On the solution of the partially immersed vertical wavemaker problem in surface water waves

T. SAHOO AND A. CHAKRABARTI
Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India.

Received on August 8, 1995.

Abstract

The mixed boundary-value problem for Laplace's equation associated with the partially immersed vertical wavemaker problem' is handled for solution by utilising Abel integral equations and their inversions. The present method appears to be sufficiently general being usable in more general problems of this class. Particular cases are observed to yield the known results.

Kejwords: Surface water waves, wave-maker, dual integral equations, Abel integral equations.

1. Introduction

The problem of generation of surface water waves by small oscillation of vertical plates in the linearised theory of water waves has attracted the attention of many researchers ${ }^{1-3}$ 10 develop newer and newer mathematical methods to solve a class of mixed boundaryvalue problems, associated with Laplace's equation, in two dimensions. The speciality of this class of problems lies in the fact that the conditions at infinity are not known fully. One such plate problem is the problem of generation of surface water waves due to small ascillation of a partially submerged vertical plate in water of infinite depth, which was first studied by Ursell ${ }^{1}$. Ursell converted the boundary-value problem associated with the physical problem at hand to two Cauchy-type integral equations and obtained full solution of the problem along with the wave amplitude at large distances in closed form. Later on, Evans ${ }^{2}$ gave an alternative method for a similar problem which involves the application of Green's integral theorem to obtain the wave amplitude at large distance. Mandal and Banerjea ${ }^{3}$ considered the nearly vertical partially submerged plate problem and obtained, using a perturbation approach, the velocity potential along with the wave amplitude at large distance by exploiting the idea of Evans.

[^0]Section 2 deals with the detailed mathematical formulation of the boundary-value problem under consideration and in Sections 3 and 4 the derivation of its solution is discussed along with a particular known case of the general problem undertaken.

2. The statement of the problem

The mathematical problem under consideration is to determine a harmonic function $\phi(x$, y) of the variables (x, y) in the two-dimensional Cartesian coordinate system, in the form:

$$
\phi(x, y)=\left\{\begin{array}{l}
T e^{-K y+i K x}+\int_{0}^{\infty} A(k) L(k, y) e^{-k x} d k, x>0 \tag{1}\\
R e^{-K y-i K x}+\int_{0}^{\infty} B(k) L(k, y) e^{k x} d k, x<0
\end{array}\right.
$$

in the half plane $y>0$, with $i^{2}=-1$ and

$$
\begin{equation*}
L(k, y)=k \cos k y-K \sin k y \tag{2}
\end{equation*}
$$

where T and R are two unknown constants, and $A(k)$ and $B(k)$ are unknown functions which have to be determined by utilising the following conditions:

$$
\begin{gather*}
\frac{\partial \phi}{\partial x} \text { is continuous on } x=0, \text { for all } y>0 \tag{3}\\
\frac{\partial \phi}{\partial x}=f(y) \text { on } x=0 \pm y \in L \tag{4}\\
\phi \text { is continuous on } x=0, \text { for } y \in G \tag{5}\\
\frac{\partial \phi}{\partial x} \approx O\left((r-a)^{-1 / 2}\right) \text { as } r=\left(x^{2}+y^{2}\right)^{1 / 2} \rightarrow a \tag{6}
\end{gather*}
$$

where $L=(0, a), G=(0, \infty)-(0, a)$ and $f(y)$ is a function whose first-order derivative exists and integrable in ($0, a$). Condition (6) represents the physical requirement that velocity has to be singular like $O\left(r^{-1 / 2}\right)$, as $r \rightarrow 0$, where $r=0$ represents a sharp edge.

