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Abstract 

A comparative study of modified strongly implicit procedure (MSIP) with a host of conjugate gradient methods as 
applicable to groundwater flow problems in nonrectangular flow domains is made. Among the methods—Hestenes 
and Steifel's conjugate gradient methods (CGHS), diagonal scaling conjugate gradient method (DSCG) and in- 
complete Cholesky conjugate gradient method (ICCG) and MSIP—it was found that DSCG and MSIP performed 
equally well. DSCG was found to be easily adoptable for nonrectangular flow domains unlike MSIP which needed 
derivation of special equations. 

Keywords: Comparison, conjugate gradient methods, strongly implicit procedure, groundwater flows. 

I. Introduction 

Groundwater modelling is a powerful tool that can help in analysing many groundwater 
problems. Modelling is useful in understanding the flow behaviour and the response of 
the aquifer under a given stress. Since the development of digital computer, tremendous 
progress has been made in the numerical modelling of groundwater systems covering 
both well field and regional situations. To identify efficient methods of analysis of the 
groundwater problems several comparative studies involving finite-difference techniques 
have been made earlier. Notable in this are Tresscott and Larson', Mohan Kumar 2  and 
Mohan Kumar a al. 3  All the above-mentioned papers consider only methods like alter- 
nating direction implicit procedure (ADI), successive over relaxation procedure (SOR), 
and strongly implicit procedure (SIP) to solve the linear equations arising out of ap- 
proximating the governing equations. 

One of the early attempts to compare the incomplete Cholesky conjugate gradient 
(ICCG) method along with SIP was made by Kuiper 4 . He concluded that ICCG is supe- 
rior to SIP for confined aquifer problems. A comparative study of a family of conjugate 
gradient methods as applied to regional groundwater flow problems has not been made. 

Most of the groundwater basins will be nonrectangular in shape. Thus the existing 
fi
nite-difference methods either have to be checked for their suitability for such situa- 

tions or modified accordingly. Mohan Kumar et al. 3  have modified the SIP, originally 
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developed by Stone5  , for nonrectangular flow domains. It has also been proved that SIP 
is one of the powerful methods for groundwater flow analysis i t 3 ' 6 . 

Of late, conjugate gradient methods have gained a lot of importance in groundwater 
flow analysis. A new method called the incomplete Cholesky conjugate gradient method 
is proposed by Meijerink and Van der Vorst 7  for groundwater flows. The conjugate gra- 
dient method with various preconditioners was applied to groundwater flow problems 
and compared with other methods by Kuiper 8  and Meyer et al. 9  In this paper, a compari- 
son of the three types of conjugate gradient (CO) methods and strongly implicit proce- 
dure is made with specific reference to nonrectangular flow domains. It has been found 
that CG methods can handle nonrectangular boundary domains naturally. The compara- 
tive study is made on three test problems depicting regional groundwater flow problems 
and the results are discussed in terms of computational work and accuracy. 

2. Mathematical formulation and methodology 

2.1. Governing equation 

The partial differential equation of groundwater flow in a nonhomogeneous anisotropic 
aquifer in two dimensions is given by 10  

dl 	d [ dh] dh 
ix 	Ty —day  =S Tt i-Qp —RT —Rs —Qi  

where h is the piezometric head, Tx  and Ty  are the transmissivities in the x and y direc- 
tions, respectively, S. the storage coefficient or specific yield, Qp , the net rated ground- 
water pumping per unit area, R,. and Rs, the recharge due to rainfall and surface irriga- 
tion per unit area, respectively, Q„ the rate of leakage per unit area if present, x and y 
are the cartesian co-ordinates and t, the time. The above equation is in general form and 
it represents flows in different types of aquifers depending on the terms in it. 

