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Abstract 

The problem of learning conjunctive and disjunctive concepts from a series of positive and negative examples 
of the concept is considered. Formulating the problem in the Probably Approximately Correct(PAC) Learning 
framework, the goal of such inductive learning is precisely characterized. A parallel distributed stochastic 
algorithm is presented. It has been proved that the algorithm learns the class of simple conjunctive concepts (in 
the presence of upto 50% unbiased noise) over both nominal and linear attributes. As an extension to this, an 
algorithm that learns a class of disjunctive concepts is proposed. Through empirical studies it is seen that the 
algorithm is quite efficient for learning conjunctive concepts and certain disjunctive concepts. 

Keywords: Learning Automata, Games of Learning Automata. Concept Learning. PAC Learning, Pattern 
Recognition. 

I. Introduction 

Concept learning or learning from examples is one of the most extensively studied forms 
of learning in Artificial Intelligence (Al). Apart from the fact that such a study throws 
light on human intelligent behaviour, the problem is interesting because of its applications 
in areas like Expert Systems'. The problem of concept learning involves learning to 
classify the objects of a domain using a set of pre-classified objects from the domain. The 
pre-classified objects are supplied as positive examples, i.e. those satisfying the target 
concept description, and negative examples, i.e. those other than the positive examples. 
After seeing a set of such examples, the learning system is required to infer a concept de- 
scription which can be used to classify new objects from the domain. For example, one 
might consider learning to classify patients as jaundice affected or not, by looking at data 
obtained through clinical tests. The classification problem as discussed in Pattern Rec- 
ognition (PR) literature 2  is similar to concept learning. Though the common goal in both 
fields is to find a classification rule, concept learning differs from pattern classification in 
that the attributes (features) used to describe the examples need not be numerical values. 
For example, in our disease diagnosis problem, a possible attribute used to describe the 
data might be the eye-color of the patient which takes values from a non—numerical set. 
Also, in concept learning, we are interested in learning varied concept representations like 
logic expressions 3 , decision trees 4 , etc. rather than decision surfaces in /C. 
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For the class of concept learning problems considered in this paper, we assume that 
a set of attributes characterizing the domain is specified :  The examples are expressed as 
a vector of values assumed by these attributes. The attributes may take values in arbit- 
rary sets on which there may or may not be any structure. By experiencing a subset 
of these examples, the problem is to learn the "right" concept description. This problem 
has been investigated in Al and Computational Learning Theory (COLT) and several 
algorithms have been proposed". We discuss some of the important algorithms in Sec- 

tion 5. 

We work within the Probably Approximately Correct (PAC) Learning frameworren. 
We propose a parallel stochastic algorithm based on a cooperating team of learning auto- 
mata. The algorithm is shown to correctly learn (in a sense to be defined shortly) the class 
of simple conjunctive concepts (defined in Section 2) expressed through nominal and/or 
linear attributes. Moreover, our algorithm is robust and can tackle upto 50% of unbiased 
classification noise in examples. It is an incremental algorithm and hence does not need to 
store the examples. It is also a parallel algorithm and can be implemented on a parallel 
distributed network of simple processors with only local computation. This paper is an 
extension of the work by Sastry et.a1 13 . The algorithm in Sastry et al 13 . can learn concepts 
expressed through nominal attributes only and cannot handle linear attributes. In this pa- 
per, we present a generalized algorithm that can handle both nominal and linear attributes. 
Though we follow the idea of proving convergence as in the earlier version, the proof here 
is presented in a more simplified form. Here, we also show how we can modify the algo- 
rithm to learn one subclass of disjunctive concepts. 

The organization of the paper is as follows. In section 2, we briefly explain the 
concept learning problem and the PAC framework. In section 3, we describe our algo- 
rithm and analyze its convergence properties. We show in section 4 how the algorithm can 
be modified to learn a class of disjunctive concepts. We give a comparison of our algo- 
rithm with other techniques in section 5. We give empirical results of our algorithm on a 
few synthetic and real—world domains in section 6 and 7 contains some concluding re- 
marks. 

2. Concept Learning 

As mentioned in the previous section, the problem domain is specified by a finite set of 
attributes. For our purposes, the attributes are distinguished into two types based on the 
structure imposed on the set of values possible for the attribute. If the value set of an at- 
tribute has no structure, then the attribute is called nominal; if the value set is totally or- 
dered, then it is called linear. In this paper, all linear attributes are assumed to be real' 
val ued. 

Let the attributes(nominal or linear) chosen for the domain be l' i  that take values from 
sets Vi, i = 1 ,..., N. 

Definition 1. A concept description (logic expression) given by 

e vdA...AEYN e vrvi 
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where vi is a subset of V 1 , i = 	N, and further if Y, is a linear attribute then v i  is an 
interval's said to be simple conjunctive expression. 

Here a term of the form [Y, e v,] is an indicator of whether the attribute Y i  belongs to 
the set v,. This is sometimes referred to as internal disjunction because it can be viewed as 
a disjunction of equality predicates. 

Remark 2.1. It can he noted that a collection of subsets 	vfr,), where v, c V 
uniquelv defines a simple conjunctive concept. Therefore, we denote the conjunctive con- 
cept by 	vp:). 

Definition 2. A concept description of the form 

CI V C2 V...V Ck 

where each C, is a simple conjunctive expression is said to be a k-term disjunctive 
expression. 

We use a simple conjunctive expression or a k-term disjunctive expression to represent 
our concepts. The choice of a particular representation defines the so-called hypothesis 
space, a space of all concepts expressible in the chosen representation. We formulate the 
concept learning problem as a search over the hypothesis space for the "best" concept. 
Before defining what we mean by the "best" concept, we discuss some of the issues in- 
volved in the learning problem. 

In a real-life problem, the space of examples may be so large that the teacher-classified 
examples supplied to the learning system may form only a small subset of this space. We 
expect the algorithm to learn a concept which performs well not just on these examples 
but also on the unseen objects of the domain. This issue of generalization is intimately 
related to how representative are the examples given to the learning system. This can be 
formulated precisely through the PAC framework as explained in the next subsection. 
Also, the teacher may not be infallible and consequently the pre-classified examples may 
be noisy. Thus, sometimes the learning system might even receive two examples having 
the same values for the attributes but one classified as positive and the other negative. 
Noisy examples may be due to mistakes in teacher classification, errors in attribute meas- 
urements or representational inadequacy (e.g. overlapping class conditional densities in a 
pattern classification problem). The objective of learning has to be defined to handle both 
the issues of generalization and noise. With this motivation, we adopt the PAC Learning 
framework m-12  described below. 

