherent in the basic structure of such singular integral equations. 

In the present paper we have shown that the solutions of these three basic problems can be 
determined just by the use of the inversion of some Abel-type integral equations, and hence it 
is believed that complicated analysis can be avoided in handling these problems. Other gen- 
eral problems involving many vertical scatterers are also expected to give rise to such Abel- 
type integral equations or their generalisations. 

Following is the plan of the paper. In Section 2, we give a brief mathematical statement of 
Ihe three boundary-value problems under consideration here and reduce these problems to 
rn  

I
fitiPIC integral equations (dual or triple, as the case may be). In Section 3, we present the 
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methods of solution of these multiple integral equations, wherein we utilize the well-know n  
property on the mixed boundary conditions for problems involving Laplace's equation that the 
normal derivatives of a harmonic function possesses square root singularities at the turning 

points (i.e., at the points on either side of which different boundary conditions are prescribed) 
on a straight boundary. The problems then get reduced, in a natural manner, to those of solv- 
ing certain Abel-type integral equations of the first kind and solutions of these Abel integral 
equations are derived for each of the problems separately. The full solutions of all the prob- 
lems are presented in Section 4. 

2. The statement of the problems 

Mathematically speaking, the three basic problems of scattering of surface water waves by (i) 
a fully submerged vertical barrier, (ii) a partially immersed vertical barrier, and WO a fully 
submerged vertical plate, referred to hereafter as P 1 . P2 and P3, respectively, are the follow- 
ing': 

Determine three harmonic functions $ I , 4)2  and 4)3 of two variables x and y (representing 
rectangular Cartesian co-ordinates of a point in two dimensions), with y >0, in the forms: 

• j(x9Y) 

Ten icY +Licx 
 
±FAJ(k)L(k,y)Ciadk, 	x > 0 

t e-KY +iia  + R + Bj (k)L(k,y)e h  dk, 

with i2  = —1, (j = 1, 2, 3) and 

L(k, y) k cos ky K sin ky, 
	 (2) 

where Ai  (k), Bj  (k) are unknown functions, Tj  and R;  are unknown constants to be determined 
by utilizing the following requirements: 

(30 • 
(a) is continuous on x = 0, for all y, 

ax 

- 
(b) d = 

0, on x = 0±, for y E L • 
X 

and 

(c) Ø  is continuous on x =0, for y E Gi , 	 (3)  

where Le;  represents the interval aj  < y < bei  and q = (0, 00) — 4, with a l  = a, bi = ' 
(corresponding to P 1 ), a2 = 0, b2 = b (corresponding to P2) and a3  = c, b3 = d, (c > 0, d> °9  
d > c) (corresponding to P3). It is rather natural that the functions 4) ;  will have the properties 
that the derivatives ao, lax on x = 0 will have square-root singularities at the turning points 
(x = 0, y = a) for P k  (x = 0, y = b) for P2 and [(x = 0, y = c) and (x = 0, y = d)] for P3. Using 

that the conditions (3a) along with Havelock's expansion theorem', we find that we must have 
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A(k)=–B(k) 	 (4) 

and 
Ti+ Ri= 1, (j = 1, 2, 3). 	 (5) 

Then, conditions (3b) and (3c) give rise to the following multiple integral equations for the 
determination of the remaining unknown quantities: 

EA ()( y)dk – R C KY 	yeG i  ° i kLk  $ 	– i 	1 
and 	 co 	 - 

.1 kA i (k)L(k,y)dk = iK(1– R de -KY y e L i  (j = 1,2,3) 	 (6) 

Keeping in mind the singular behaviour of the integrals on the left of the second relations (6), 
at the turning points, we integrate these relations with respect to y and recast them into the 

form 

I: Ai (k)(k sin ky+ K cos ky)dk = --i(1– R i )e-KY – D. y E Li , 	(7) 

where Ds are arbitrary constants of integration. The relations (7) also can be represented as 

d r  A i (k) 

dy Jo 	
1 cs  L(k, y)dk = i(1 __ R j)e- Icy . n . 

1 

 r 

	

-r Lij  for y E Li  . 	 (8) 

Thus, by using the representations (8), the multiple integral equations (6) of our concern take 
up the following forms: 

f A (k)L(k,y)dk = R j e-IC ' , 	 yeGi  
o j and 	 . d ro Ai (k) 

	

y E lai j 	(9) dy Jo k 

These equations will be solved for the unknowns A i  , Rj  and Di  by utilizing methods to be de- 
scribed in the next section. 

We finally observe, in this section, that equations (9) can further be expressed, after using 
the operator (dldy + K) on both sides, formally, in the forms: 

and 

With 

T°GE '. (k) sin kydk = 0, 
o ' 

ci r  Fj (k)   
dy Jo —r sin kydk = C j , y E Li  

(10) 

y e Gj  
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where Cis are arbitrary constants. 

