Short Communication

Hypersurfaces of a Riemannian manifold with semisymmetric non-metric connection

U. C. DE AND D. KAMILYA

Department of Mathematics, University of Kalyani, Kalyani 741 235, West Bengal, India.

Received on June 28, 1994; Revised on March 6, 1995 and December 26, 1995.

Abstract

Extending the work of Agashe and Chafle on semi-symmetric non-metric connection on a Riemannian manifold, we study the properties of hypersurfaces of a Riemannian manifold with a semi-symmetric non-metric connection.

Keywords: Riemannian manifolds, hypersurfaces, semi-symmetric non-metric connection.

1. Introduction

Let M^n be an n-dimensional differentiable manifold immersed in an (n+1)-dimensional Riemannian manifold $(M^{n+1}\overline{g})$ with a differentiable immersion $i:M^n\to M^{n+1}$. We identify the image $i(M^n)$ with M^n and M^n is then called a hypersurface of M^{n+1} . The differential di of the immersion i will be in the sequel, denoted by B, so that, to a vector field X on M^n , corresponds a vector field BX on $i(M^N)$. Suppose that the metric tensor \overline{g} of the manifold M^{n+1} induces a metric tensor g defined by $g(X, Y) = \overline{g}(BX, BY)$, X and Y being arbitrary vector fields in M^n . If the Riemannian manifold M^{n+1} and M^n are both orientable we can choose a unique vector field N defined along M^n such that $\overline{g}(BX, N) = 0$, $\overline{g}(N, N) = 1$, X being an arbitrary vector field in M^n . We call this vector field the unit normal vector field to the hypersurface M^n .

Let M^{n+1} be an (n+1)-dimensional differentiable manifold of Class C with a metric tensor \overline{g} . A linear connection $\overline{\nabla}$ is said to be a semi-symmetric non-metric connection, if its torsion tensor \overline{T} satisfies

$$\overline{T}(\overline{X}, \overline{Y}) = \overline{\pi}(\overline{Y})\overline{X} - \overline{\pi}(\overline{X})\overline{Y} \tag{1}$$

and

$$(\overline{\nabla}_{\overline{X}}\overline{g})(\overline{Y},\overline{Z}) = -\overline{\pi}(\overline{Y})\overline{g}(\overline{X},\overline{Z}) - \overline{\pi}(\overline{Z})\overline{g}(\overline{X},\overline{Y})$$
 (2)

for all fields \overline{X} and \overline{Y} in M^{n+1} , where $\overline{\pi}$ is the 1-form associated with a non-zero vector field ρ by $\overline{g}(\overline{X}, \rho) = \overline{\pi}(\overline{X})$.

It is now assumed that the Riemannian manifold (M^{n+1}, \overline{g}) admits a semi-symmetric metric connection given by

$$\overline{\nabla}_{\overline{X}}\overline{Y} = \nabla_{\overline{X}}\overline{Y} + \overline{\pi}(\overline{Y})\overline{X} \tag{3}$$

where ∇ denotes the Levi-Civita connection with respect to the Riemannian metric g.

In the present paper it is shown that if a Riemannian manifold M^{n+1} admits a semi-symmetric non-metric connection then its hypersurface M^n also admits a semi-symmetric nonmetric connection. Also it is shown that a hypersurface is totally geodesic with respect to the Riemannian connection $\mathring{\nabla}$, if and only if it is totally geodesic with respect to the semi-symmetric nonmetric connection. We have derived equations of Gauss and those of Codazzi for this hypersurface with respect to the semi-symmetric non-metric connection and prove a theorem.

2. Main results

Denoting by $\mathring{\nabla}$ the connection induced on the hypersurface from ∇ with respect to the unit normal N, we have²

$$\nabla_{BX}BY = B\left(\mathring{\nabla}_X Y\right) + h(X, Y)N \tag{4}$$

for arbitrary vector fields X and Y of M^n , where h is the second fundamental tensor of the hypersurface M^n .

Denoting by $\overset{\circ}{\nabla}$ the connection induced on the hypersurface from $\overline{\nabla}$ with respect to the unit normal N, we have

$$\overline{\nabla}_{BX}BY = B\left(\overset{\circ}{\nabla}_X Y\right) + m(X,Y)N \tag{5}$$

for arbitrary vector fields X and Y of M^n , where m is a tensor field of type (0, 2) of the hysuperface M^n .