2.1. Probably approximately correct learning 

Consider a learning system interacting with a teacher. The teacher presents the learner 
With randomly drawn examples, each example consisting of an instance x e X and an out- 
come E Y, where X and Y are called instance and outcome spaces respectively. These 

examples are generated independently according to a joint probability distribution, say P O 	 , 

n  X x Y, unknown to the learner. Using these so-called training examples, the learner 
chooses a hypothesis from the hypothesis space H based on a learning algorithm 2. A hy- 
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pothesis It belonging to H has domain X and range A known as the decision space. (X
' 
 y 

and A are arbitrary sets.) The hypothesis h chosen by the learner is evaluated through a  
function I called the loss function. The loss function is a fixed real-valued function de- 

fined on Y X A and is assumed to be known to the learner. Given an example (x, y), this  
function measures the loss suffered by the learner for choosing the action h(x) against the  
outcome y. The objective of the learner is to choose a hypothesis that minimizes the ex- 
pected loss. Formally, define 

L(h) = E[I(y, h(x))] 
	

(2.1) 
h* = arg mi!ti L(h) 
	

(2.2) 

where the expectation is w.r.t P and h* is the concept having the minimal expected loss 
and is called the correct concept. 

The following definition characterizes the objective of the learner. It can be noted that 
the definition is a special case of the general definition given by Haussler n . 

Definition 3. Let X, Y, P be as above and 2 he the learning algorithm used by the learner. 
Let h„ H he the hypothesis output by the algorithm after n training examples are pre- 
sented by the teacher. Then, the algorithm PAC learns if, for any h*, L(h) converges to 
L(h*) (see Remark 2.2 below) as n goes to infinity, irrespective of the distribution P. 

Remark 2.2. In the above definition, the convergence of L(h) to L(h*) has to be de- 
fined stochastically since L(h„) is a random variable. In COLT literature, this conver- 
gence is usually assumed to he in probability 1112 . In this paper, we use weak convergence 
for this purpose. However, as in COLT, we demand the convergence to be uniform over 
all probability distributions P and the target concept class. 

Remark 2.3. In PAC framework, the generalization issue is handled by presenting the 
examples drawn independently from a fixed but arbitrary distribution P and measuring 
the error (or loss) of the learnt concept with respect to the same probability distribution 
P. The examples, being independent and identically distributed (i.i.d.), cannot form a 
cleverly chosen sequence and hence become representative of the target concept. 

If the loss function is such that 1(y, a) is I when y * a and is 0 otherwise, then the cor- 
rect concept h* as given by (2.2) will be the concept having minimum probability of mis- 
classification as used in Pattern recognition 234 . Formulating the problem using this loss 
function, our aim will be to develop an algorithm that PAC learns in the sense of Defini- 
tion 3. That is, the algorithm learns the concept having minimum probability of misclassi - 
fication, asymptotically as the number of examples goes to infinity, given an i.i.d se- 
quence of examples that are drawn w.r.t any distribution. 

. 'rob/em definition 

For us, the concept learning problem is specified by the following. 

• A finite set of characteristic attributes (nominal or linear) of the domain are speci- 
fied. Each nominal attribute assumes only finitely many values and each linear at- 
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tribute takes values from a bounded interval in R, All examples will be described as 
tuples of values for these attributes. 

• The right concept can be described as a logic expression involving a subset of these 
attributes. 

The choice of attributes defines the instance space of our problem. Since we are con- 
sidering a concept learning problem, the outcome space is (0, I I. Here, we assume that a 
negative example is indicated by the label 0 and a positive example by I. The decision 

space is also 1 0,  I I- The hypothesis space is the class of all simple conjunctive expres- 
sions given by Definition 1. We choose the loss function l(y, a) = fly (1) 1 . Hence, the 
correct concept h* is the one having minimum probability of misclassification. 

In the next section we present an algorithm based on a cooperating team of learning 
automata for the concept learning problem. Teams of automata have been used earlier for 
concept learning". These models can learn concepts with nominal attributes only and 
thus cannot tackle true linear attributes. The model proposed in this paper alleviates this 
problem and can be considered as a generalization of Sastry et al". to handle both nomi- 
nal and linear attributes. We also show how the algorithm can be used for learning some 
disjunctive concepts. 

Since we use the class of simple conjunctive expressions as our hypothesis space, we 
give some more definitions useful for the conjunctive concepts. 

Definition 4. Let (vr,...,v s ) be the correct conjunctive concept (defined by equation 

(2.2)). Then v i*  is called the correct set of the attribute Y i , i = 

It is easy to see that the value of any attribute in a positive example belongs to the cor- 
rect set of that attribute and in any negative example the value of at least one attribute 
does not belong to the correct set. Also it should be noted that this notion of correct set is 
meaningful only for simple conjunctive concepts (cf. Definition 1). The problem of 
learning disjunctive concepts with our method is addressed in Section 4. 

3. A stochastic algorithm for learning simple conjunctive expressions 

In this section we first introduce the concept of a cooperative game of Learning Automata. 
Then we show how the model can be used for learning simple conjunctive concepts in a 
noisy environment. Our treatment of learning automata will be brief. It is introduced only 
to explain our notation and state a theorem needed to prove the correctness of our algo- 

rithm. The reader is referred. to Narendra and Thathachar 16  and Santharam n  for more de- 

tails. 

3.1. Learning automata 

Learning automata are adaptive decision making devices that learn the optimal action 
from the available set of actions by interacting with a random environment. The learning 
automaton can be classified based on its action set into Finite Action set Learning 
Automaton (FALA) and Continuous Action set Learning Automaton (CALA). 

iliAl denotes the indicator function of set A 
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3.1.1. Finite Action set Learning Automata 

A FALA has a finite set of actions A= fah a21..., a, ) from which it chooses an action at 
each instant. This choice is made randomly based on the so-called action probability di s- 

tribution. Let p(k) = Ipi(k), p2(k),..., p r(k)1 denote this distribution, where p(k) is the prob- 

ability of choosing action a, at instant k, k = 0, 1, 2,.... For the choice of action, the 
automaton gets a reaction(which is called response or reinforcement) from the environ- 
ment. This reaction is stochastic whose expected value is d, if the automaton has chosen 

a,. The values d„ i = 	r, are called the reward probabilities of the environment and are 
unknown to the automaton. The objective of the automaton is to maximize the expected 
value of reinforcement. Let d„,= max, di . Then an, is called the optimal action and the aim 
is to identify this optimal action; that is, to evolve into a state where in the optimal action 
is chosen with a probability arbitrarily close to unity. This is to be achieved through a 
learning algorithm that updates, at each instant k, the action probability distribution p(k) 
into p(k + 1) using the most recent interaction with the environment, namely, the pair 
(ot(k), P(k)). Thus if T represents the learning algorithm, then, p(k + 1) = T(p(k), a(k), 

P(k)). The main problem of interest here is the design of learning algorithms with satisfac- 
tory asymptotic behaviour. We are interested in algorithms that make pm (k) converge to a 
value close to unity in some sense. 