3. Reduction to dual integral equations

Using the continuity of $\partial \phi / \partial x$ along $x=0$ as given in condition (3) along with Havelock's expansion theorem ${ }^{4}$ we must have

$$
\text { and } \left.\begin{array}{c}
A(k)=-B(k) \tag{7}\\
T=-R
\end{array}\right\}
$$

Then utilising conditions (4) and (5) along with the relation (7), from the expression (1) for $\phi(x, y)$ we obtain a set of integral relations for the determination of the function $A(k)$, as given by

$$
\begin{equation*}
-\int_{0}^{\infty} A(k) L(k, y) d k=T e^{-K y}, \quad a<y<\infty \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
i K T e^{-K y}-\int_{0}^{\infty} k A(k) L(k, y) d k=f(y), \quad 0<y<a, \tag{9}
\end{equation*}
$$

in which the constant T is also an unknown quantity.
Integrating with respect to y the relation (9) can be rewritten as

$$
\begin{equation*}
-i T e^{-K y}-\int_{0}^{\infty} A(k)(k \sin k y+K \cos k y) d k=\int f(y) d y+C \text { for } 0<y<a, \tag{10}
\end{equation*}
$$

where C is an arbitrary constant. The relation (10) can again be rewritten as

$$
\begin{equation*}
-i T e^{-K y}+\frac{d}{d y} \int_{0}^{\infty} \frac{A(k)}{k} L(k, y) d k=\int f(y) d y+C \text { for } 0<y<a, \tag{11}
\end{equation*}
$$

Operating by $(d / d y+K)$, both sides of eqns (8) and (11), we obtain the derived set of dual integral equations for the function $F(k)$ as given by

$$
\begin{equation*}
\int_{0}^{\infty} F(k) \sin k y d k=0, \quad a \leq y<\infty, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d y} \int_{0}^{\infty} \frac{F(k)}{k} \sin k y d k=H(y)+D \quad 0<y<a \tag{13}
\end{equation*}
$$

with,

$$
\begin{equation*}
F(k)=\left(k^{2}+K^{2}\right) A(k) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
H(y)=-\left(\frac{d}{d y}+K\right) \int f(y) d y \tag{15}
\end{equation*}
$$

where $D=K C$ is an arbitrary constant.

4. Method of solution of the dual integral equations

The solution of the set of dual integral equations as given by relations (12) and (13) can be obtained by making use of the following observations:
(a) The function

$$
\begin{equation*}
\psi(x, y)=\int_{0}^{\infty} \frac{F(k)}{k} e^{-k x} \sin k y d k, \quad x>0, y>0 \tag{16}
\end{equation*}
$$

represents a harmonic function in the (x, y) plane.
(b) The normal derivative $\partial \psi / \partial x$ has the form on the boundary $x=0$ as given by

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=-\int_{0}^{\infty} F(k) \sin k y d k, \quad \text { on } \quad x=0 \tag{17}
\end{equation*}
$$

So, the boundary conditions (12) and (13) suggest that the integral in (17) will have a square-root singularity at the point $y=a$.

These observations suggest that we may use the following representation for the integral in (17) ${ }^{5}$:

$$
\begin{equation*}
\int_{0}^{\infty} F(k) \sin k y d k=\frac{d}{d y} \int_{y}^{a} \frac{t s(t) d t}{\left(t^{2}-y^{2}\right)^{1 / 2}}, \quad y>0, \tag{18}
\end{equation*}
$$

where $s(t)$ is a bounded and differentiable function of t in $(0, a)$ having the property that $s(a) \neq 0$. Utilising the relation (12) and the above representation as in relation (18) in the two complementary ranges $(0, a)$ and (a, ∞) after using the Fourier sine inversion formula, we obtain

$$
\begin{equation*}
F(k)=\frac{2}{\pi} \int_{0}^{a} \frac{\partial}{\partial u}\left(\int_{u}^{a} \frac{t s(t) d t}{\left(t^{2}-u^{2}\right)^{1 / 2}}\right) \sin k u d u, k>0 \tag{19}
\end{equation*}
$$

Now substituting for $F(k)$ in eqn (13) we derive that

$$
\begin{equation*}
\frac{2}{\pi} \frac{d}{d y} \int_{0}^{a} \frac{\sin k y}{k}\left[\int_{0}^{a} \frac{\partial}{\partial u}\left(\int_{u}^{a} \frac{t s(t) d t}{\left(t^{2}-u^{2}\right)^{1 / 2}}\right) \sin k u d u\right] d k=H(y)+D, 0<y<a, \tag{20}
\end{equation*}
$$

which gives, after simplification,

$$
\begin{equation*}
\frac{1}{\pi} \frac{d}{d y} \int_{0}^{a} \frac{\partial}{\partial u}\left[\left(\int_{u}^{a} \frac{t s(t) d t}{\left(t^{2}-u^{2}\right)^{1 / 2}}\right)\right] \ln \left|\frac{y+u}{y-u}\right| d u=H(y)+D, \text { for } 0<y<a . \tag{21}
\end{equation*}
$$

