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Abstract 

The theory of variable structure systems [VSS] presents an elegant method to describe dc-to-dc power converters. 
An analysis method of control systems with sliding mode—the equivalent control method—provides a simple 
analysis tool to obtain equivalent continuous system representation of such time-varying systems. In this paper 
power converters are explored in the light of these concepts to arrive at large- and small-signal models. Experimental 
results are then presented verifying these concepts. 
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I. Introduction 

The theory of VSS and sliding-mode control has been extensively explored theoretically'. 
Recently application of this theory to dc-to-dc converters has been reported 2. It introduces 
the development of a sliding-mode controller for a dc-to-dc chopper converter, with results 
for a 500W converter highlighting the robustness of such converters in the presence of 
parameter uncertainties. 

In the past the method of state-space averaging has been widely used to analyse dc-to-dc 
converters 3 . In the state-space averaging method, the linear circuit models and the resultant 
state-space equations are identified for each of the possible switch positions of the converter 
over a switching period. These state-space equations are then averaged over a swithching 
period to arrive at the low-frequency equivalent model of the converter. The low-frequency 
model thus obtained may be linearised in order to apply linear control theory to design 
feedback compensators that achieve the design requirements. In essence the state-space 
averaging provides a method of low-frequency characterisation of converters so that 
frequency domain design techniques may be applied to the control problem. The number 
of poles of the system is equal to the number of storage elements in the converter, which 
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may be several; add to these possibly one or more right half-plane [RHP] zeroes, and the 
design of a satisfactory controller can be exasperating. Besides since one is working with 
the small-signal model nothing can be guaranteed about the large-signal behaviour or the 
stability of the system. 

As opposed to the above, the theory of VSS and sliding-mode control are time-domain 
techniques. The theory of VSS may be used to characterise the system for both small- and 
large-signal conditions. Sliding-mode control uses multiple state feedback, and sets up 
directly the desired closed-loop response in the time domain. Most important of all, the 
response is, for all practical purposes, independent of the system parameters. 

In the following sections, a brief introduction to VSS is given. From the general theory 
of sliding-mode control, the concept of equivalent control is explained and demonstrated 
for the case of constant frequency-duty-ratio-controlled converters. 

The equivalent control method of analysing switching converters as VSS, and the 
state-space averaging method of analysis of switching converters follows different 
mathematical formalism to arrive at essentially the same low-frequency models for the 
converters. In the past, linearisation of the state-space averaged model has led to the 
application of classical control methods such as loop-shaping to the control problem of 
the dc-to-dc converters. In contrast to this, the sliding-mode control tackles the control 
problem directly in the time domain. 

For dc-to-dc converters which are largely second-order systems, the concept of 
sliding-mode control may be brought out much more strikingly by consideration of the 
phase plane. In this paper, control of dc-to-dc buck converter is demonstrated through the 
phase-plane representation. Such a presentation helps one better appreciate the strengths 
of sliding-mode control, and is intuitively more satisfying. 

It will be noted from the example that application of sliding-mode control requires all 
the controllable states (i.e. the output and its derivatives) of the system to be continuous 
and accessible. For the boost and buck-boost converters the controllable states are not all 
continuous. One then takes a different approach by considering inductor-current contro1 3. 
Essentially inductor-current control is accomplished by any one of a number of methods 
of switching strategies in order to maintain the current through the inductor at a desired 
level. Since the inductor current and in turn the stored energy in the inductor remains 
constant under such a control, the inductor ceases to be a dynamic element of the converter. 
All three topologies of dc-to-dc converters in that case are of reduced order and equally 
amenable to the application of sliding-mode control. Application of equivalent control 
method provides an equivalent continuous system model for free running as well as 
constant frequency current-controlled converters. The transfer function description may 
also be readily obtained. In addition, an alternative method of describing switching 
converters in terms of the power handled by the converter emerges out of this exercise, 
and such a description allows an indirect method of setting up a satisfactory control strategy 
for the voltage control of boost and buck-boost converters. 