Definition 5. A learning algorithm is said to he E -optimal if given any e > 0, we can 

choose parameters of the learning algorithm such that with probability greater than 1 - E , 

lim infk  p(k)>1 - e. 

A learning algorithm for FALA that we use later on, called the Linear Reward-Inaction 
(L R .,) algorithrn' 6  is described below. 

Let a(k)= a, and let r(k) be the response obtained at k. Then p(k) is updated as follows: 

+ 1) = pi (k) + Ar(k)11 - p i(k)] 

+ 1) = p1(k) Ar(k)p j(k), Vj # 1 	 (3.1) 

where A. e (0, 1) is a parameter of the algorithm. 

The 	algorithm is known to be E -optimal under stationary environments 16. 

3.1.2. Continuous Action set Learning Automata 

The CALA is similar to an FALA with the main difference being that the action set now is 
continuous. The CALA chooses actions from the real line R., The action probability distri- 
bution at k is N(p(k), cr(k)), the normal distribution with mean p(k) and standard deviation 
cr(k). At each instant, the CALA updates its action probability distribution (based on its 
interaction with the environment) by updating p(k) and cr(k), which is analogous to updat- 
ing the action probabilities by the FALA. Since the action set is continuous, instead of 
reward probabilities for various actions, we now have a reward probability function ,  t 
gt-* ic defined by 

(3.2) f(x) = ErReinforcement I x is the action chosen] 
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Like in the case of reward probabilities cls , for GALA, the reward probability function f is 
unknown to the automaton. 

We shall denote the reinforcement in response to action x as rA  and thus 

1(.0= Er,. 

The objective for CALA is to learn the value of x at which f attains a maximum. That is, 
we want the action probability distribution, N(p(k ), ci(k)) to converge to Mx ° , 0) where x,  
is a maximum off However, for some technical reasons we cannot let a(k) to converge to 
zero. So, we use another parameter, 01 > 0, and keep the objective of learning as c(k) 
converging close to CL. and p(k) converging to a maximum of f. By choosing Ct suffi- 
ciently small, asymptotically GALA will choose actions sufficiently close to the maximum 
with a probability sufficiently close to unity 17 . 

The learning algorithm for GALA is described below. Since the updating given for 
cr(k) does not automatically guarantee that cr(k + 1) crL , we always use a projected ver- 
sion of u(k), denoted by 0(c(k)), while choosing actions. Also, unlike FALA, CALA in- 
teracts with the environment through a choice of two actions at each instant. 

At each instant k, the GALA chooses x(k) € Rat random from its current distribution 
N(p(k), 00(a(k))) where 0 is the function specified below. Then it gets the reinforcement 
from the environment for the two actions: p(k) and wv(k). Let these reinforcements be rp  

and 	Then, the action probability distribution is updated as 

p(k + 1) = 0k) + AF i (p(k), oft), x(k), r,(k), r p(k)) 

	

oft + 1) = a(k) + AF2(P(k), a(k), x(k), 	r p(k)) Cia(k) 
	

(3.3) 

where F i •), F 2(4) and 0(•) are defined as below: 

(to, —rp   )(x 
F.41,0",,l,ro rp )= 

	

0(a) 	0(a) 
• 

1 
17; 1$51  ).P  [ :1:41)  

0(a) = (a 01)1 I > 	+ CL  

and 5L C> 0, X E 	I) are parameters of the algorithm. 

For this algorithm it is proved that with arbitrarily large probability, p(k) will con- 

verge close to a maximum of fl-) and a(k) will converge close to aL , if we choose A and at 

sufficiently small and C sufficiently large". 

3.1.3. Games of Automata 

From the previous section it is clear that the automaton can be used for finding the opti- 
mum value of a parameter, especially when only noise-corrupted values of the criterion 
function being optimized are available. This is done by making the set of actions the same 
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as the set of possible values of the parameters and the reinforcement signal as the noise 
corrupted value of the function to be optimized at the chosen parameter value. (The pa- 
rameter range may have to be discretized if we use a FALA). A single automaton can 
learn the optimum value of a single parameter and hence it will suffice for unidimensional 
problems. But for multidimensional problems, we need to consider a system of several 
automata and in this context we consider the case where these automata are involved in a 
game with common payoff. In such a game, the automata correspond to the players of the 
game and its actions to the various strategies available to the players. Consider a team of 
learning automata consisting of N Finite action set learning automata and Al Continuous 
actions set learning automata. Let the action set of i-th FALA be denoted by S i  with 

IS,I = n„ I i N. All the CALA choose actions from the real line 9t, Let ai(k) e Si, 

i = 	N, denote the action chosen by the i-th FALA and xj(k) E 	j = 	M, the ac- 

tion chosen by the j-th CALA at the k-th instant. a(k) = (cti(k), a2(k),..., aN(k)) represents 

the actions chosen by the FALA part of the team and x(k) = (xl(k), 	xm(k)), the set 

of actions chosen by the CALA part of the team at instant k. Define q(k) = (a(k), 
N 

x(k)) E L 11Si X R41 . q collectively denotes the actions chosen by the team. At each in- 

stant, the team interacts twice with the environment. Let r(k) and r(k)  be the payoffs ob- 
tained during the two interactions at the k-th instant. r(k) denotes the payoff obtained 
when the FALA part of the team chooses a(k) and the CALA part of the team chooses x(k) 

and r(k) denotes the payoff obtained when the FALA part chooses a(k) and the CALA 

part chooses p.(k). The payoffs are given as common reinforcement to all the automata. 
Using these payoffs, the team updates its state, chooses actions at the next instant and the 

cycle repeats itself. Define, for q = (a, x), a = (a 1 ,..., aN ), x = (mi.., .vm ), 

g(q) = E[Reinforcement I i-th FALA chose a, E St  and j-th CALA chose xj  E M. (3.4) 

g(.), called the payoff function, captures the reward structure of the game and is unknown 
to the automaton. The goal of the team is to choose actions to globally maximize the 
payoff function. 

Definition 6. Let q* = (a*, x*), a* = (a l*  ,...,a );x* = (x is  ,...,x 	We say q* is an optimal 

point of g(•) if 

g(q*) g((a,x*)),Va= (a1,..., aN) set. 3j s.t. at = a:, Vi #j and al  # a: . 