For a confined system, RI., Rs and Qi will be absent and S = S„ which is the storage 
coefficient. For an unconfined linear system, Q i = 0 and S = Sy , which is the specific 
yield. For an unconfined nonlinear system Q l = 0 and S = Sy , along with T,= K x(h—B 1) 
and Ty  = Ky  (h—B 1 ) where & and Ky  are the hydraulic conductivities in the x and y direc- 
tions, respectively, and 13 1  is the bed rock level. For a mixed confined—unconfined sys- 
tem, the confined system equation is used for that part of the aquifer which is under 
confined state while the unconfined linear system equation is used for the part of aquifer 
which is conceptualised as an unconfined system. In the leaky system, which has a water 
table aquitard, the leakage from the aquitard to the aquifer is given by 

Qt  = Ci (h'—h) 	 (2) 

where Cy/  = K'/b' is the leakage coefficient, 	the vertical hydraulic conductivity of the 
aquitard, h, the piezometric head of the aquifer and h', the water table head in the aqui- 
tard. Equation (1) being a parabolic type of equation, needs an open boundary, along 
with the initial boundary conditions to get the solution. Boundary conditions along the 
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external and internal boundaries such as rivers or dykes have to be specified. Since this 
equation cannot be solved using analytical techniques, a numerical technique such as the 
finite-difference method has been used. 

2.2. Finite-difference schematisation 

Finite-difference methods are widely used to solve the groundwater flow problems 2 ' 
In view of the special nature of the coefficient matrix arising from the use of the five- 
point formula, finite-difference methods are most suitable for computation. To get the 
solution using finite-difference technique, a finite-difference rectangular grid is super- 
posed over the aquifer region. The grid-point approximation of the boundary and rivers, 
which are internal boundaries, is made (Fig. 1). The block-centered finite-difference 
scheme (Fig. 2) has been used to approximate the governing equation (eqn 1). Figure I 
also shows the typical data input for a regional model, details of which are presented in 
Sridharan et al? 

2.3. Solution algorithm 

The governing equation represents the transient flow of groundwater in the aquifer sys- 
tem. To obtain the solution for hydraulic head at any given time step, it is necessary that 
the initial conditions should be specified in addition to the boundary conditions. 

Knowing the distribution of k b  at time t = 0, the solution can be marched in time, 
which is in an open domain. Knowing the solution at time t, the solution at time (t + At) 
can be got. Because of the nature of the finite-difference approximations used, the sys- 
tem of equations for each time step is implicit in nature. The structure of the coefficient 
matrix is such that it is advantageous to solve these equations by iterative technique. The 
finite-difference approximations of eqn (1) are written at all nodes of the aquifer. This 
set of equations has to be solved simultaneously at any given time step, knowing the so- 
lution at the previous time step. Following these steps, leads to the matrix equation. 

FIG. 2. Block-centered finite-difference scheme. 

a 
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(3) 

where X is the coefficient matrix, V. the column vector of known quantities and H, the
• column vector for unknown spiezometric head, h. The details of generation of A are 

available in Sridharan et at There are various iterative methods for solving eqn (3) of 
which SIP and CG methods are known to be the best. Hence only a comparison of the 
SIP and a family of co methods is made and the methods are discussed here. 

3. Strongly implicit procedure 

The SIP was developed by Stone 5  to solve a system of simultaneous equations involving 

a  five diagonal matrix equations arising out of the finite-difference approximations of 
the governing equation of the groundwater system. The basic methodology of the proce- 
dure is as follows: 

The finite-difference approximation of the governing equation at all the Li nodes in 
a rectangular flow region (J rows and I columns) will lead to a set of L J linear equa- 
tions in as many unknowns, hi , i  (i = 1, 2,... 1 and j = I, 2,... .1). In writing eqn (1) at 
boundary nodes, the coefficients of terms falling outside the computational region are 
made zero as in Trescott I3  . The 1. .1 equations can be written in the matrix notation as 
given in eqn (3). The procedure for solving this equation is as follows. 

