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Abstract 

The mixed boundary-value problem for Laplace's equation associated with the partially immersed vertical wave- 

maker problenfis handled for solution by utilising Abel integral equations and their inversions. The present 
method appears to be sufficiently general being usable in more general problems of this class. Particular cases are 
observed to yield the known results. 
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1. Introduction 

The problem of generation of surface water waves by small oscillation of vertical plates 
in the linearised theory of water waves has attracted the attention of many researchers 1-3 

to develop newer and newer mathematical methods to solve a class of mixed boundary- 
value problems, associated with Laplace's equation, in two dimensions. The speciality of 
this class of problems lies in the fact that the conditions at infinity are not known fully. 
One such plate problem is the problem of generation of surface water waves due to small 
oscillation of a partially submerged vertical plate in water of infinite depth, which was 
first studied by Ursell i . Ursell converted the boundary-value problem associated with the 
physical problem at hand to two Cauchy-type integral equations and obtained full solu- 
tion of the problem along with the wave amplitude at large distances in closed form. 
Later on, Evans 2  gave an alternative method for a similar problem which involves the 
application of Green's integral theorem to obtain the wave amplitude at large distance. 

andai and Banerjea 3  considered the nearly vertical partially submerged plate problem 
and obtained, 	using a perturbation approach, the velocity potential along with the wave 
a  
rnplitude at large distance by exploiting the idea of Evans. 

TR
: the present paper we have reinvestigated the partially submerged vertical wave- 

physirc  p.roblem under sufficiently general boundary data (for detailed description of the 
I  Problem, see Evans 2) by utilising the well-known property of the mixed bound- 

ahlcond.
ltions for problems involving Laplace's equation, that the normal derivative of a 

Iqumnic fu• %lion possesses square-root singularities at the turning points (i.e., at the 
Pgin

ts on either side of which different boundary conditions are prescribed) on a straight boundary.  Th 
SOilit 	tiC  Problem then gets reduced to a standard Abel-type integral equation, the 

icm of Which is well known. 
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Section 2 deals with the detailed mathematical formulation of the boundary-value 
problem under consideration and in Sections 3 and 4 the derivation of its solution is dis- 
cussed along with a particular known case of the general problem undertaken. 

2. The statement of the problem 

The mathematical problem under consideration is to determine a harmonic function 0(x, 
y) of the variables (x, y) in the two-dimensional Cartesian coordinate system, in the form: 

Te -KY +in  4- 5 A(k)L(k,y)e -kr dk, x > 0 	
T. 

0(x9Y)-= 	 o 

Re'" + I ce  B(k)L(k,y)e kx  dk, x < 0 	 (1) F 

in the half plane y> 0, with i 2  = - 1 and 

L(k, y) = k cos ky - K sin ky, 	 (2) 

where T and R are two unknown constants, and A(k) and B(k) are unknown functions 
which have to be determined by utilising the following conditions: 

ai)  — is continuous on x = 0, for all y> 0, 	 (3) 
dx 

diP Th  =f(y)onx=0±ye L, 	 (4) 

4) is continuous on x = 0, for y E G 	 (5) 

(30 
- ..

... 

0((r - ar m) as r = (x

2 ± y 2) 112 ...> a, 	 (6) 
dx 

where L = (0, a), G = (0, 00) - (0, a) and fly) is a function whose first-order derivative 
exists and integrable in (0, a). Condition (6) represents the physical requirement that 
velocity has to be singular like 0(.-1/2), as r -* 0, where r = 0 represents a sharp edge. 

3. Reduction to dual integral equations 

Using the continuity of a4)/ax along x = 0 as given in condition (3) along with Have 
lock's expansion theorem 4  we must have 	 " 

A(k) = - B(k) 	 (7) and 
T = - R 	. 4 

Then utilising conditions (4) and (5) along with the relation (7), from the expression (1) 
for 4)(x, y) we obtain a set of integral relations for the determination of the function A( k), 
as given by 

-is" A(k)L(k,y)dk = 
o 

a<y<oce 
(8) 

• 
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and 
iKTe -KY –I  j cekA(k)L(k,y)dk = f (y), 0< y < a, 	 (9) 

o 

in which the constant T is also an unknown quantity. 