Integrating the relation (21) with respect to y in $(0, y)$ we obtain

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{a} \frac{\partial}{\partial u}\left[\left(\int_{u}^{a} \frac{t s(t) d t}{\left(t^{2}-u^{2}\right)^{1 / 2}}\right)\right] \ln \left|\frac{y+u}{y-u}\right| d u=\int_{0}^{y} H(t) d t+D y, \text { for } 0<y<a . \tag{22}
\end{equation*}
$$

Using the result

$$
\frac{2}{\pi} \int_{0}^{t} \frac{d u}{\left(t^{2}-u^{2}\right)^{1 / 2}\left(y^{2}-u^{2}\right)}= \begin{cases}\frac{1}{y\left(y^{2}-t^{2}\right)^{1 / 2}} & \text { for } y>t \\ 0, & \text { for } t>y\end{cases}
$$

and simplifying the left-hand side of the relation (22) we arrive at the Abel-type integral equation for $s(t)$ as given by

$$
\begin{equation*}
\int_{0}^{y} \frac{t s(t) d t}{\left(y^{2}-t^{2}\right)^{1 / 2}}=-\left(\int_{0}^{y} H(t) d t+D y\right), 0<y<a . \tag{23}
\end{equation*}
$$

The solution of eqn (23) is standard and is given by ${ }^{6}$

$$
\begin{equation*}
t s(t)=-\frac{2}{\pi} \frac{d}{d t} \int_{0}^{t} \frac{y\left[D y+\int_{0}^{y} H(y) d u\right] d y}{\left(t^{2}-y^{2}\right)^{1 / 2}}, 0<t<a . \tag{24}
\end{equation*}
$$

Once $s(t)$ is determined, $F(k)$ can be obtained by substituting for $s(t)$ in the relation (19). Then $A(k)$ can be obtained from the relation (14). The two unknown constants T and D appearing in the picture are finally determined by utilizing the identities (8) and (9) in appropriate manner, the details of which are presented in the next section, by considering a well-known particular case of the function $f(y)$.

5. Particular case

In the case when

$$
\begin{equation*}
f(y)=i \sigma \theta_{0}(y-s), \tag{25}
\end{equation*}
$$

in which $i^{2}=-1, \theta_{0}, \sigma$ and s are positive constants, σ representing the angular frequency, for the case of an oscillatory wave-maker, as considered by Evans ${ }^{2}$, we proceed as follows ${ }^{2-3}$.

Using the relation (24), the expression for $s(t)$ is obtained in this particular case in the form

$$
\begin{equation*}
s(t)=A_{1} t^{2}+B_{1} t+C_{1} \tag{26}
\end{equation*}
$$

where

$$
A_{1}=\frac{i \sigma \theta_{0} a}{4}, B_{1}=\frac{2 i \sigma \theta_{0}(1-K s)}{\pi},
$$

and C_{1} is an arbitrary constant.
Then substituting for $s(t)$ from the relation (26) into the relation (19) and using the relation (14) we obtain that

$$
\begin{equation*}
A(k)=-\frac{\sigma \theta_{0} a}{k^{2}+K^{2}}\left[C_{2} J_{1}(k a)-\frac{i a J_{2}(k a)}{2 k}+\frac{i(K s-1)}{k}\left\{J_{1}(k a) H_{0}(k a)-H_{1}(k a) J_{0}(k a)\right\}\right], \tag{27}
\end{equation*}
$$

where C_{2} is an unknown constant in terms of C_{1} to be determined and use has been made of the following results ${ }^{\text { }}$:

$$
\begin{align*}
& \int_{y}^{a} \frac{t^{3} d t}{\left(t^{2}-y^{2}\right)^{1 / 2}}=y^{2}\left(a^{2}-y^{2}\right)^{1 / 2}+\frac{\left(a^{2}-y^{2}\right)^{3 / 2}}{3}, 0<y<a, \tag{28}\\
& \int_{y}^{a} \frac{t^{3} d t}{\left(t^{2}-y^{2}\right)^{1 / 2}}=\frac{a}{2}\left(a^{2}-y^{2}\right)^{1 / 2}+\frac{y^{2}}{2} \cosh ^{-1}\left(\frac{a}{y}\right), 0<y<a, \tag{29}
\end{align*}
$$