From eqn (3), we obtain

$$\overline{\nabla}_{BX}BY = \nabla_{BX}BY + \overline{\pi}(BY)BX. \tag{6}$$

Now from eqns (4-6) we get

$$B\left(\overset{\circ}{\nabla}_X Y\right) + m(X,Y)N = B\left(\overset{\circ}{\nabla}_X Y\right) + h(X,Y)N + \pi(Y)BX,\tag{7}$$

where $\overline{\pi}(BX) = \pi(X)$.

By taking tangent and normal components from both the sides of eqn (7) one gets

$$\dot{\overline{\nabla}}_X Y = \dot{\nabla}_X Y + \pi(Y)X \tag{7}$$

and

$$m(X,Y) = h(X,Y). (9)$$

Let $X_1, X_2, ..., X_n$ be *n* orthonormal local vector fields in M^n . Then the function $\frac{1}{n} \sum_{i=1}^n h(X_i, X_i)$ is the mean curvature of M^n with respect to $\mathring{\nabla}$ and $\frac{1}{n} \sum_{i=1}^n m(X_i, X_i)$ is called the mean curvature of M^n with respect to $\mathring{\nabla}$.

From eqns (8-9) we get the following theorems:

Theorem 1. The connection induced on a hypersurface of a Riemannian manifold with semi-symmetric nonmetric connection with respect to the unit normal is also a semi-symmetric non-metric connection provided the associated vector field is non-null on the sub-manifold. Also the mean curvature of M^n with respect to $\mathring{\nabla}$ coincides with that of M^n with respect to $\mathring{\nabla}$.

Theorem 2. A hypersurface is totally geodesic with respect to the Riemannian connection $\mathring{\nabla}$ if and only if it is totally geodesic with respect to the semi-symmetric non-metric connection $\mathring{\nabla}$.

It is known that the equation of Weingarten with respect to the Riemannian connection ∇ is

$$\nabla_{BX}N = -BHX \tag{10}$$

for every vector field X in M^n , where H is a tensor field of type (1-1) of M^n given by g(HX,Y) = h(X,Y).

From eqn (3) we have

$$\overline{\nabla}_{BX}N = \nabla_{BX}N + \lambda BX, \qquad (11)$$

where $\pi(N) = \lambda$.

Now from eqns (10-11) we get

$$\overline{\nabla}_{RX}N = -MBX \tag{12}$$

for any vector field X in M^n , where $M = H - \lambda I$, I being the unit matrix.

Denoting the curvature tensor of M^{n+1} with respect to the semi-symmetric non-metric connection $\overline{\nabla}$ by \overline{R} one gets, using eqns (5) and (12),

$$\overline{R}(BX,BY)BZ = B(R(X,Y)Z + m(X,Z)MY - m(Y,Z)MX)$$

$$+ \left\{ \left(\stackrel{\circ}{\nabla}_{X} m \right) (Y, Z) - \left(\stackrel{\circ}{\nabla}_{Y} m \right) (X, Z) + m(\pi(Y)X - \pi(X)Y, Z) \right\} N, \tag{13}$$

where R is the curvature tensor of the semi-symmetric non-metric connection $\frac{\circ}{\nabla}$.

Then by taking tangent and normal components from both the sides of (13) one gets

$$'\overline{R}(BX,BY,BZ,BU)BX = 'R(X,Y,Z,U) + m(X,Z)m(Y,U) - m(Y,Z)m(X,U)$$
 (14)

$$\overline{R}(BX,BY,BZ,N) = \left(\frac{\circ}{\nabla}_X m\right)(Y,Z) - \left(\frac{\circ}{\nabla}_Y m\right)(X,Z) + m(\pi(Y)X - \pi(X)Y,Z), \tag{15}$$

where $\overline{R}(BX, BY, BZ, BU) = \overline{g}(\overline{R}(BX, BY)BZ, BU)$ and $\overline{R}(X, Y, Z, U) = g(R(X, Y)Z, U)$.

Equations (14-15) are, respectively, the equations of Gauss and those of Codazzi with respect to the semi-symmetric non-metric connection.

Now if we put $\overline{R} = 0$ and m = kg in eqn (14), we get

$$'R(X,Y,Z,U) = k^{2}[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)].$$
 (16)

From (16) we get the following:

Theorem 3. A totally umbilical hypersurface M^n of M^{n+1} with vanishing curvature tensor with respect to the semi-symmetric non-metric connection is of constant curvature.

Acknowledgement

The authors are grateful to the referees for their comments and valuable suggestions.

References

- 1. AGASHE, N. S. AND CHAFLE, M. R. Indian J. Pure Appl. Math., 1992, 23, 399-409.
- 2. YANO, K. Integral formulas in Riemannian geometry, 1970, p. 89, Marcel Dekker.