Practical realisation of the control strategy and experimental results verifying the control 
method are then presented. 
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2. Variable structure systems [VSS] 

VSS are characterised by a time-variant topology, and as a result the control action is 
discontinuous and the plant nonlinear. In switched-mode converters the control action is 
discontinuous and they all fall into the category of VSS. 

Figure 1 shows the three basic switching converter topologies and their inductor current 
waveforms. The switch position defines the control input u as shown in fig. 1. The defining 
equations of the system can be put in the following form. 

Buck converter: 
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Fla I. The three basic switching converter topologies and their inductor current 
waveforms. The control input u as a function of the switch position is defined. 
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where a=1—u. The systems are time variant and discontinuous, but the time variance 
and the discontinuities have been isolated into the single control-input variable u. 

The description of all the above converters may be expressed in the following compact 
form. 

X=AX+Bu+T 
	

(7) 
where, for 
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Buck-boost converter: 
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The system state vector X and the matrices A, B and T are all continuous. Our ultimate 
objective is to synthesize the discontinuous control u in order to achieve the performance 
specification of the converter. First we briefly explain the method of sliding-mode control 
in general, before introducing the concept of equivalent control. 

3. Sliding-mode control 

Consider the single-input-single-output system represented in the controllable canonical 
form: 

k= A Y + B*u ± 71 * 

dyo  da-  'AT 
dt 	dr' 1  (8) 

(3) 

(4) 

(5) 

(6) 
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where A*. 8*, and T* are system matrices and Y represents the system state errors. Equation 
(8) differs from eqn (7) since the states of the system are reassigned to be the output error 
and its successive derivatives, and the system matrices have been modified accordingly. 
Since Y represents the state errors, the desired operating point corresponds to Y = 0. 

Suppose that the system states in the controllable canonical form (output y o  and its 
successive derivatives) are all continuous, and accessible for measurement. The steady-state 
and dynamic requirements of the control problem such as steady-state error, overshoot, 
and settling time may be expressed in a single differential equation as follows. 

dyo 	d" 'yo  
go.vo+g, 	+Yn ld 	=0. 	 (9) t"' 

(For example. for a single-output second-order system we may indicate zero steady-state 
error. no overshoot, and settling time within it as yo  + r dyo/dt = 0.) 

For convenience. eqn (9) may he rewritten in the following form. 

devo 	d" - i yo  
a=GY=g6.°+g1 717 + " . 4- gn - I  dr e  1  = ° 	

( 10) 

where 6 = [gog i  • • • (in  J. The output error y o  and its successive derivatives are the states 
of the system, and the coefficients g o  etc., may be thought of as the feedback gains for 
the different states of the system that are fed back. The quantity a as expressed in eqn (10) 
is the weighted sum of the states of the system. 

For the ideas that are being put forth below it is helpful to visualise eqn (10) geometrically 
as an 	1 dimensional surface in the ti-dimensional space whose axes are the different 
states of the system. The principle of sliding-mode control is to forcibly constrain the system, 
by suitable control strategy, to stay on the sliding surface denoted by eqn (10). It may be 
pointed out here that though the terminology 'sliding surface' is an accepted one in the 
literature of sliding-mode control, one must remember that sliding surface is the surface 
on which the operating point slides; the surface itself does not slide. 