$$
\begin{gather*}
\int_{0}^{a} y\left(a^{2}-y^{2}\right)^{1 / 2} \sin k y d y=\frac{\pi a^{2} J_{2}(a k)}{2 k}, 0<y<a, k>0 \tag{30}\\
\int_{0}^{a} \frac{y \sin k y}{\left(a^{2}-y^{2}\right)^{1 / 2}} d y=\frac{\pi a J_{1}(a k)}{2}, 0<y<a, k>0 \tag{32}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{0}^{a} y \cosh ^{-1}(a / y) \sin k \dot{y} d y=\left(\frac{\pi}{2}\right)^{2} \frac{a}{k}\left[J_{1}(a k) H_{0}(a k)-J_{0}(a k) H_{1}(a k)\right] k>0,0<y<a, \tag{32}
\end{equation*}
$$

where $J_{v}(x)$ s are the well-known Bessel functions of the first kind and $H_{v}(x)$ s, the wellknown Struve functions ${ }^{8}$.

Next, to obtain T and C_{2} we substitute for $A(k)$ from the expression (27) in the identity (8) and obtain that

$$
\begin{equation*}
T=\sigma \theta_{0} a \pi\left\{-C_{2} I_{1}(K a)+\frac{i a}{2} I_{2}(k a)-\frac{i(K s-1)}{K}\left[I_{1}(K a) L_{0}(K a)-L_{1}(K a) I_{0}(K a)\right]\right\} \tag{33}
\end{equation*}
$$

where $I_{v}(x)$ s are the modified Bessel functions of the first kind and $L_{v}(x) s$ are the modified Struve functions. The following results ${ }^{7}$ have been utilised in obtaining the above expression for T :

$$
\begin{align*}
& \int_{0}^{\infty} \frac{J_{1}(k a) \sin k y d k}{\left(k^{2}+K^{2}\right)}=\frac{\pi}{2 K} e^{-K y} I_{1}(K a),(K>0, a<y<\infty), \tag{34}\\
& \int_{0}^{\infty} \frac{J_{2}(k a) \sin k y d k}{k\left(k^{2}+K^{2}\right)}=\frac{\pi}{2 K^{2}} e^{-K y} I_{2}(K a),(K>0, a<y<\infty), \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\left[J_{1}(k a) H_{0}(k a)-H_{1}(k a) J_{0}(k a)\right] \sin k y d k}{k\left(k^{2}+K^{2}\right)}= \\
& \quad=\frac{\pi}{2 K^{2}} e^{-K y}\left[I_{1}(K a) L_{0}(K a)-L_{1}(K a) I_{0}(K a)\right],(K>0, a<y<\infty) \tag{36}
\end{align*}
$$

Again, substituting for $A(k)$ from the expression (27) in the relation (9) and considering the limiting case as $y \rightarrow 0$, we obtain that

$$
\begin{equation*}
T=\sigma \theta_{0} a\left\{i C_{2} K_{1}(K a)-\frac{a}{2} K_{2}(K a)+\frac{(1-K s)}{a K^{2}}\left[1+\frac{2}{\pi} \int_{0}^{a} t K_{1}(t) d t\right]\right\} \tag{37}
\end{equation*}
$$

where $K_{v}(x)$ s are the modified Bessel functions of the second kind and use has been made of the following results ${ }^{7}$ (see appendix):

$$
\begin{gather*}
\int_{0}^{\infty} \frac{k^{2} J_{1}(k a) d k}{\left(k^{2}+K^{2}\right)}=K_{1}(K a), a, K>0, \tag{38}\\
\int_{0}^{\infty} \frac{k J_{2}(k a) d k}{\left(k^{2}+K^{2}\right)}=\frac{2}{a^{2} K^{2}}-K_{2}(K a), a, K>0 \tag{39}
\end{gather*}
$$

and

$$
\begin{align*}
\int_{0}^{\infty} \frac{k\left[J_{1}(k a) H_{0}(k a)-H_{1}(k a) J_{0}(k a)\right] d k}{\left(k^{2}+K^{2}\right)} & = \\
= & {\left[K_{1}(K a) L_{0}(K a)+L_{1}(K a) K_{0}(K a)\right], a, K>0 . } \tag{40}
\end{align*}
$$