2. 3€ > 0 such that 

eq. ) g((a*, X)), Yx E BA1(X*, ) 

where ei(X*, €) denotes the open ball in R m  of radius E and centre x*. 

Remark 3.1. In Definition 6, condition 1 implies that a* is a mode when the payoff func- 
tion g((a, x)) is thought of as an N dimensional matrix indexed by (x i , 1 =1,..., IV, biliving 
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X . Condition 2 means that x* is a local maximum of the payoff function g((a, x)) when 
considered as a function of x only. 

The theorem given below characterizes the convergence behaviour of the game played 
by the hybrid team of FALA and CALA. 

Theorem I. Let g(-) he the payoff function of a cooperative game with common payoff 
played by N FALA and M CALA. Let all the FALA use identical LR4 algorithms and all 
CALA use the algorithm given by (3.3.). Then, asymptotically as A.--+ 0, the team con- 
verges to one of the optimal points of the payoff function g(). 

The theorem for the special case of the team consisting only of FALA is proved in 
Sastry et 018 . and for the case of team consisting only of CALA in Santaram n. The proof 
for the general case of a hybrid team consisting of FALA and CALA is a simple extension 
and is available in Rajaraman et al.") . 

3.2. A/gorithrn for concept learning 

We formulate the problem of concept learning as a cooperative game with a common 
payoff played by a team of FALA and CALA. For each nominal attribute, the correct set 
is a subset with finite cardinality. Therefore, to model a nominal attribute, we may use a 
FALA having as many actions as the number of possible subsets. Since this requires an 
exponential number of actions, we learn the correct set of a nominal attribute by employ- 
ing a two action FALA for each value of that attribute to decide whether or not the value 
belongs to the correct set. For each linear attribute, we use two CALA to learn the end 
points of the interval which forms the correct set of that attribute. 

Our notation is as follows. 

Yi(d)  the i-th nominal attribute, i = 1 	N 

Vid)  the value set of i-th nominal attribute rim. It equals (x1,,..., .vi„, 	I. 

X .i") 	the automaton(FALA) representing j-th value of i-th nominal attribute(i.e. x1 1), 

= 	n i; i = 1,..., N. 
(d) 

the action chosen by the automaton X &  . It belongs to ( YES, NO) 

)1" N.fi 	the i-th linear attribute, i = 1,..., M. 

Vic) 	the value set of i-th linear attribute Y i". It is assumed to be an interval in it 

Xer 	the automaton(CALA) representing one end point of the correct set of i-th linear 

attribute, /= 1, 2; i = N + 	N + Mi = 1(2) denotes the left(right) end point. 

wu 	the action chosen by the automaton XV 

itt 	a subset of either Vi(d)  or tli" depending on whether i-th attribute is nominal or 

linear respectively. 	 • 
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(d) 	. 
Our model consists of a team of n 1 + n2+ ...+ n N  FALA, 	Q = 	ni;  

and 2M CALA, XV(' = 1, 2; i = N + 	N + M), involved in a game with comm on  

payoff. The FALA part of the team is concerned with choosing the correct sets for nomi- 
nal attributes. Since we use one FALA to represent each value of a nominal attribute, 

n i  + n2+ ...+ nN  automata are needed to represent the N nominal attributes. The FALA 
( 

XCd)  is concerned with the decision of whether xii is in the correct set of Yud) 
 . Each FALA 

has two actions YES and NO. Let p(k) denote the probability with which XII ) , will 

choose action YES at instant k. Since each FALA has only two actions, p t/k) completely 

defines the action probability distribution for XV ) . The CALA part of the team learns the 

correct sets for the linear attributes. Since we assumed that the correct sets of linear at- 
tributes can be expressed as intervals, we need two CALA for every linear attribute, each 

automaton learning one end point. The CALA, 4r) , is concerned with the choice of one 

end point(/ = 1, 2 respectively denote the left and right end points) of the i-th linear at- 

tribute. Let p 11(k) and (Yak) denote the mean and variance of the normal distribution for 

at instant k. Hence, the normal distribution NCu il(k), 0(511(k))) is the action probabil- 

ity distribution for X? )  at k-th instant, where 0 is the function defined in section 3.1.2 to 
project the variance. The team functions as follows. 

As explained in section 3.1.2, a CALA needs to interact with the environment twice at 
each instant. Hence the team consisting of a number of FALA and CALA also interacts 
with environment twice at each instant. 

At every instant k, each of the automata chooses an action(YES or NO for FALA and a 
real number for CALA) independently and at random based on its current action probabil- 
ity distribution. As per our notation, let oci;  denote the action chosen by Xlid) , j= 

= 	N, and wit  denote the action chosen by 4) , 1= 1, 2; i = N + 	N + M. Now 
consider the conjunctive concepts: C = (v1,...1 vN+m) and 	= 
defined by 

{r u lau  =YES, j =1,...,n i } =1,...,N v. = 
Itv,i Wi2 	 1=N+1,...,N+M 

VN+i i 

Then, the responses are generated for the team by classifying the next example with 
concepts C and C' respectively. The response is 1 if the classification agrees with that by
the teacher and 0 otherwise(See equation (3.5) below). The automata update the action 
probability distributions using the learning algorithms specified in sections 3.1.1. and 
3.1.2. If the action probability vectors of all FALA converge to unit vectors* and the 

*TheoreticallY, we desire all the probabilities attain the value unity to ascertain convergence. However, as our 
algorithm achieves only asymptotic convergence, we verify the convergence if all the probabilities go above a 
value close to unity, say 0.99. 
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means and variances of all CALA converge then we say that the team 
the concept (v 1 ,..., vt,,,,m ) where  

has converged to 

= {Ix 
ij 1 pij  =1, j =1,...,n,} 

v i  	r  
Lilit,Pi21 

The complete algorithm is given below. 

Algorithm-1 

Initially, we set p 1(0) = 1/2, Vj = 1,..., tz,; i = 1,..., N. p1/(0), i = N + 1,..., N + M I  is 
chosen to be some real number. (If we know that the i-th linear attribute has range 

[C11, Cid, then we can choose p 11 (0) = Cii and P62(0) = C12.) (MO) is set to a suitably 
large positive value. At every instant, each of the automata X,Cid)  and XV simulta- 

neously and independently chooses actions at random based on its current action 
probability distribution and the team interacts with the environment through two 
sets of actions as explained above. 