When the system is constrained by sliding control to operate on the sliding surface 
described by eqn (10), it follows that the system dynamics are dictated by eqn (9). To force 
the system states to satisfy a =0, one must ensure that the system is capable of reaching 
the state a = 0 from any initial condition and, having reached a = 0, that the control is 
capable of maintaining the system at a = 0. These conditions may be mathematically 
expressed as': 

lim 6 < 0 and lim d > 0. 
a>0 	 a<0 

It is worthwhile to express the above equation in words. When the system state is away 
from the surface denoted by a = 0, the motion of the system state with respect to time 
(da/dt) is in such a direction as to move towards the surface a=0. Therefore to achieve 
the dynamic requirements given by eqn (9), the discontinuous control input u must be 

chosen such that eqn (11) is satisfied. Let 

u+ for a > 0 	 (12) u = 
u - for a < 0. 
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From eqns (8), (10), and (12) 

for a>0 
a = 

GA* Y + GB*u -  + GT* for a < 0. 	 (13) 

Substitution from eqn (II) into eqn (13), leads to 

G A* Y + GB*14 +  + GT* < 0 < GA* Y + GB*u -  + GT*. 	 (14) 
Implementation of the control decision given by eqn (11) involves measurement of o-  = 0 Y 
which is a weighted sum of the states of the system. Therefore it is necessary that all the 
controllable states of the system be continuous and accessible. Once eqns (10) and (11) are 
satisfied, the system dynamics are solely determined by the sliding surface (in turn by the 
elements of G) and are independent of the parameters of the system'. 

4. Equivalent control 

Although the control variable u is a discontinuous function, one may obtain, as far as the 
low-frequency dynamics are concerned, under sliding motion, an equivalent system 
description where the discontinuous control u is replaced by an equivalent continuous 
control UL I  as described below. 

When sliding mode exists, 

a=d= O. 	 (15) 

From eqns (8) and (15), under sliding control 

ueq = — (G B*) - 1  {G A* Y + GT*]. 	 (16) 

The system description now reduces to 

k = u - B* (GB*) .- 1  G] (A* Y + T*). 	 (17) 

Under ideal sliding-mode control, the switching frequency is infinite and eqn (17) is 
always valid. In real sliding-mode control, the sliding surface expands to a finite volume, 
around the ideal sliding surface, determined by the hysteresis of the switching action. The 
switching frequency is then finite and the validity of eqn (17) is restricted to a fraction of 
the switching frequency. When a # 0, eqn (16) has the form 

ueq = — (GB*)' [Q4* Y + GT*] + (GB*)  'a 
	

(18) 

where u, is the equivalent control input for the system motion along a non-stationary 
sliding surface. The system dynamics are then given by 

k = [ I - B*(GB*) - 1  G](A Y* + T*)+ B*(GB*) -  'a. 	 (19) 

The first two terms of eqn (19) give the average motion of the system and the last term, 
the inter-cycle motion. 

5. Duty ratio-controlled dc-to-dc converters 

The equivalent control method is now illustrated to develop the system description of duty 
ratio-controlled dc-to-dc converters. Figure 2 shows the block diagram of constant 
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FIG. 2. Duty-ratio-controlled dc-to-dc converters and 
their equivalent representation. The ramp generator 
defining the switching frequency is incorporated as an 
integrator to enable mathematical representation of the 
system. 

frequency duty ratio-controlled dc-to-dc converters. From the equivalent system of such 
converters also shown in fig. 2, one may write the following equations. 

(20) 

(21) X=AX+Bu+T 

where D is the duty ratio. Equations (20) and (21) may be combined into a single system: 

r9i 10 OlFyl 	 Fi 
Lino Akin Biu+LDTi. 	

(22) 

In general, for a system of order n with m control inputs the sliding surface is of dimension 
n —m. In the present example, the system order is 3 and the number of control inputs is 1. 
The sliding surface in this case is a plane in the state-space given by y = 0. The control input is 

1 for a=y> 0 
U

0 for a = y < 0 	
(23) 

 

Under sliding control a=d= 0, which leads to ueq  = D. The equivalent system description 
then becomes 

X=AX+BD+T. 	 (24) 

Equation (24) is in general nonlinear. We have not invoked any constraints on the validity 
of eqn (24) other than the existence of sliding-mode control (a = 0). Equation (24) can 
therefore be used to study both large- and small-signal performance. Or one can linearise 
the system around the operating point and obtain the small-signal transfer functions between 
the system states and the duty ratio, leading to the same results one would obtain following 
the state-space averaging method'. 
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6. Buck converter in the phase plane 

For a simple second-order system such as the buck converter, the simplicity of sliding-mode 
control is strikingly brought out by the phase-plane description of the system and the state 
trajectories for the switching inputs available for the system. 