A matrix cannot be decomposed into a product of lower triangular matrix L and 
upper triangular matrix U. Suppose we assume, matrices L and U when L and U 
are multiplied, _a matrix A+ B, which is similar to A but not identical with it is ob- 
tained. This A+ B matrix will have two more nonzero elements than A matrix on each 
row. As A+B is decomposable into L and U, this matrix can be used in an iteration 
process to get the solution. The following iterative procedure can be used to obtain the 
solution 

re—f --- B TI n)  — iW .- B Ti (n-"  = .11  -AT1 	 (4) n-"   

-00 —(n) —(n-1) where n is the iteration index. Using the definition of 4 = H — H 	and the residue 
-14-1) — — -(n-1) 
y = Y— A I/ ,we get 

----- -0+1) -(n+1) A ± B 4 
 

=1' 	. 	 (5) 

—(n) 	 —(n) As A + B can decomposed easily, it can be solved for 4 and hence for If values. 
It As 

 relations needed to generate elements of A+ B and i: and U are not pre- 
sented here. Given the elements of A, these could be generated and the iteration can be 
Pr.oceeded with. For a nonrectangular flow domain, the banded nature of A+ B is re- 
ta 
D
, med and hence the similar recurrence relations are derived except at some special a?Ilitoidary nodes where they are modified 3 . This is again improved (ISIP) by Sridharan et 

I.  In which no special equations are used at these special boundary nodes. 



672 	 R. SREEPATHI REDDY AND M. S. MOHAN KUMAR 

4. Conjugate gradient (CG) methods 

The CG method was originally proposed by Hestenes and Stiefe1 14 . A gradient method 

solves N x N nonsingular system of equations by iteration process, which is as follows : 

The finite-difference approximations of the governing eqn (1) at all the nodes of the 
computational domain lead to a set of linear equations (eqn (3)). Given an arbitrary ini- 

tial guess Hi for the solution vector of H, one can write 

• • • 	 iH -1-; =i" 
	

(6) 

where di is a gradient, Hi the approximation to the solution vector H at the ith itera- , 
tive step. A CG method chooses di such that at each iteration the B norm of the error 
vector is minimized, which is defined as 

= 	e  I ei-f-1) 0.5 	 (7) 

in which e1+1  is the error at the (i + 1)th iteration. In eqn (7), the angle bracket denotes 

the Euclidean inner product, which is defined as 

(x, = yxiyi 	 (8) 

In eqn (7), B is a symmetric positive definite (spd) inner product matrix. In the case 
of symmetric positive definite matrix A , such as that arising from the finite-difference 
approximation of the groundwater flow equation, the usual choice for the inner product 
matrix is 

The convergence of CG method depends upon the distribution of eigenvalues of A 
matrix and to a lesser extent upon the condition number [k(A )1 of the matrix. The con- 
dition number of a symmetric positive matrix is defined as 

k(X)= 	/Xmin 	 (10) 

where XT„ a„ and ?tenth, are the largest and smallest eigenvalues of A, respectively. When 
k (A) is large, the matrix is said to be ill-conditioned; in this case, CG method may 
converge slowly. The condition number may be reduced by multiplying the system by 
a preconditioning matrix C to increase the convergence rate. The given system is modi- 
fied as 

With a proper choice of a, the resulting preconditioned conjugate gradient method 
can be quite efficient. A general algorithm for this method is as follows7: 
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Initialize 
Ho = arbitrary initial guess 

eio = 74: Ho 
mig• 	■MO 4... 

S 0 = C ro 

Po = so 
i = 0 

Do while (the stopping criterion is not satisfied) 

at = < lei , 71  >1‹ Xp.,,ipi  > 

Hi+i = Hi  +ai  Tyi  

Fi+1 = Tai A A 

Ii+1 = C  i1+1 

bi = < •-ii+i ,  Fi+i 

Ti+i = ii+1 + b  laii 

>i<li ,li > 

i = i + 1 

Enddo 

where To is the initial residue vector, 4, a vector, T o , the initial conjugate direction 

vector, Thu  .141  and iii+i  are the corresponding vectors at (i + 1)th iterative step, la is 

the preconditioning matrix and A , the given matrix. 

There are three types of operations that are performed by the CG method: inner prod- 
ucts, linear combination of vectors and matrix-vector multiplications. The computational 
characteristics of these operations have an impact on the efficiency of the different CG 
methods. 