The responses to the team are 

1 if the classification by concept C matches with teacher' s classification 
r = 1  

0 otherwise 

r
, 
= 

1 if the classification by concept C' matches with teacher' s classification 

0 otherwise 

Then, each FALA 4.7 )  updates pd  as follows: 

pij (k)+ Al(k)[1— p 1j (k)] if a 4 (0= YES 
p,j (k +1) = 

if a ii (k)= No 

where A E (0, 1) is a parameter of the algorithm. 

Each CALA Xfic)  updates pa  and ad  as follows: 

+ 1) =  

, i (k +1)  

where Ff , Fjt  are defined as below: 

rarlix— P) 
Fill  

)=(
r r`j[ix pj2  _ 1 1 
---(7-7) -0 0(a)  

(3.5) 

(3.6) 
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0(cr) = (cr crdi a > CL) + 

and C > 0, A E (0, 1) are parameters of the algorithm. 

The next subsection pres 
ceeding with the analysis it 
problem includes possibility 
automata team is determined 
that of the teacher and not on 

ems the convergence analysis of Algorithm-I. Before p ro _ 
may be noted that our formulation of the concept learning 
of noisy samples or a noisy teacher. The response to the 
by whether or not the classification by the team agrees with 
whether the classification of the example is correct. 

Recall from Section 2.1 that P is the probability distribution defined over the space of 
classified examples X x 10, l} for our problem(see Section 2.2). By this definition, noi se  
in the examples can be taken care of by assigning non-zero probabilities to examples de- 
scribed by the same instance but having different class labels. The correct concept defined 
by equation (2.2) is then the concept having minimum expected classification error w.r.t 
P, i.e. the concept having minimum probability of misclassification. Supposing that this 
error probability is q%, we can equivalently model this situation by defining on the in- 
stance space another distribution P', which is the marginal distribution of P over X, and 
assuming that q% of the examples in X are misclassified. Since the examples are i.i.d in 
PAC formulation, this noise model is implied by the model where every example is clas- 
sified correctly(i.e with the 'correct' concept) and then the class label corrupted with it% 
probability in an unbiased manner before being presented to the learning system. The only 
difference between this model and that of an arbitrary distribution P over X x 10, I I from 
which examples are drawn i.i.d. is the assumption of unbiasedness in the 'corruption' of 
class label(with respect to that of the concept with minimum error) that an example un- 
dergoes. In the following subsection, Algorithm-1 is analyzed within this noise model. We 
compare our noise model with other models in Section 5. 

3.2.1. Analysis of Algorithm-1 

The actions chosen by the hybrid team of automata will be a tupleof 
n 1 + a2  + + nN  + 2M elements. Using the notation of section 3.1.3, we denote this action 
tuple by q = (a, w) where a = (ay , j = 	ii i ; i = 	N), with ay  being the action chosen 
by the FALA representing the j-th value of the i-th nominal attribute (i.e. .1-11 ), and w = 

= 1, 2; i = 	M), with wi, being the action chosen by the CALA learning one end 
point(left or right depending on whether = 1 or 2 respectively) of the i-th linear attribute. 
As noted in section 3.2, the action tuple q corresponds to the conjunctive concept (0,-..t 
viv .A4 ) where 

{x d la = YES, j = 1 
= 	

1...,n1 } i =1,...,N 
(3.7) r  

1.wii 'wed 	 i=N+1,...,N+M 

Suppose 0.) is the payoff function, defined by (3.4), for the team of automata with 
the reward structure as in (3.5), when the teacher classifies examples with q% noise. Let 
g(•) be the payoff function under no noise. In view of Theorem 1, we know that the team 
converges to one of the optimal points of the payoff function g,,(-) and the goal of the 
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analysis is to characterize these optimal points. The analysis will follow in two steps. 
First, we consider the effect of noise on the payoff 1,inction. In Lemma 1, we show that 
the optimal points of g q(i) are identical to those 01 g(.), if n C 50. Thus, under the condi- 
tion that < 50 it is enough to analyze the optimal points of g(-). We analyze the optimal 
points of g(-) in Theorem 2, thus proving the conver9ence of our algorithm. 

Lemma 1. Let g ii(-) be the payoff function under n% classification noise and g(') be the 
payoff function under no noise. Then, the optimal points of g 1(-) and 40-) are identical if 

1. the teacher is unbiased 

2. q < 50 

Proof 

The expected reward to the team, under n% noise, for a set of actions chosen by the auto- 

mata in the team resulting in subsets v„ 1 = 	N + M, of the range of the attributes 

=1,...,N and Yi",i =1,...,M is given by 

o vi,• "1 11 141+0 

= p. -Pr[On a random positive example 

the teacher's classification matches with that by the team 

+p_ -Pr[On a random negative example 

the teacher's classification matches with that by the team] 

where p.= Pr[A random example is positive] and p_= Pr[A random example is negative]. 

Since the teacher is unbiased, 

Pr[a random positive example is classified negative by the teacher] 

= Pr[a random negative example is classified positive by the teacher] 

Ti 

100 
and 

Pr[a random positive example is classified positive by the teacher] 

= Pr[a random negative example is classified negative by the teacher] 

= 
100 

Therefore, 

( 	
Ti

N 

" 	( ' 	 4- 
Ti

gri( V i• -• I VN+41) = 1--  g L I t• - • ,17N+M ) -- 
50) 	 100 

The optimal points remain unchanged as in non-noisy environments if 

I_ Ti >0 
 

50 

i.e. if q c 50. Thus, the lemma follows. 
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Before stating Theorem 2, we introduce some notation useful in proving Theorem 2 .  
Let So =or, vinx(nr, vAtz). Let the preclassified examples given by the teacher b e  

drawn from a distribution over Dx (0, 1) and let p be the underlying probability measure. 

We assume that p satisfies the following. 

(A - 1) 

p(A x 10, 11)> 0,VA = v i  x 172 x x VN+A.f„ A c 

where vi  c VP ) ,v, # 0, / = 	N and IP;  = twn , wa l c Vi(c)  such that wil  <w, and 

Wil E R,/= 1, 2; i = N + 	N + M. 

Remark 3.2. Assumption (A-1) states that instances belonging to sets A of the form as 

in (A-1) have non-zero probability of being selected by the teacher. Hence, by this as- 
sumption, constructing concepts by adding (or deleting) such sets A to (or from) a concept 
will result in a strict increase or decrease in the expected loss as given by (2.1). This fact 
will he useful in proving whether the given concept is an optimal point or not, in Theorem 

2 below. 

Theorem 2. Consider the automata team involved in a game with common payoff as de- 
scribed in section 3.2 for a concept learning problem that satisfies assumption (A-1). As- 
sume that there is no classification noise. Then, the following characterizes the optimal 
points of the payoff function. 