Figure 3 shows the phase-plane of the buck converter. The system states are the 
output-voltage error and the derivative of the output voltage (i.e. the capacitor current to 
some scale). The instantaneous state of the system is represented on the phase-plane by a 
point given by the output voltage error and the derivative of the output voltage at that 
instant. If the system state is known at any instant, the switch position at that instant along 
with the input voltage uniquely determines the future evolution of the system states for the 
duration of the switch in that position. 

The system order being 2 and the number of control inputs being 1, the sliding surface 
is in this case a sliding line (one-dimensional surface). The sliding line shown in fig. 3 as 
a = 0 partitions the phase-plane into two regions (o-  < 0 and a > 0). The significance of the 
special shape of the sliding line is explained later. The control input, namely, the switch 
position, is also shown in fig. 3 corresponding to the state of the converter. The steady-state 
operating point for each control input may be seen to be located in the opposite region. 
As a result, any switching action causes the system state to move towards the sliding line 
and cross into the other region. When the switching law as shown in fig. 3 is implemented, 
the system state moves towards the sliding line and having hit the sliding line, slides along 
the line to the final steady state, namely, the origin. 

Since the system motion is constrained to be on the sliding line at all times, the response 
depends only on the chosen sliding line and is independent of the system parameters. 

It may be noted that the sliding line is shaped such that the system states are constrained 
to be limited along the vertical axis. Such a limit conveniently provides overcurrent 
protection of the switch since the vertical axis also represents the capacitor current to some 
scale and in turn the current through the switch. 

LI • 

'MP 
	

Vci • V0  

6./ 47" 

FIG. 3. The phase-plane description of the buck con- 
verter. The sliding line a = 0 partitions the phase-plane 
into two regions. The steady-state operating point for 
each of the converter topologies (is =I and u = 0) is 
seen to be located in the opposite region ( V.— Vg and 

Vt), respectively. 
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Figure 4 shows a typical starting transient in the phase-plane. Figure 5 shows the entire 
controller design process at one glance. Figure 6 shows typical response of a buck converter 
in the phase-plane to a step change in reference. 

v_ 

FIG. 4. The starting transient of a sliding-mode-controlled buck converter. The horizontal portions of the sliding 
line c --=O indicate constant current operation. The middle region of the sliding line passing through the origin 
shows the voltage-controlled operation. 
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FIG. 5. Design process of a buck-converter controller. 
The current limit for the switch, the desired response 
time, and the nominal switching frequency arc used to 
set up the desired sliding line. 

FIG. 6. Response to a reference step in the phase-plane 
for a buck converter. The steady-state operating point 
is the origin. Disturbances such as a step change in 
reference throw the system away from the origin. The 
recovery shows a two-part transient — one, reaching the 

sliding line a =0, and two, sliding along the sliding line 

to the final steady-state. 
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7. Current-programmed de-to-de converters 

For boost and buck-boost converters the application of sliding-mode control for output 
voltage regulation is not straight forward. Figure 7 shows the typical waveforms for a boost 
converter. It may be noticed that the derivative of the output voltage (the capacitor current 
to some scale) is discontinuous, and in the presence of parasitic series resistance in the 
output capacitor, the output voltage is also discontinuous. As a result, the strategy of 
control has to be different from that of buck converter. 

Under inductor current control, all three topologies of converters are of reduced order 
and are equally amenable to the application of sliding-mode control. 