4.1. Types of CG preconditioning methods 

(i) Hestenes and Stetfel's conjugate gradient (CGHS) method 

This method is based on the original algorithm proposed by Hestenes and Stiefel l4  and is 
called CGHS. This algorithm is the base for all types of preconditioning methods. In this 
method the preconditioning matrix is taken as identity matrix, i.e., 

-e=7. 	 (12) 

The CGHS method is very simple to implement but it may not be efficient. 

(ii) Diagonal scaling conjugate gradient (DSCG) method 

In this method, the choice for E is a diagonal matrix (D) 
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de = (13)-1 	 (13) 

where element Dii  = A u . 

The diagonal elements of matrix A are taken as elements of diagonal matrix 13. This 
preconditioner is easy to implement and can be quite effective. By diagonally scaling the 
system, eqn 3 can be written as 

(14) 

= [(5 -112) Ap 1/21 	 = (b-)-I/2 T  
where

. 

A' 	 Tit = (75) -112  ii-  and fit 

This diagonally scaled method will be called DSCG. 

(iii) Incomplete Cholesky conjugate gradient method (1CCG) 

A popular choice for preconditioning matrix C;  is the incomplete Cholesky factorization 

of the matrix A 7 . In this method, the choice for C is written as 

tv=(1,171 1 
	

(15) 

where L is the lower triangular matrix resulting from a Cholesky factorization of A ex- 
cept that fill-in is limited to maintain sparsity and is called incomplete Cholesky decom- 
postion. 

5. Basic differences between CG and SIP methods 

The methodology for CO and SIP methods is already discussed in previous sections. 
Here the basic difference between the two methods as applicable to regional groundwater 
flows is discussed. 

5.1. Calculation of finite -difference coefficients 

Finite-difference coefficients have to be calculated before proceeding for any solution 
technique. These are calculated at all nodes of the computational domain and stored in 
matrix form (A) in CO methods. For linear problems this is a constant. Hence it is cal- 
culated and stored before entering into time stepwise computation. In case of nonlinear 
problems this is calculated at every time step and iteration. 

In SIP method, these coefficients are calculated at every iteration thus avoiding stor- 
ing of elements. The procedure is the same for both linear and nonlinear problems. 

5.2. Applicability to nonrectangular flow domains 

When a finite-difference grid is superimposed on a groundwater basin, normally this 
will result in computational nodes outside the region of interest being considered in the 
computation. To avoid such external computation, using SIP, Mohan Kumar et al. 3 have 
derived modified SIP equation as applicable to nonrectangular flow domains. In SIP, 
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while formulating the equations for A matrix, even though the nodes outside the region 
of interest are avoided, due to the nature of the algorithm (splitting of A + B into L and 

-(j), some spurious coupling will take place near the inverted corners. To avoid this, 
MSIP has been derived by Mohan Kumar et al. 3  

in conjugate gradient methods, such a situation will not arise as only the nodes 
within the zone of interest are considered and no spurious coupling of nodes will take 
place at any of the nodes. It has been found, after careful examination, that conjugate 
gradient methods are directly applicable to nonrectangular, anisotropic and nonhomoge- 
neous regions without any modifications in the original algorithm. This is a tremendous 
advantage compared to the SIP method where modifications in the SIP equations are 
needed and special equations have to be derived for various types of boundary nodes. 
This procedure has been derived by Mohan Kumar et al. 3  Further this has been improved 
upon by Sridharan et au°  resulting in improved strongly implicit procedure (ISIP). 

In the SIP, the identification of these special boundary nodes is normally handled 
through a code designation which is a cumbersome procedure. Thus the SIP requires all 
these extra work to handle nonrectangular boundary, whereas the CG methods are di- 
rectly applicable. 

5.3. Iteration parameters 

The CG method does not require a priori estimation of iteration parameters to achieve 
optimal convergence. The optimum parameters are calculated by the algorithm itself. 
But in the SIP method, the iteration parameters are needed for faster convergence and 
these have to be calculated. 

6. Convergence criteria 

There are various methods or norms to check the convergence of results in an iterative 
method. The three most commonly used norms for V are (Remson et al.") 

ilvui 	'V11+1%121+11731+. 