1. the tuple 	+Ai ) where each vi is the correct set (cf. Definition 4)for the i-th 

attribute, is an optimal point. 

2. In all other optimal points (v i ,..., vw+m), at least one of the yrs is a null set. 

Proof 

g( v 	vN+m ) 
= p. • Pr[a random positive example is classified positive by (v i ,..., viv+m)1 

+ p_ - Pi-[a random negative example is classified negative by (vie..., vril+m)] 

= P. nvi 'm7 Vfri+M) p_ 	I'N+m) 

where 

r(V 11- st V N+M ) 

= 	 IN+m,1 )1x, e v i, i= 	N + MI] 
Pe(V ".., VN+m) 

p(1(x i ,..., xiv+m, Oki 	vi, for at least one ill 

with p[•] being the underlying probability measure as in (A-1) 

It is.  easy to see that P* and V satisfy the following monotone properties because of as- 
sumption A-1. 
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Let v; v i ,i =1,...,N + M. Then, 

(M-I) For all i, 

r( 	° • • 9 V/41+M) •': P *( i 9 1 °I• • • Vi• I 9 V; t V i+ I 9 °  • VN+A4) 

wherev; c vi .. The inequality is strict iff (v i  — van 177 # 0 and 	vN+m) > 0 

(M-2) For all i, 

P(r 1 9 • • V/V+M) 	Pivi,•••, 	va+1,••• VN+M) 

where 	vi c vi . 	The 	inequality 

• vi•-iiv;tvi+1 • • • Itty-fm > •  

is 	strict 	iff 	(vi  — van(vne  * Ø and 

Let 4 be the correct set for the i-th attribute. 

To prove the theorem, we have to show 

t • 	• 
• tvi ,•••,v,v+m) is an optimal point 

• (l),•••, vN+m) is not an optimal point when no v i  is null and at least one vi  does not 
equal Vit  

Part 1 

We show here that (4,...,v Ais  ,m ) is an optimal point. To show this, we have to prove the 

following. 

• The payoff function does not increase by choosing a subset, for any nominal 
attribute, that differs from the correct set of the respective attribute in exactly one 
value. 

• The payoff function does not increase by choosing a subset, for any linear attribute, 
which is identical to the correct set of the respective attribute except for exactly one 
end point that is atmost e distance from the corresponding end point in the correct 
set, for all sufficiently small e. (It may be recalled that for a linear attribute the cor- 
rect set is a single interval.) 

That is, we have to prove 

* * 	p 	• 	• 	N 
vial ,vi ,l'i+1 ,...,VN +m), Vi = 1,..., N 

such that vi and v; differ in exactly one value. 

2. 3e* > 0 set. VO < e < e *, 

t • 	• 	• 	 . 
gfri 	e 	 Vi= N +1,...,N + M * 	) * 
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where v; and vle) are intervals with one end point common and the other end poi nts  

differing by atmost E. 

Case I 

Since v; and vi differ in exactly one value, either v; contains an extra value over v7 01 11 

contains all the elements of vi except one. We consider these two cases separately bej ow.  

(a) Let v = 1,7 u {xi." for some xi„. not belonging to v. 

• • 	• 	• 	p • 
g(vi 	)— g(v i  ,••• 	Vi Vi+I 9• • • VN+M 

• ) 

• • 
= 	 per kv i ,..., vpi*  +m ) 

• p * 	 • 	• 	p * 
—p+ P+  (1•1 1 9 • s • 	9 Vi VW • • • VN+m) -  

= • )— P+  (v* 	
• 	, • 	• 

1 ,•••,v i_h vi ,v i+1 ,•••,vm. m ) 

+m)- Ply; t---ivf!--iiv;944-1,--,v*N+m)} 	 (3.8) 

	

Since xi,. e v7 and v; = v7 U (-thy}, we have (4— 	v; = 0 and (4—v1)(V) *+. 

Consequently, by monotone properties (M-1) and (M-2) of P.  and P-  , the first term in 
(3.8) is zero and the second term is positive. Therefore, 

• • 	 • 	• 	, • vs g(v 1 ,... I  V N+m)- 	,•..,Vi_i,Vi ,Vi+1 ,•••,. N +m)> 0 

(b) Let v; = V7 — (x ir ) for some xi,. € v. 

• • 	, • 	• 
g( VI  9••••9 V N +it,f )- 

 ) 

• 
= P4P 	N+m )— P +  (v * 	vs  Pf v* 

• 
11.•• , 	ii41.-••I'N+m 

• , • 
P 	9...9 V N +Ai - P vi ,...,v",vi ,vi+1 „...„vN )]a  ' +p_ 	vi 	 +m  

	

[ 1 * 	* 	) 	1* 	
(3.9) 

Since X E 	and v; = 	we have (v; —4)11v1 = 0 and (v; — 	vith  * 0 ' 

Consequently, by (M-1) and (M-2), the first term in (3.9) is positive and the second 

term is zero. Therefore, 

• • 	• 	• 	, • 	• gkvi 	vN+m ) — g(vi 	 > 0 

This proves Case 1. 

Case 2 

We have to show the existence of e* > 0 such that VO < e < e*, 
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* 	X 	• 	 * 	X gfr i 	l'N + m ) gkv l 	 E , l'i+1  , , 	 = N +1,...,N + M • 1 ) • 

where 

vilE)= [wil Wid 

	

with either w1 1 E 	- e, 41 + E) and wi2  = w72  or Wa E (142 • E, 	E) and wil  = w71 . (It 

may be recalled that by our notation v7 =kit wi.2 1.) We prove Case 2 only for the left end 

point and the proof will follow on similar lines for the right end point. 

We consider the cases w il  E (41 - E,41 ) and W 	(11 171  , 	E) separately below and 

prove Case 2. 

(a) Let wil  

,g(
• • • 

vi  +m ) 

= P+EP +  (Vr • • • VN* +M 	P +  (vie  9.-4' 0'1e-1 010 1+19•••* 1  N+4 / I 

,* 	 ,* 
+P-[P vt , ••• 1 1'N+At 	P vt >•••9 1 	itE)ti i+1 , •••tvN•  +m)1 * 	 * 

(3.10) 

Since 	wit  < vvii 	and 	v7 c vile), 	we 	have 	(vile)- v7) n = 0 and 

(v€)- vnn(v7Y .  *0. Consequently, by (M-1) and (M-2), the first term in (3.10) is 

zero and the second term is positive. 