Figure 8 shows the phase-plane of the boost converter. For inductor control the system 
order is 1 and so the phase-plane is really a phase-line (the X axis). The system state is 
the inductor current error. The two possible switch states are also shown in fig. 8. The 
sliding surface is zero-dimensional and reduces to a sliding point. The sliding point partitions 
the phase-line into two regions (a < 0 and a > 0). The steady-state operating point of each 
of the switch inputs is located in the opposite region thus satisfying the condition of 
sliding-mode control. It can be seen that the same is also true for the buck converter and 
the buck-boost converter. 

We may apply the equivalent control method to arrive at small-signal models for the 
current-programmed converters. For the boost converter, 

di 
14- =V

9  -
V a 	 (25) 

dt 	° ' 

t_, d
dt  
Vo 	Vo  

‘..,— =• Iii - —, 	 (26) 
 R 

FIG. 7. Boost-converter topology and waveforms (output RC time constant is much 
higher than the switching frequency). The capacitor current, which is the same as the 
derivative of the output voltage to some scale, shows discontinuities at switching instants. 
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< 

4 	  
u=0 

Vg/R-1. * 	 Vg/Rt - 1
* 

FIG. 8. Phase-line description of current-controlled boost converter. The sliding point ct=0 partitions the 
phase-line into two regions. The control input for each of the regions and the respective evolution of inductor 
currents are shown. R I  is the resistance of the inductor winding. 

cr=1-1* 
	

(27) 

Ücq  = V9, Vo . 	 (28) 

Insertion of fi eq  into eqn (26) leads to 

V9 1 = 11/R + d(C11/2)/dt. 	 (29) 

the system is linear between the 
Ine has to view this statement with 

caution, since this is true only when the system stays on the sliding point. When the 
system is not on the sliding point. as during the transients, dildt is not zero and some 
error creeps in, which may be accounted as follows: 

Üeq = (V9  — Ld//dt)/V o . 	 (30) 

Insertion into eqn (26) and rearrangement leads to 

I/91 = VgIR + d(CV1/2)/dt + d(L/ 2/2)/dt. 	 (31) 

Equation (31) is an illustrative description of any switching converter, and may be simply 
stated as 

Input a  Output +  Rate of change of (32) 
power — power 	stored energy. 

Equation (32) is valid for any system. It is especially valuable for the boost converter since 
in this case all the terms involved are continuous functions. Equation (32) is in general 
nonlinear between inductor current and output voltage, and is given below for different 
converters. 

Buck converter: 

Vg/u = VW? + d(C11/2)/dt + d(L12/2)/dt. 	 (33) 

Boost converter: 

Vgl = VgIR +d(CVg12)Idt + d(L12/2)/dt. 	 (34) 

Under current-programmed control it is seen that 
reference current and the square of the output voltage. 0 . 	. 
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Buck-boost converter 

I/9 /u = 1/1,/R + d(C V4/2)/dt + d(L1 2/2)/dt. 	 (35) 

The above equations may be perturbed as 

= f* +1;  

and linearised around the operating point to get the small-signal transfer function between 
control current and output voltage. 

se 

Buck converter 

PO) 	R  

7(ST = 1+ SCR* 	
(36) 

Boost converter: 

114  o(S)  _ RVg 	SLVt 2  / RV:  
(37) 

I(S) 211 1 + SCR/2 * 

Buck-boost converter 

0(S) 	R V  g 	I a  SLVVV6,- VP/RV:  

i(r) 	Vg 2 litI + SCR( V9 — Vt)A VE  — 2 Vt) 	
(38)

. 

Middlebrook and CA' arrived at the same results by the state-space averaging method. 

8. Sliding-mode voltage control 

It was observed that, under output-voltage regulation, the boost and buck-boost converters 
exhibit discontinuities in their controllable states. As a result, the simple approach suitable 
for the control of buck converter is not applicable for the voltage control of boost and 
buck-boost converters. One approach is to establish an inner loop as a sliding-mode current 
controller and then to implement an outer voltage-control loop based on the small-signal 
linear model of the current-controlled converters. The linear models established in eqns 
(37) and (38) may be used for this approach. 