V I V11 2  ±iV212+312+... 	 (16) 

1113 = Max 

Where Pill indicates the norm of correction. The use of average norm and maximum norm 

are quite common. Here the maximum norm of the nodal residue is used for convergence 
check in SIP as well as CG methods. 

7. Extrapolation 

The  e head values at all the nodes for the previous time step are known at any computa- 
11"al time step. If the same values of head are used as the starting solution for both SIP 

CG iterations to compute the head values for the next time step, the convergence 
a)! be slow. To improve the convergence rate, a damped linear extrapolation is made 
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FIG. 3. Aquifer model for Test problems 1 and 3. 

for the head values. These extrapolated heads obtained at any time step are used to com- 
pute the heads at the next time step. The extrapolation is done using the following equa- 
tion 

h.. 
U 	 (17) 

1.1 	 2 

where hifd  is the extrapolated head value at a node (i, j) at time (t + a t), hij , the head at 

node (i, j) at time t and hoij  is the head at node (i, j) at time (t—a t). 

8. Test problems 

The CO methods described in the previous section and SIP are applied to study ground- 
water flow in different types of aquifers. The SIP used here for comparison is the MSIP 
developed specially for nonrectangular flow domains. All the test problems have nonrec- 
tangular computational regions with nonhomogenous properties. Both Dirichlet and 
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Neumann boundary conditions are considered in all problems. Due to the lack of ex- 
haustive filed data, hypothetical problems have been chosen for the study. However, the 
input data for these problems have been chosen to depict different practical situations. 
Test problems 1 and 3 are chosen from Raghunath 15  and Test problem 2 is chosen from 

Sridharan et a/. 6  The CG methods are built around the regional groundwater flow model 
already developed by Sridharan et al." )  which can handle various types of aquifers and 
internal and external boundaries. 

8.1. Test problem I—Unconfined linear model 

Test problem 1 depicts unconfined aquifer (linear). The study region with discretisation 
is shown in Fig. 3. The aquifer extends over an area of about 2100 km 2 . The initial pie- 
zometric levels vary from 356 to 422 m in the basin. The aquifer is discretised into 7 
hydrogeological zones and 328 nodes. The groundwater flow in this aquifer is simulated 
for a total period of 210 days. There are 2 rivers, 8 flux nodes and 30 Dirichlet boundary 
nodes in the study region. The average draft for the study region varies from 1500 to 
3000 m3/day/node. The unconfined linear model is most commonly used in practical 
situations. 

8.2. Test problem 2—Unconfined nonlinear model 

Test problem 2 considers flow in an unconfined aquifer (nonlinear). Transmissivity is 
taken to vary with variation in piezometric head and is written as product of hydraulic 
conductivity and saturated thickness at a node as obtained from the previous iteration. 
The study region consisting of 3 rivers (Fig. 4) has 5 zones and 172 global nodes. 
Dirichlet and Neumann boundary nodes are also considered. The hydraulic conductivity 
values as zonal parameters and bed rock levels at all 172 nodes are specified. Simulation 
is done for a period of one year, divided into rainy season of 5 months (150 days) and 
nonrainy season of 7 months (210 days). A time step of 15 days is used in the computa- 
tions. Monthly rainfall data are provided. The annual average pumping rates vary from 
172.5 to 275 m 3/day/node. At Dirichlet boundary node, details of seasonal water level 
are given. For the river nodes, water level data are given every two months. 

8.3. Test problem 3—Mixed confined–unconfined aquifer 

This test problem deals with a regional groundwater simulation in a mixed confined– 
unconfined aquifer. The study region discretisation is the same as in Fig. 3. The data are 
the same as given for Test problem 1. The zones 1, 2, 3, 4 and 5 are under unconfined 
conditions while zones 6 and 7 are under confined zones. Zones 6 and 7 are recharged from the surrounding zones through lateral flows. 

9. Results and discussion 

A comparative study of various CG methods and SIP is presented in this section. All the 
co

mputational results for the test problems are obtained for different CG methods such as 
DSCG, CGHS, ICCG and for modified SIP (MSIP) method. These results are corn- 
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Thu. 4. Aquifer model for Test problem 2. 	 FIG. 5. Comparison of convergence rate—Test problem 1. 

pared in terms of convergence rate, global residue, CPU time, zonal head variation and 
head value at selected nodes. For further discussion, MSIP method is referred to as SIP. 
Three types of criteria are chosen to compare the methods, namely, computational work, 
CPU time and accuracy. First two criteria are chosen to compare the efficiency of the 
methods and the last one is to check the correctness of the results. 