Integrating with respect to y the relation (9) can be rewritten as 

siTer KY  – jew A(k)(k sin ky + Kcos ky)dk = 5 f(y)dy+C for 0< y < a, 	(10) 
o 

where C is an arbitrary constant. The relation (10) can again be rewritten as 

K d f. A(k) L(k,y)dk = 5 f (y)dy + C for 0 < y< a, 	(11) 
dy 0 k 

Operating by (dldy + K), both sides of eqns (8) and (11), we obtain the derived set of 
dual integral equations for the function F(k) as given by 

foe 
 .3 F(k) sin kydk = 0, a 5 . y < co, 	 (12) 

and 
d r  F(k) 
dy Jo k 

sin kydk = H(y)+ D 0 < y < a, 

with, 

F(k) = (k 2  + K 2)A(k) 
and 

H(y)= –( d
— + K) .1 f (y)dy, 
dy 

(13) 

(14)  

(15)  

where D = KC is an arbitrary constant. 

4. Method of solution of the dual integral equations 

The solution of the set of dual integral equations as given by relations (12) and (13) can 
be obtained by making use of the following observations: 

(a)The function 

 
lif(X,y)= 1 

F(k) —e
_kr 

 sin kydk, x> 0, y > 0 	 (16) 
o k 

represents a harmonic function in the (x, y) plane. 
(b)The normal derivative awfax has the form on the boundary x = 0 as given by 

= –IF(k) sin kydk, on x = O. 	 (17) ax 	0 
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So, the bOundary conditions (12) and (13) suggest that the integral in (17) will have a 
square-root singularity at the point y = a. 

These observations suggest that we may use the following representation for the inte- 
gral in (17) 5 : 

„ 	I d 	ts(t)dt  
F(k) sin kyaK = 	y 0 2 y2 )1/2 y > 0, 	 (18) 10 

where s(t) is a bounded and differentiable function of t in (0, a) having the property that 
s(a) 0. Utilising the relation (12) and the above representation as in relation (18) in 
the two complementary ranges (0, a) and (a, 00) after using the Fourier sine inversion 
formula, we obtain 

[ F(k)= a r 11, la 
7N° did el u 

ts(t)dt 	. 
1 ,2 sin kudu, k > 0. 

(t 2 
—U

2)" 
(19) 

Now substituting for F(k) in eqn (13) we derive that 

ra  sin kyr  fa 3 [r 
dy 	k 	du iu 

ts(t)dt  
sin kudu dk = H(y)+ D,0 < y < a, 

(I —U  
2 2r 

(20) 

which gives, after simplification, 

d fa  d[[fa 	ts(t)dt 	y + u . 
y_u  ctu= H(y)+D,for0<y<a. 

z dy 	du 	Ju (1,2 __a  u 2) 112  
(21) 

Integrating the relation (21) with respect to y in (0, y) we obtain 

[fa  Q2tS0)2/1/2 
 In nt  -.11  du = for 0 < y < a. (22) 

Using the result 
1  

2 it 	du 	2 	2 1/2 
Y= (Y — t ) 

it 	2 	2) 1 /2  ( 2 	2) —u 	y — u 	0, 

fory>t 

for t > y 

 

and simplifying the left-hand side of the relation (22) we arrive at the Abel-type integral 
equation for s(t) as given by 

f ts(t)dt 
 = (9 a ti 	0 

H(t)dt + Dy), 0 < y < a. (23) 
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The solution of eqn (23) is standard and is given by 6  

2 d fr ADy + i 1 11(y)du]  dy 
0<t<a. 	 (24) 

g dt 0 	(t 2 — y
2)1/2 	' 

Once s(t) is determined, F(k) can be obtained by substituting for s(t) in the relation (19). 