An alternative approach is to implement a direct sliding-mode voltage regulator. After 
all, the state assignment to a system is not unique, and therefore we may try setting up the 
sliding surface in terms of as many identifiable continuous states of the system as the order 
of the system, and then relate the resultant dynamics to the desired response. 

8.1. Inductor current to output voltage transformation 

The inductor current / and the output voltage 110  (in the absence of equivalent series 
resistance of the capacitor) are continuous variables and qualify as suitable states in terms 
of which the sliding surface may be set up. In order to study the stability of the trajectories 
on such a sliding surface, one has to transform the sliding surface in terms of output voltage 
and its derivatives. The equivalent system description given by eqns (33) to (35) may be 
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used to obtain this transformation between the inductor current and output voltage. The 
method is illustrated for boost converter and the results are presented for the other 
converters. 

For boost converter, eqn (34) may be manipulated and rewritten as 

+ RC Vo  d Vold: = RI(Vg - Ldl/dt). 	 (39) 

In practical converters, in order to obtain good small-signal response as well as large power 
bandwidth, it is necessary to choose L such that Vg » Ldl/dt. Then eqn (39) reduces to 

CV  dV V2  
/= "+-  

Vg 	 (40) dt 	RVg •  

Equation (40) gives the relationship between inductor current and output voltage for the 
boost converter. This relationship is in general nonlinear and is given below for all the 
converters. 

Buck converter: 

7 	d Vo  Vo  

	

= 	- . 

dt 	R 

Boost converter: 

V d V 	112  /inc. o 
Vg  dt RVg  

Buck-boost converter: 

C(Vd  Vo )dV0  V
9 
 — Vo  Vo  

	

1 = 	 
Vg 	dt

+ 
 V g  R  

(41) 

(Vg »Ldlidt). 	 (42) 

(Vo »Ldl/dt). 	 (43) 

In the next subsection sliding-mode control of boost converter is set up in terms of inductor 
current and output voltage. The relationship between inductor current and output voltage 
given by eqn (42) is then used to analyse the stability of the sliding regime. The same 
method is applicable to all three dc-to-dc converters. 

8.2. Voltage control of boost converter 

For boost converter, from eqn (42), it is seen that the inductor current contains the 
voltage-derivative information. The boost converter being a second-order system, the gain 
matrix G is a 2 x I matrix and the sliding surface may be set up as 

= GY = Kv(Oo+ Rst) 	 (44) 

where 00  and is  represent the voltage and current errors, respectively. 

Comparing eqn (44) with the general sliding surface given by eqn (10) one may identify 
the feedback-gain parameters g o  as K u  and g i  as K u R s . Let us identify the practical 

significance of the different gain parameters. The parameter R, is in practice the 
current-sensing resistance. It is good to remember that in practice the current-sensing 
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resistance is usually orders of magnitude less than the load resistance, R. Under sliding-mode 
control, a = 0 and so K, does not influence the response. It is significant only as a scale 
factor of the sliding surface. In ideal sliding-mode control, switching takes place in an 
infinitismal vicinity around a = 0, and so K„ has no significance whatsoever. However, in 
a real sliding-mode control, switching takes place in a finite vicinity around the sliding 
surface c= O, and K, then determines the nominal switching frequency for a given output 
ripple and vice versa. 

We now go on to examine whether the trajectories along the sliding line lead to unique 
steady-state operating point. Define the current and voltage errors by the following 
relationship: 

i=r+r 	 (45) 

(46) 

Equation (42) gives the relationship between inductor current and output voltage for boost 
converter. This relationship may be written in terms of voltage and current errors as follows. 

P+i=C 
Vt + 00   d(Vt, + 60) 

 + (Vti + 60) 2  (47) 
Vg 	dt 	RVg  

Separating the dc and ac quantities, we get 

I* = VV/RV g , 	 (48) 

... C11 deo   — 2 Vt C d(00)2  
= 	+ 	o + 	 (49) 

V9 dt RVg 6  2Vg  dt +R v.  