We also note, while passing, that because of the Riemann Lebesgue lemma', we must have 

that C 1 = 0, for the class of functions A 1 , for the problem Pi , for which our solution becomes 

acceptable. The constants C2 and C3 associated with the problems P2 and P3 remain arbitrary 
still and we shall determine them fully in the next section. 

3. Reduction to Abel-type integral equations and their solutions 

The solutions of the multiple equations (10) can be determined by making the following ob- 
servations: 

(1) The functions 

= s  
Fj (k) 

- j(x9Y) —e i 	b  
k 

sin kydk (j = 1, 2, 3), (12) 

represent harmonic functions in the x—y plane, and 

(II) The normal derivative awed& has the form, on the boundary x = 0, as given by 

j = - inoF.(k) si — 	 n kydk (j =1,2,3). 
a x 	0 

(13) 

The boundary conditions (10) suggest that the integrals in the relation (13) must have square- 
root singularities at the turning points (a 1  = a), (a2 = b) and (a3  = C, b3 = d), corresponding to 
the problems P1. P2 and P3, respectively. These observations immediately suggest that we may 
use the following representations for the integrals in (13), for the three different problems at 
hand8 : 

Fi (k)sin kydk 

1 d ry  ISI (t)dt  
y dy  j a  (y2 

— t2)'12' 

d lb  62 (t)dt  
dy 	)1/2 

for j=1, (a <y <00), 

for j=2, (0<y<b), 

1 	d fd  tS3 (t)dt  
y(y2 c2 ) 112 dy  y (t2 y2 )1 /2 , for or j = .17 

, 
< y < A 	(14) 

where SI, 52 and S3 are differentiable functions having the properties that S i (a) 0, SAO 
and S3(d) # 0, ensuring the desired square-root singularities of the integrals reo F(k)  sin 4414  
at the turning points described earlier. 

Using first of the two relations in (10) and the above representations, the relation (14) for 
the integrals 57, F(k) sin kydk in the two complementary ranges y q_ and y E Lj, resPec" 

lively, and utilizing the standard Fourier sine inversion formula, we find after some simple 
manipulations, in each of the cases j= 1, 2 and 3 that the functions SI, S2, S3 must satisfy the 
following equations: 
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d [ 	Si (a) +  ru  Sc(t)dt  ], 	ye u 

dy 	
04 2 a ) 	a  (u  _ t)  2 112 j 	2 2 1/2 in 	dui= 0, (a < y < 00, 	(15) 

Y 

d b  d b  t52 (t)dt l
o[i u (t 2  —u2 ) dy J du J 112] 	

y u 
n nu du=1C 2  (0<y<b) 	(16) 

and 

d 
 [1

1 	1 	_  S3(d) 	id  S31  (Odt  
(u 2 c  2 ) 1/2 	(d2 u2)'12 j

u (t 2 u 2 )1/2 

(dash denoting derivative w.r.t. the argument). 

In 127.4  d  
y + u le 

u — 71E3 , (c < y < d),(17) 

In deriving the above equations, we have made use of the well-known result that 

1 	y r  sin ku sin 
. 	k 

Icy dk = 	in 	, (0 < u < csa). 	 (18) 
y + u 

We shall next present the solutions of equations (15)—(17) via Abel integral equations, one by 
one. For eqn (15), we use the following easily derivable results: 

udu  
(i) 	 = 0, for y > a, 2 a ) 2 1/2 (y  _ u  2 	2 fa (u 	 ) 

{0 	 for y > t 
udu  

(ii) (u 2 ( 2 )1/2 (y2 _ u 2 ) 	 for t > y. 2(t 2 _ y2 ) 1/2 9 

Equation (15), then simplifies to the most simple Abel integral equation as given by 

roo  S;(t)dt  
= 0 for y> a, • 	iy 02 _ y2 ) 1/2 

whose solution decides that9  

Si(t) = X I , a constant (say). 

Next, for eqn (16), we use the following result: 

for t > y 
du  
	 for t < y (t 2  — 14 2  ) 1/2  (Y 2  U2  ) 	2y(y2 t 2  ) 1/2  

(19) 

(20) 

and simplify the equation (16) to give rise to another simple Abel integral equation as given 



582 	 A. CHAKRABARTI et at 

cY  tS2 (0dt 	r , 	n  

JO (y2 t2 ) 1/2 = ‘-'2Y for 	< y < b, 	 (21) 

whose solution decides that 9  

S20) = C2. 	 (22) 

Finally, for eqn (17), we use the following results: 

udu  
(iv) 	Ru 2 _ c2 )(d2 u2 )11/2 (y 2 u 2 )  = 0 for c y < d 

and 

udu  
(v) 	

0 
= /It 	 1  

2 
[(y2 —1

2 )072 c  2 A1/2 	

for y < t 

[(u 2 c2 )02 u2 )11/2 01 2 u2 ) 	 for t < y. 