Then 14(k) can be obtained from the relation (14). The two unknown constants T and D 

appear 	in the picture are finally determined by utilizing the identities (8) and (9) in ing  
appropriate manner, the details of which are presented in the next section, by consider- 

ing  a well-known particular case of the function fly). 

5. Particular case 

In the case when 

f(y) = icreay - s), 	 (25) 

in which i2  = —1, 90, a and s are positive constants, a representing the angular fre- 
quency, for the case of an oscillatory wave-maker, as considered by Evans 2, we proceed 
as follows 2-3 . 

Using the relation (24), the expression for s(t) is obtained in this particular case in 
the form 

s(t) = A i t 2  ± B i t + C i 	 (26) 

where 

A = 
/of)

°
a 

, B =
2icte 0 (1— Ks) 

g 

and C 1  is an arbitrary constant. 

Then substituting for s(t) from the relation (26) into the relation (19) and using the 
relation (14) we obtain that 

019
0 
a 	 iaJ2 (ka) i(Ks  —1) , AR)= — •"° 	....06 	 [ CI  j, (hi) + 	 IJI (ka)110 (ka)— H1 (ka)J0 (ka)}], (27) k4 +K 2 	.i. . 

2k 	k 
where C2 is an unknown constant in terms of C i  to be determined and use has been made 
of the following results': 

j
a 	1 3dt 	= ‘,21,2 	2 NI /2  
y ( t 2 .Thy 2 )1 l 2 	eY k" — .Y ) 

(a 2 _ y2 32  )/ 

1- 	
3 	

,0<y<a, 	 (28) 

jea 	1 3dt 	a i 2 	21 1/2 

y  (1 2 — y2) 1/2 a= — ka -fly )  2 

2 
Y + -- cosh'(). 9 0 < y <a, 	(29) 2 	Y  
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foa 
y(a2 — y2)1/2 sin kydy = 

7422./2(ak) 
0 < y< a, k >0, 

2k 	 (30) 

ra  y  sin ky  d 	aaJi (ak) ,  
0<y<a,k>0, 	 (32) Jo  (2 2 _y2) 1/2 Y 	2 

and 
2 y  

cosh -1  (aly) sin k9dy 	g-[. i (ak)H0 (ak) .10 (ak)11 1 (ak)] k > 0, 0 < y < a, (32) 
2 k 

where .1,(x)s are the well-known Bessel functions of the first kind and H(x)s, the well- 
known Struve functions 8 . 

Next, to obtain T and C2 we substitute for A(k) from the expression (27) in the iden- 
tity (8) and obtain that 

T = CO ocur{—C 2 11 (Ka)+ 1t2 12 (ka) 
i(K

K
s-1)

[
f

i (Ka)L o (Ka)— L i (Ka)1 0 (Ka)1}, (33) 
2 

where iv(x)s are the modified Bessel functions of the first kind and L y(x)s are the modi- 
fied Struve functions. The following results 7  have been utilised in obtaining the above 
expression for T: 

r (34) .11 (ka) sin  kydk 	g e -Ky I (Ka), (K>0,a<y<00), 
(k 2  + K 2 ) 	2K 

(35) r J2(ka) sin 
kYdk 
	

C KY1 2 (Ka), (K> 0, a < y < co), 
ic(k 2  ± K 2 ) 	2K`  

and 

00 P1 (ka)H0 (ka)— 11 1 (ka)-1 0 (ica)] sin kydk 
Jo 	 k(k2+K2) 

= ., , e -1111 (Ka)L o (Ka)— L 1 (Ka)1 0 (Ka)}, (K > 0, a < y < 00). 	(36) 
2K 

Again, substituting for A(k) from the expression (27) in the relation (9) and considering 
the limiting case as y —> 0, we obtain that 

	

(1—Ks)[.  2 fa 	 (37) 

	

T =at9 0a{iC2 K i (Ka)--
a 

K2(Ka)+ 	i+— tK,(0dt3, 
2 	 71-  o 

where Kv(x)s are the modified Bessel functions of the second kind and use has been 
made of the following results' (see appendix): 
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k 2ii (ka)dk  