Using eqn (49), we may transform the sliding surface eqn (44) as follows. 

2 irtR 	CVt,R s  deo  RS Og C R d( 0) s 	1) c=1400 + 	3 00 + 	 
RVg 	Vg  dt 	R Vg 2 Vg  dt 	

(50) 

Equation (50) may be rearranged and written as 

where 
R s V* 

a(t) = 1 -I- 	°- RV9[2 + 00/Vt] 	 (52) 

CR s  
b(t)= 	° 

V* 
 (1 + 00/V 0]. 	 (53) 

Vg  

It is to be noted that we have not yet invoked any restriction on the validity of eqn (51), 
small signal or otherwise. Equation (50) is a first-order differential equation. The condition 
for guaranteed stability of response along the sliding line turns out to be that both a(t) and 
b(t) be positive. Or a sufficient condition in terms of the alternating quantity to  is that the 
relative error 00/Vt, be less than 1. 

Alternatively eqn (51) may be interpreted differently as follows. For large errors the 01 
terms dominate, and so the sliding line is determined mainly by terms containing 0,; for 
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small errors, the to  terms dominate. The response can therefore be thought of as having 
two parts. 

Large-signal response: 

a  RC deg n  r ett  	 = 	 ( " 	2 dt 	 54)  

Small-signal response: 

0 
2 IiR s 	CV3R s dil o

a  0+ 	 = 	 (55) RV 	V dr 

The large-signal response is truly a constant current response that is stable and with a time 
constant determined by the output circuit elements (RC/2). The small-signal response is 
decided by the feedback gain (the current-sensing resistance, R 5) and the operating point. 
The important point to notice is that the system is always stable for large signals. The 
small-signal stability is determined by the feedback gain. 

The phase-plane representation of the boost converter is shown in fig. 9. The axes are 
the inductor current and the output voltage. The operating point under sliding-mode 
control has w satisfy two conditions, namely a = 0 and the steady-state gain of I* = V 2IRV9 . 
Curve 1 in the phase-plane represents the dc gain. Line II is the sliding line a = 0. The 

STEADY 
	

GAIN 
2 = V.IFIVn 1 

SLIDING LINE 

Vg  Vd: 
Vo  

Ftc. 9. The phase-plane of the boost converter with the inductor current and the output 
voltage as the states of the converter. Line! shows the steady-state gain between inductor 

current I and output voltage I/0 . e=0 is the proposed sliding line. Under sliding-mode 

control both the steady state and the sliding condition are satisfied, giving rise to the 

operating point (1*, 
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sliding line is centred on the operating point with a slope of —R s . The system state, if 
confined to move on the sliding line, eventually reaches the steady-state operating point 
(Vt,1*). 

9. Practical considerations 

Since it is established that large-signal stability is always guaranteed, the design may be 
conveniently based on the small-signal model. From eqn (49), for small errors 

a Olt, de o  211 i =________ +. _ Co 	 (56) 
1/9  dt 	RVg  

where iis defined as the current error. To measure 4 the average value I* must be subtracted 
out of the total inductor current I. This is accomplished by the use of a high-pass filter in 
the inductor current measurement. The simplest form of filter function is a single inverted 
pole at w 1 . Further, since eqn(10) for the sliding surface is a linear differential equation, 
we can express the sliding surface in the frequency domain as well. Let 

1  
a(S)= K u tto(S)+ 	R siiS)}. 