Equation (17) then simplifies to the third Abel integral equation as given by 

S“Odt  = r, .402 _ n2 \112 r 
Jr (y2 —t2)1/2 	 for C < y < d. 	 (23) 

The solution of eqn (23) is also straightforward, and we find that the function S3(t) is given 

bY9  

S3(t) = C3( 7  — c2) A/21 	 (24) 

where k2  is another arbitrary constant. The alternative form of S3, that is convenient for fur- 
ther calculations, is taken as 

SAO = X3(4 — 12), 	 (25) 

in which X3  and do  are new arbitrary constants. 

4. The full solutions 

Substituting the functions SI, S2 and S3 from the relations (20), (22) and (25), respectively ,  

into the expressions in the relations (14) and using the first of the conditions (10), we 
after employing the Fourier sine inversion formula and some straightforward calculations that 

 obtain, 

iLN  2X 1  i 
 (u 2  — a2 ) 

sin  kudu 	1  , „ ,ns , 	 (26) 
it 	a 142 .  = n'14/ 0 k ita h 

(27) F2  (k) = —L-- 
 C2  u  sin kudu _

C2b,11(kb) 
It o   (b 2 — u 2 )1/2 = 

and 
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2X3 id 	1 	d [id  t(d, :1  -- t2)dt ]
sin  kudu = ---t 

ne, 
J(k), — 

F3 (k) 
it

=-7  7  j e .  u(u 2 _ c2 ) 112 du  j u (t 2 _ u2 ) t12 (say) 
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(28) 

where 
d (4 —u 2 )sin  ku  

J(k)= I [(u2 _ c,2 )(d2 
—u

2 )11/2 du' (29) 

S h(x) is the well-known Bessel function of the first kind 10. The complete solutions of the 
three problems under consideration can be determined by using the relations (11), once the 
arbitrary constants Xi, C2, A•3 and do and also the unknown constants Rj  and ri  are fully de- 
termined. To achieve this, we have taken recourse to the original multiple integral equations 
(6) to which we have applied, rather formally, the operator (dldy + K) and make use of the 

relations 7)+ Ri = 1, (j= 1, 2, 3). 

The following standard results" become extremely important for this purpose for the 
problems Pi and P2: 

(1) 
 f

cc Jo (ka) sin  kydk . sinh  Ky  
o 	(k 2  + K2) -- 

 K   K o (Ka), (K 5 ,  0,0 < y < a), 

ce klo (ka) sin kydk . n y 
CnY 1 0 (Ka), (K> 0,a < y coo), 2 	2 	— 0 	(K + k ) 	2 

on, r  Ji (kb) sin kydk  R

el°  (k 2  + K2) 
= T-e -KY 1 1  (Kb), (K > 0, b < y < co) , and 

0
.
v) 	

(K 2  142 ) 

kJ i (kb) sin kydk  = 
K i (Kb)sinh Ky, (K > 0,0 < y < b), 

o  

where 4 (x) and K„(x) are the well-known modified Besse! functions". We find after some 
straightforward manipulations, that 

R t  = Ad aKo(Ka), 

1 
As i a = 	  

Ko  (Ka) + iff.10 (Ka) 9  

R2 = C2bn/i (Kb) 

1  
and C2b = 

irl, (Kb)+ iK,(Kb) 
(30) 

a' 	' 	 4' 	C  

illeSe 
results agree completely with the ones obtained by earlier workers 2. 

For the problem P3, the manipulations are a bit more involved, but it is not difficult to ar- 
live at the following results, which also agree with the known onesiA; 



1 
= 	 

3  
(33) 

and 
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R3  = __x 3 1c 
 

(Cg U2  )e -Ku dU 

[(U 2  —C 2 )(61 2  —U 2 )1
1/2' (31) 

2 Ku au 2 	u e 
do  = 

{(14 2 _ c2)(d2 _ u 2)}1/2 

Ku e au  

((u 	u2)}112 (32) 

where 

c  (4 .u2)e - Ku du  

	

a = 	  {( c2 _ u2)(d2 _ u2t2  

(d02 u 2)e - Ku du  

= fd 1/2  [(u 2 (.2)( 14 2 _d2)] 

d  (dg _ u 2)e -K du  

	

and y = 	  
[( 14 2 _ c2)(d 2 .u2)1 1/2  

(34) 

5. Conclusion 

Known solutions for three basic mixed boundary-value problems arising in the study of scat - 
tering of surface water waves by vertical barriers are handled completely by utilizing simpli - 

fied integral equations of the Abel type. The final solutions agree fully with the known Orl 

Further generalisations of the present method are expected to work similarly and will be the 
eS. 

subject of our next study. 
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