L 
	= 

(k2 + K2)
Ki(K 

 

r  k.I2(ka)dk
= 	n 

2 	v. 
2kn 	a

fr„ 
a), , rt> 

Jo (k 2  +K 2 ) a2  K 2  

(38)  

(39)  

.1 1 (ka)H0 (ka) —  111 (ka)J0 (ka)jdk  

(1( 2  +K 2 ) 

=[K i (Ka)L o (Ka)+ L i (Ka)K o (Ka)j, a, K >0. 

and 

f: 
(40)  

(41)  

Finally, solving eqns (33) and (37) for the two unknowns T and C2, we find that 

crooayr 1  (Ks-1) 
 ili(Ka)+ L1 (Ka)}] T = 	 

Ka [2 aK 

and 

a rri/2  (Ka)+K 2 (Ka)}1 
C2 = 2 	

A 

(1— Ks) (1_ Ks)[ 
	Li (Ka)

(ff,10(Ka)+  

aK 2
4 	K 

K 0 (Ka)fl  
(42) 

with 

A = Iri l (Ka)+iK i (Ka), 

after making use of the identities': 

1 
1 i (Ka)K 2 (Ka)+K 1 (Ka)1 2 (Ka)= 

and 

K 	
s

a 	 Ka 
Ii (Ka)J

r 
 uK i (u)du— K i (Kal ul l (u)du = —

1 
gLi (Ka). 

0 	 2 

(43)  

(44)  

(45)  

Hence, we obtain the results for A(k) and T as given by the relations (27) and (41) with 
C2 as given by (42). This result for T coincides with the result as obtained by Evans 2 . 
Also the full solution coincides with the result obtained by Mandal and Banerjea 3  in case of  

the vertical wave-maker if one takes care of an algebraic error that is appearing in 
their final solution. 

6. Conclusion 
lbw 
 e problem of a partially immersed vertical wave-maker in the linearised theory of 
ate!. 

 waves in the case of water of infinite depth has been considered for solution, by 
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converting the boundary-value problem to a set of dual integral equations. These equa- 
tions have been converted into an Abel-type integral equation by using the behaviour of 
the harmonic functions at turning points, whose solution is well known. Particular case 
of the more general problem has been considered as a check. The problem of a nearly 
vertical partially submerged wave-maker problem can also be dealt with by the present 
method, as is the case with similar such mixed boundary-value problems. 
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Appendix 

To evaluate the integral 

r  k   
k2 

±K  2  [J i (ka)H o (ka)— i (ka). o (ka)] dk, 	 (Al) 
Jo  

Consider the integral 

I = F(z)dz, 	 (A2) 

where 

[H 0 (za)H il  (vi) —(za)II (1)(za)] 	
(A3) 

z 2 + K 2 
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r is a half circle in the complex z-plane with radius R very large. Then 

R 

r
I = f F(z)dz = .1 °  F(k)dk + f F(z)dz with z = k + in. 	 (A4) 

-R 	 C 

Along the curve C, z = Re with 0 9< n. 

From the behaviour of F(z) it is clear that along the curve C, 

as R —> 00. 	 (A5) 

Hence 

1 = fa°  F(k)dk = I [F(k)+ F( -k)] dk. 	 (A6) 
o 

Again 

F(k) + F(-k) =  ,
2k  

+ Ke 
, V 1 (ka)H 0 (ka)- 1 1 1 (ka)J 0 (ka)]. 	 (A7) 

le  

Further, 

residue of F(z) at (z = ik) = fl[L o (Ka)K i (Ka) + 1, 1 (Ka)K o (K a)]. 	(AS) 

So, using the Cauchy's residue theorem we obtain that 

1 = 2[1,0 (Ka)K 1 (Ka)+ L i (Ka)K 0 (Ka)], 	 (A9) 

which gives 

5: ic2÷2 [11 (ka)H o (ka) - H 1 (ka)J o (ka)] dk =[L 0 (Ka)K 1  (Ka)+ 1, 1 (Ka)K o (Ka)}. 

(A10) 
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