(b) Let wil  

I * I * gkvi 	- AV! ,•l'ilfe),ititi,...0•N + m 
• ) 

= P+[P + ( 11 1*  .---9 1'N*  +m) -  P + (v ■ 1— v vis-tivle), vitig.--9 1'N* 44, )1 

Pe[Plv t°  •••ir; +m) - 	(vi•  *•••1 1 '7-19 1'16)1v7+0.••9 17N•  +41)} 

	
(3.11) 

Since 	ni  > 	and 	p 
• . 

we 	have 	(v, vle))11v.
•I  = 0 and 

J 

(v ' 
	 * 0. Consequently, by (M-1) and (M-2), the first term in (3.11) is 

positive and the second term is zero. Therefore, 

* 	• 	\ 	* 	t  • 	lt • 	• 	\ 
9.•  • • VN+M r tg‘ VI • e  • 1 ?jai ft Vi iti+1 .• • VN+Af 	‘11  

Since E is arbitrary, Case (2) is proved. 

Thus, (4,...,v; +m ) is an optimal point of g(.). 
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Part 2 

We show here that 	vtv+m) is not an optimal point when v, are such that 

• v, * 4', for at least one i 

• 
To show (v b.., vN4.m) is not an optimal point we need to show that either 

• 34, for one i, I 5 i N, v; differing from v, in exactly one element such that 

v; , 	vN+m ) > 	viv+m), 

(OR) 

• For one i, N + 1 5 i M, for all €* > 0, 30 cc < e* such that 3vje), vje) identi- 

cal to v, except for only one end point that is atmost € distance from the cone- 
sponding end point of v, such that 

In the following proof, whenever a linear attribute is dealt with, we consider only the left 
end point (i.e. 1 = 1) of any interval. The proof for the right end point will follow in simi- 
lar steps. 

To prove that the given concept (v 1 ,..., vN.,m) is not an optimal point, we - select a vi such 

that vi  * v7 and v, * 0. Then, we only have the following four possibilities. 

I. 3x,w, 	e v i  but xi,„ e 4',  1 = 1,..., N. 

2. wil  < w7i  or w 2  > w72  where v, = [wil , wa] and 4' = [w71 , w72 } = N+ 1,...,N+ M. 

3. 3xie, xi, e vi  but xi, El', i = 1,..., N. 

4. wil  > wit  or w12  <w7 2  where vi  = [wil  wed and v7 = [wit weed, where i=N+ 1,9 

N + M. 
Case 1 

3Xisn- Xiw  E vi but x1 ,. e v: 

Let  

g(vi  ,• • ., 	11 9 	• • • to VN + Af ) 1' Av i  1.4 el VN ±m) 

= 	 s+m )— p+(v 1 ,...,v N+m )] 

> 0, 
	 (3.12' 
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since, by (M-1) and (M-2), the first term is 7ero and the second term is positive. 

Case 2 

wei < wit 

Pick 0 < E <(u'7 wil )/2 and let vile) = [wit  + e, w12 1. 

vi_ I  , tlE), 	) - Avi  

= P41P +  (v1 ,•.• vvi-hvilE) , ve+1 t• • •• 1 ' N+m) —  P ÷  (vii•••tvN+m)} 

+P-[P - ( 1) te• • t 	vje)tvi+11•••1 1'w+m 	-Iviv+m 

>0, 	 (3.13) 

since, by (M-1) and (M-2), the first term is zero and the second term is positive. 

If w12  > bi712 , we choose v:TE)= [w it , 14'12 e], and the proof is similar. 

Case 3 

We can assume without loss of generality that 

• no v, contains an xiw  such that xim . e vi  but xi.. v7, 1 51 <N 
• 

• w it  5 wil  and wi2  wi2 , N+ 1 5 i 5 M. 

. (Otherwise, we can use Case i or Case 2 to Construct a v i  or vje) to satisfy (3.12) or 

(3.13) respectively.) 

Hence, vi  c 

Now if for some i, 1 S i N, v i  v7, then 3xi„, xk  e vi  but xi, e 

Let vic = vi  Li{x e } 

vi_ i  , ye+) 	V N+ m) 	vN+Ai  

= p4P + 	 P +  (v 1 ,...,V N+m )1 

>0; 

since, by (M-1) and (M-2), the first term is positive and the second term is zero as 
V1  c v7,Vi. 

Case 4. wa  > w71  

Pick 0 < e <(w 1  w71 )12 and let vje) = [w il  — €, w 121. 
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rN+m) — g( vi te-st vN + 44 

lb  p i le' 	
(vi tmtv fti+m 

/4  [ r (i., ..... i'N+m  )— P (v 1 ,...,1•N+4,)} 

since, by (NI 1) and (M-2), the first term is positive and the second term is zero as 
v, c v1

0 
 ,Vi , This completes Part 2 of the proof and hence the theorem. 

Rema;A 3.3, By theorem 2, we know that the correct concept is an optimal point. Also, 
in all other (pumal points of the payoff function at least one of the attributes has null set 

as correct set. Since, in a realistic concept learning problem where the 'right' concept is 

a simple conjunctive expression, the correct set cannot be a null set, it is easy to check 
whether the algorithm has converged to the correct concept. If at least one of the sets is 

nil in the converged concept, then we can rerun the algorithm with a different starting 
paint, i.e. with a different seed to the random number generator. 

In view of Lemma 1 and Theorems I and 2, Algorithm-I essentially converges (by 
Remark 3.3) to the correct concept if the learning parameters are sufficiently small. As 
tile distribution over the space of examples is arbitrary, Algorithm-I correctly learns the 
class of simple disjunctive concepts under the PAC framework, upto concepts with null 

Since we can prevent the convergence to concepts with null sets in view of Remark 
33. the correct learning of Algorithm-1 can be ensured by making it automatically loop 
hszt till the converged concept has no null sets. Algorithm-1 indeed always converged to 
tvelect concept and never needed such looping back in all the simulation studies (See 
st..-inoe 6) of our algorithm. 