Computational work involved per one iteration is chosen to check the convergence 
rate. To compare all the methods one common scale is taken. Diagonal scaling conjugate 
gradient (DSCG) method uses 11 N multiplications per iteration where N is the number 
of equations to be solved. This is chosen as the base to measure computational work 
(i.e., 11 N multiplications equal to 1 computational work). Using this procedure, equi- 
valent work is calculated for the remaining methods. Computational work vs maximum 
residue is plotted at selected time steps for all the test problems. The residue in the fi- 
nite-difference equation is calculated at all the nodes of the computational domain, the 
maximum of which is taken as the maximum nodal residue. 

For Test problem 1, Fig. 5 represents the plots of computational work vs maximum 
nodal residue for different methods. This plot is at time t = 154 days. From the plot it is 
clear that both DSCG and SIP are doing well for this test problem. ICCG and COBS 
methods are somewhat slower than the other two methods. 

It is seen from Fig. 6 that for nonlinear unconfined aquifer problem (Test problem 2) 
also both DSCG and SIP methods perform equally well when compared to other 
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methods. In DSCG method the finite-difference coefficients are calculated only once for 
Seri time step. But in SIP these are calculated for every iteration. This work is not ac- 
counted for calculation of computational work. ICCG and CGHS converge slowly as seen 

in Fig. 6. 

For Test problem 3, the computational work is the same for both DSCG and SIP (Fig. 
7). However, the SIP convergence curve is at lower level. In this problem, ICCG and 
CGHS also converge very slowly. 

From these plots ills clear that DSCG and SIP perform equally well for unconfined 
aquifer (linear), unconfined aquifer (nonlinear) and mixed confined-unconfined prob- 
lems. Even though both the methods perform equally well, the implementation of DSCG 
for nonrectangular domains is much simpler. 

9.1 CPU time 

All the test problems were tested on VAX 8810 (VMS 5.1) and the CPU time taken for 
complete test problem is noted down. Three trial runs are made and the average of these 
is given in Table I. The CPU time is the time taken to complete the test problem, exclud- 
ing the compilation time. The DSCG method takes the least time compared to other 
methods, and the ICCG method the highest, the latter because of decomposition of ma- 
trix and other matrix operations. 

Table I 

en time taktu on VAX 8810 ( VMS V 5.1 ) 
(time in seconds) 
--__ 

SIP DSCG ICCG CGHS 
T  en Probiern 1 5.08 2.98 7.07 7.84 
item Probiem 2 2.41 1.56 9.01 2.75 
'a(  Pukka) 3 163 3.24 9.74 9.72 



680 	 R. SREEPATHI REDDY AND M. S. MOHAN KUMAR 

9.3. Accuracy 

To check the accuracy of the various conjugate gradient methods, heads at selected 
nodes are compared for all the test problems. 

Table II 
Head values at selected nodes 

Selected nodes SIP DSCG ICCG CGHS 

Test problem 1 (at time = 210 days) 

12 0.3807E + 03 0.3807E + 03 0.3807E + 03 0.3807E + 03 

43 0.3892E +03 0.3892E +03 0.3892E + 03 0.3892E + 03 

100 0.3558E + 03 0.3558E + 03 0.3558E + 03 0.3558E + 03 

111 0.4196E+ 03 0.4196E + 03 0.4196E + 03 0.4196E + 03 

113 0.4223E + 03 0.4223E + 03 0.4223E + 03 0.4223E + 03 

119 0.3646E + 03 0.3646E + 03 0.3646E + 03 0.3646E +03 

176 0.3820E + 03 0.3820E + 03 0.3820E + 03 0.3820E + 03 

184 0.3346E + 03 0.3346E + 03 0.3346E + 03 0.3346E + 03 

245 0.4040E + 03 0.4040E + 03 0.4040E + 03 0.4040E + 03 

277 0.3928E + 03 0.3928E + 03 0.3928E +03 0.3928E + 03 

281 0.4129E + 03 0.4129E + 03 0.4129E + 03 0.4129E + 03 

286 0.3954E + 03 0.3954E + 03 0.3954E + 03 0.3954E + 03 

301 0.3940E + 03 0.3940E + 03 03940E +03 0.3940E + 03 

328 0.4161E+03 0.4161E+ 03 0.416113+03 0.416113+03 

Test problem 2 (at time = 360 days) 