Finally, solving eqns (33) and (37) for the two unknowns T and C_{2}, we find that

$$
\begin{equation*}
T=-\frac{\sigma \theta_{0} a \pi}{K \Delta}\left[\frac{1}{2}+\frac{(K s-1)}{a K}\left\{I_{1}(K a)+L_{1}(K a)\right\}\right] \tag{41}
\end{equation*}
$$

and

$$
\begin{align*}
& C_{2}=\frac{a}{2}\left[\frac{\left\{\pi I_{2}(K a)+K_{2}(K a)\right\}}{\Delta}\right] \\
& \quad-\frac{(1-K s)}{a K^{2} \Delta}+\frac{(1-K s)}{K}\left[i L_{0}(K a)-L_{1}(K a)\left(\frac{\pi I_{0}(K a)+K_{0}(K a)}{\Delta}\right)\right], \tag{42}
\end{align*}
$$

with

$$
\begin{equation*}
\Delta=\pi d_{1}(K a)+i K_{1}(K a) \tag{43}
\end{equation*}
$$

after making use of the identities ${ }^{1}$:

$$
\begin{equation*}
I_{1}(K a) K_{2}(K a)+K_{1}(K a) I_{2}(K a)=\frac{1}{K a} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}(K a) \int_{0}^{K a} u K_{1}(u) d u-K_{1}(K a) \int_{0}^{K a} u I_{1}(u) d u=\frac{1}{2} \pi L_{1}(K a) . \tag{45}
\end{equation*}
$$

Hence, we obtain the results for $A(k)$ and T as given by the relations (27) and (41) with C_{2} as given by (42). This result for T coincides with the result as obtained by Evans ${ }^{2}$. Also the full solution coincides with the result obtained by Mandal and Banerjea ${ }^{3}$ in case of the vertical wave-maker if one takes care of an algebraic error that is appearing in their final solution.
6. Conclusion

The problem of a partially immersed vertical wave-maker in the linearised theory of Water waves in the case of water of infinite depth has been considered for solution, by
converting the boundary-value problem to a set of dual integral equations. These equations have been converted into an Abel-type integral equation by using the behaviour of the harmonic functions at turning points, whose solution is well known. Particular case of the more general problem has been considered as a check. The problem of a nearly vertical partially submerged wave-maker problem can also be dealt with by the present method, as is the case with similar such mixed boundary-value problems.

Acknowledgement

TS acknowledges the University Grants Commission, New Delhi, for financial support.

References

1. Ursell, F.
2. Evans, D. V.
3. Mandal, B. N. and Banerjea, S.
4. Ursell, F.
5. Davis, A. M. J.
6. KANWAL, R. P.
7. Gradshteyn, I. S. and Ryzhik, I. M.
8. Abramowitz, M. and Stegun, I. A.
9. Sneddon, I. N.

On the waves due the rolling of a ship, Q.J. Mech. Appl. Math., 1948, 1, 246-252.

A note on the waves produced by small oscillations of a partially immersed vertical plate, J. Inst. Math. Appl., 1976, 17, 135-140.

A note on waves due to rolling of a partially immersed nearly vertical plate, SIAM J. Appl. Math., 1991, 51, 933-939.

The effect of a fixed vertical barrier on surface waves in deep water, Proc. Camb. Phil. Soc., 1947, 43, 374-382.

A translating disk in a Sampson flow; pressure driven flow through concentric holes in parallel walls, Q. J. Mech. Appl. Math., 1991, 44, 471-486.

Linear integral equations, theory and technique, 1972, Academic Press.

Tables of integrals, series and products, 1980, Academic Press.
Handbook of mathematical functions, 1972, Dover.
Use of integral transform, 1974, Tata McGraw-Hill.