1 .+ w i lS 

Equations (56) and (57) may be combined to obtain 

2R V* Iv, CR s Vt, 
1+ s o  + ± 	S 

RVg 	S 	11; 	0  0(s)  
o(eS) = K t, w l  

1 + —s 
w i  S 

= Ku 

 
1+ 7  + IT  

Meg:Xs) 

 

w, 
1 + — s 

(57) 

(58) 

(59) 

in which the (good) approximation always obtains because the current-sensing resistance, 
R„ is much smaller than the load resistance, R, and where 

1 Vg 	
(60) 

whi  - CR s  Vt,' 

In the ideal case in which the current error icould be measured without a filter, w 1  = 0 
and eqn (59) reduces to 

	

a(S)= K u  (I + Siwm)00(S) 	 (61) 

or, in the time domain as 

a(t) = I C i, 100(t) + 1 deo(t) 
— ;--} . 

	

wm  at 	
(62) 
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Therefore, w m  is the maximum bandwidth that can be obtained or, in the time-domain, 
the fastest transient response of the output error is characterized by a time constant 1/w m  
that depends on the system parameters (C, V o , V) and the current-sensing resistance (R s). 

In the realistic case of a non-zero filter-corner frequency, w 1 , eqn (59) may be factored 
so that 

a(S) = Kt, 
(1 + w i lS)(1  + Shvm) 

ô0(S) 	 (63) (1 + w 1 /S) 

= K r(1 + S/w m)00(S) 	 (64) 

which is the same ideal result as eqn (61). Therefore the condition that the factorization 
be valid, which is w 1  « wm , becomes a design criterion: to retain the maximum bandwidth 
response, it is necessary only that the filter corner be chosen much lower than the maximum 
bandwidth itself. 

Figure 10 shows the schematic diagram of a sliding-mode controller for a boost converter. 
Figure 11 shows the response of the converter to step changes in reference and in 

Pr
] 

FIG. 10. Sliding-mode controller for the boost converter. The high-pass filter for current 
measurement effectively isolates the steady-state value oil. The current limit overrides 

the control when the inductor current exceeds a pre-set limit. 
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I . 5 	 • 51V 

2 

2 

•2 ImS 
	 •2 ImS 

(a) ()) 

V = 25 Volts TRACE 2: V = 25 VOLTS TRACE 2: i 
Vo = 30 Volts 0-5 AMP/DIV Vo  = 30 VOLTS 0.5 AMP/DIV 
R = 30 Ohms REFERENCE STEP TRACE 1: cto  LOAD STEP: 
TRACE 1: Cio  0.5 VOLT 0.5 VOLT/D1V 1 00% to 50% 
0.5 VOLT/DIV 

FIG. 11. Response to (a) a reference step and (b) a load step for a boost converter using a sliding-mode controller. 
Response shows a first-order transient. 

load. It is seen in both the step responses the effective response is first order by virtue of 
the design criterion w 1  « wm . 

9.1. Effect of ESR of output capacitor 

In a practical converter, the output capacitor is not ideal and will have a parasitic equivalent 
series resistance (ES11). The output voltage therefore will be discontinuous at the switching 
instants. Figure 12 shows the inductor current, output voltage, and the switching function 
a(t). The switching function a is seen to have discontinuities. However this does not affect 
the performance of the sliding-mode controller other than decreasing the switching 
frequency. It will be helpful to use a low-pass filter for measuring the output voltage with 
a corner just above the switching frequency. 

10. Conclusion 

Sliding-mode control of a class of dc-to-dc converters is introduced in a formal manner. 
The same concept is presented in the case of buck converter through a more illuminating 
graphical way. The concept of equivalent control as an analytical tool is demonstrated for 
constant frequency duty-ratio-controlled converters. The simplicity of the control of current- 
programmed converters is brought out, and again the application of the equivalent control 
method is shown to lead to an alternative method of setting up the sliding line for the voltage 
control of boost and buck-boost converters. Stability of control is shown to be guaranteed 
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IC 

CT" 

FIG. 12. The boost converter with the ESR of the output capacitor and the various 
steady-state waveforms. The switching function a also exhibits discontinuities. This. 
however, does not affect the low-frequency performance of the converter. The switching 
frequency is seen to reduce owing to the effects of ESR. 

for both small and large signals. Experimental results are shown to verify the control 
concepts. 
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