6 0.1009E + 03 0.1009E + 03 0.1009E + 03 0.1009E + 03 

35 0.1097E + 03 0.1097E + 03 0.1097E + 03 0.1097E + 03 
45 0.1170E + 03 0.1170E + 03 0.1170E + 03 0.1170E + 03 
87 0.1235E + 03 0.1235E + 03 0.1235E + 03 0.1235E + 03 
90 0.1204E + 03 0.1204E + 03 0.1204E + 03 0.1204E + 03 
96 0.1124E+03 0.112413+03 0.112413+03 0.112413+03 

133 0.1257E + 03 0.1257E + 03 0.1257E + 03 0..1257E + 03 
144 0.1143E + 03 0.1143E + 03 0.1143E + 03 0.1143E + 03 
167 0.1271E+03 0.1271E+03 0.1271E+03 0.127313+03 

Test problem 3 (at time = 210 days) 

12 0.3807E + 03 0.3807E + 03 0.3807E + 03 0.3807E + 03 
43 0.3892E + 03 0.3892E + 03 0.3892E + 03 0.3892E + 03 

100 0.3609E + 03 0.3609E + 03 0.3609E + 03 0.3609E + 03 
111 0.4196E + 03 0.41966 + 03 0.4196E + 03 0.4196E + 03 
113 0.4223E + 03 0.4223E + 03 0.4223E + 03 0.4223E + 03 
119 0.3646E + 03 0.3646E + 03 0.3646E + 03 0.3646E + 03 
176 0.3820E + 03 0.3820E + 03 0.3820E + 03 0.3820E + 03 
184 

. 
245 

0.3644E + 03 
0.4040E + 03 

0.3644E + 03 
0.404013+ 03 

0.3644E + 03 
0.4040E + 03 

0.3644E + 03 
0.4040E + 03 

277 0.3941E + 03 0.3941E + 03 0.3941E + 03 0.3941E + 03 
281 0.4129E + 03 0.4129E + 03 0.4129E + 03 0.4129E + 03 

.286 0.3947E + 03 0.3947E + 03 0.3947E + 03 0.3947E + 03 
301 0.3940E + 03 0.3940E + 03 0.3940E + 03 0.3940E + 03 
328 0.4161E+03 0.4161E+03 0.4161E+03 0.4161E+03 
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All the methods, namely, SIP, DSCG, CGHS and ICCG give exactly the same results 
at a ll the time steps of simulation. This shows that accuracy is good equally with all the 
methods. Since it is difficult to present results at all the nodes, the head values at select 

nodes are presented at the end of the simulation period (Table II). The values of heads 
are practically the same at the selected nodes for all the methods tested. 

10. Conclusions 

A comparative study of various types of conjugate gradient methods with SIP for differ- 
ent types of regional groundwater flow problems with nonrectangular boundaries has 
been made and the following conclusions are drawn from the present study. 

• CG methods handle nonrectangular boundary regions naturally and no special set- 
ting of equations is needed for some special boundary nodes. Hence the identifica- 
tion of such nodes as in SIP is not needed. 

• The DSCG and SIP perform equally well for all the test problems. 

• Among the CG methods tested, DSCG is the best. 

• In terms of CPU time, DSCG scores over the other methods. 

• DSCG method does not require any relaxation parameters as in the SIP. 

• DSCG method is found to be easy to implement and is easily programmable. 

Hence from the above-mentioned points, it can be concluded that the DSCG is a very 
good method for regional groundwater flow analysis, especially, in nonrectangular flow 
domains. 
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