Appendix

To evaluate the integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{k}{k^{2}+K^{2}}\left[J_{1}(k a) H_{0}(k a)-H_{1}(k a) J_{0}(k a)\right] d k, \tag{Al}
\end{equation*}
$$

Consider the integral

$$
\begin{equation*}
I=\int_{\Gamma} F(z) d z \tag{A2}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)=\frac{\left[H_{0}(z a) H_{1}^{1}(z a)-H_{1}(z a) H_{0}^{1}(z a)\right]}{z^{2}+K^{2}} z, \tag{A3}
\end{equation*}
$$

Γ is a half circle in the complex z-plane with radius R very large. Then

$$
\begin{equation*}
I=\int_{\Gamma} F(z) d z=\int_{-R}^{R} F(k) d k+\int_{C} F(z) d z \text { with } z=k+i \eta . \tag{A4}
\end{equation*}
$$

Along the curve $C, z=R e^{i \theta}$ with $0 \leq \theta<\pi$.
From the behaviour of $F(z)$ it is clear that along the curve C,

$$
\begin{equation*}
\int_{C} F(z) d z \rightarrow 0 \text { as } R \rightarrow \infty \tag{A5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} F(k) d k=\int_{0}^{\infty}[F(k)+F(-k)] d k . \tag{A6}
\end{equation*}
$$

Again

$$
\begin{equation*}
F(k)+F(-k)=\frac{2 k}{k^{2}+K^{2}}\left[J_{1}(k a) H_{0}(k a)-H_{1}(k a) J_{0}(k a)\right] . \tag{A7}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\text { residue of } F(z) \text { at }(z=i k)=\frac{-i}{\pi}\left[L_{0}(K a) K_{1}(K a)+L_{1}(K a) K_{0}(K a)\right] \text {. } \tag{A8}
\end{equation*}
$$

So, using the Cauchy's residue theorem we obtain that

$$
\begin{equation*}
I=2\left[L_{0}(K a) K_{1}(K a)+L_{1}(K a) K_{0}(K a)\right] \tag{A9}
\end{equation*}
$$

which gives

$$
\int_{0}^{\infty} \frac{k}{k^{2}+K^{2}}\left[J_{1}(k a) H_{0}(k a)-H_{1}(k a) J_{0}(k a)\right] d k=\left[L_{0}(K a) K_{1}(K a)+L_{1}(K a) K_{0}(K a)\right] .
$$

IISc Theses Abstracts

Contents

Analysis of the acoustic wave propagation in variable area flow ducts and anechoic linings
Modelling of drop breakage in stirred vessels
Studies on membrane formation and diffusion coupled enzymatic reaction in semipermeable microcapsules
Slability and performance analysis of some multiple access and mobile cellular communications networks
A study of hypercube-like networks using a multistage graph model A methodology to design performance driven multipliers using normal process complementary pass transistor logic (NPCPL)
Evanescent coupling between fiber and planar waveguides
A method of fault diagnosis in a wave soldering system
Guided wave acousto-optic interactions in LiNbO_{3}
Perfornance-reliability modeling of a distributed fault-tolerant flight computer system
An automatic parallelization framework for multi-computers
Vibration of pipes resting on soil medium
Assessment of shell theories for the static analysis of laminated circular cylindrical shells
Hea and mass transfer simulation studies in solid state fermentationsThe mechanism of interaction of carbonyl-directed reagents at the activesite of sheep liver serine hydroxymethyltransferase
The primary structure and active site residues of sheep liverhydroxymethyltransferase
Mapping of antigenic determinants and regions of RNA-protein interactions in Physalis mottle virus
Organisation and structure of the gene for a 19 kD structural protein of colitis bacteriophage
Biochemical and immunological studies on methyl isocyanate exposure
3,5-Dichlorocatechol 1, 2-dioxygenase: Purification, characterization,expression and nucleotide sequence of its gene from Pseudomonas
cepacia CSV90cepacia CSV90

[^0]: In the present paper we have reinvestigated the partially submerged vertical wavemaker problem under sufficiently general boundary data (for detailed description of the physical problem, see Evans ${ }^{2}$) by utilising the well-known property of the mixed bounddyconditions for problems involving Laplace's equation, that the normal derivative of a harmonic function possesses square-root singularities at the turning points (i.e., at the moints on either side of which different boundary conditions are prescribed) on a straight solution of which is well known.