4. Leaning Disjunctive Concepts 

ha this subsection, we see how we can extend Algorithm-1 to learn disjunctive concepts. 
CessicIer the learning problem where the target concept is representable as a k-term dis- 
pia-trie concept (cf. Definition 2). Suppose we Use the model of section 3.2 for this 
toning problem. Since each disjunct (i.e. each term) in the target concept is a simple 
4zisproctive expression, we can expect the payoff function to have optimal points cone- 
tootling to each disjunct Therefore, it seems we can think of an algorithm which would 
kora the target disjunctive concept by just calling Algorithm-1 k times! However, this 
*kind= in general will not work because of two reasons. Firstly, there is no guarantee 
ihsi each call to Algorithm-1 will return a different concept. So, even if we keep calling 
A1guinthm- 1 until we get A different concepts, it is possible that this procedure runs in- 
lefistely. Secondly, the payoff function may have optimal points not corresponding to 
seks disjunct, in which case the algorithm might converge to a spurious disjunctive con - 
:tit. For example, consider a domain consisting of one nominal and one linear attribute, 

A, and A2. Let A i  take values in IA, 8, C) and A2 take values from the interval [0.0, 
s.t14 Let the target concept he 

E IA, 811 A [Al 	[3,0, 4.0])) v 	€ 18, C)1 A [A2 E [1.0, 2.0]] 
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Then, the conjunctive concepts 	( [A 1  E (A, 8, CI 1 A [A 2  E [1.0, 4.0]1 1 	and 	1[A 1  e (A, 
CH A [A2 E [ 1 . 5 1 3-51]1 could be the optimal points of the payoff function for some prob- 
ability distribution over the examples. We tackle these two problems as below. 

The first problem can be solved as follows. After a disjunct of the target concept is 
learnt, we label all examples satisfied by this disjunct as negative. Consequently, this 
disjunct is no longer "visible" and so Algorithm-I will output a new concept the next 
time. As for the second problem, at present we do not know whether it is solvable in gen- 
eral for all k-term disjunctive concepts. However, we propose a modification to our model 
of section 3.2 so that for a particular class of k-term disjunctive concepts, the payoff 
function possesses no spurious optimal points. This class of concepts we consider, to be 
called disjunctive concepts with a Marker attribute, is defined below. 

Let the attributes chosen for the domain be Y, that take values from sets V,, i = 	N. 

Definition 7. A concept description given by 

Pi t E 	 e vnt-ii A [Ynr, = 	A [Ym+i E vitt+1] A-..A LYN e vtd 

where v i  is a subset of V i, i = 	N, I # rn, and x„, E Val  is said to be a simple con- 
junctive expression with a marker attribute. Y n, is called the marker 
attribute. 

In the above definition, the subset v, for a linear attribute should be an interval. 

Definition 8. A concept description of the form 

C1V C2V...V Ck 

where each C, is a simple conjunctive expression with Y„, as the marker attribute and all 
C,—s have distinct values for the marker attribute, is said to be a k-term disjunctive 
expression with a marker attribute. Y„, is called the marker attribute for 
the concept. 

We assume that the attributes characterizing the domain contain at least one nominal 
attribute. If there are two or more nominal attributes, then we assume the teacher to spe- 
cially identify one nominal attribute as the marker attribute. In case all the domain attrib- 
utes are linear, then we properly discretize one of these attributes and use it as the marker 
attribute. 

From Definition 8, we observe that in a disjunctive concept with a marker attribute, the 
marker attribute assumes distinct values in each disjunct of the concept. Now, by using 
the fact that these values serve as "markers" to the disjuncts in the target concept, we can 
get rid of spurious optimal points. Hence the name marker attribute. 

Disjunctive concepts with a marker attribute constitute a special subclass of k-term 
disjunctive concepts. This class includes all simple conjunctive concepts and some non- 
trivial disjunctive concepts also 20. However, we cannot represent disjunctive concepts like 
the 3-bit parity concept with a single marker attribute. We may possibly learn these con- 
cepts if there are two or more marker attributes. This problem is discussed by Rajaraman, 

et al20. 
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Our model for learning disjunctive concepts with a marker attribute is as follows. in 
this model, we assume that the identity of marker attribute is provided by the teacher. W e  
use the same model of section 3.2 but with a simple modification to handle marker attrib- 

utes. In this model, we represent the marker attribute Y,„, by a FALA having IV„1 actions. 

Denote this FALA by X„,(d) . Each action choice by X„,(d)  is interpreted as the selection of 

the corresponding value for Y„,. That is, if the FALA chooses the /-th action then Y„, ap- 

pears in the chosen concept as the equality predicate (Y,,, = x„,d, where x„, 1  denotes the /-th 
value of Ym. All non-marker attributes are represented as in section 3.2. The algorithm 

used by our model is same as Algorithm-1 except that the updating algorithm of X„(12 rep- 

resenting Y, is modified as below. 

Let pnu(k) = Pr Exm, is chosen at k-th instant by the automaton X", ,̀1) 1, j= 	11/,,,d) 1, de- 

(d) 
fine the action probability distribution of X . Let am(k) =.v„,/  and the environmental re- 

sponse be )1(k)(cf. equation (3.5)). Then, 

penak + 1) = pnia) + Ar t(k)( I — Pma)) 

+ 1) = p„,j(k) — Ar'(k)p„, j(k), Vj 1 

We call this new learning algorithm used by the team as Algorithm-2. The payoff struc- 
ture is as in (3.5). For this model, it can be proved similar to Theorem 2 that every 
disjunct in the target disjunctive concept with a marker attribute, is an optimal point and 
in all other optimal points, null set is the subset chosen for at least one non-marker attrib- 
ute. 

Now it is easy to prove °  that we can learn disjunctive concepts by iteratively calling 
Algorithm-2. The choice of a value for the marker attribute can be utilized to correspond 
to exactly one disjunct in the target concept(or none at ail) and so there are no spurious 
optimal points20. We present an outline of the learning algorithm for the disjunctive con- 
cepts with a marker attribute below. 

Algorithm-3 

• Repeat 

— LIST : = 

— Repeat 

* Get a random example. If it is positive and is satisfied by at least one con- 
cept in LIST, then label it negative. Run Algorithm-2 with this example. 

— Until convergence 

— Add the learnt concept to LIST 
• Until k concepts are accumulated in LIST 
• Output LIST 
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5. Discussion 

In this paper, we presented an algorithm for learning the class of simple conjunctive con- 
cepts involving both nominal and linear attributes. We proved that the algorithm correctly 
learns the class of simple conjunctive concepts(modulo concepts with null sets) under 
noise. The algorithm is incremental and hence needs no storage of examples. We also pre- 
sented an extension to this algorithm which can learn a special class of disjunctive con- 
cepts. 

We modelled noise by assuming an unknown distribution over the instance space and 
each example to be misclassified in an unbiased manner before being presented to the 
learning system. Because the examples are i.i.d in PAC formulation, we observed that this 
noise model is same as having an arbitrary distribution over the space of classified exam- 
ples with the extra assumption that the examples undergo unbiased misclassifications. By 
the unbiasedness assumption, when the noise probability is less than 50%, it is reasonable 
to expect correct learning even under noise. However, as we assume' passive learning 
setup (i.e. no queries), we cannot get to know the correct classification of an example with 
better accuracy by repeatedly asking the teacher as in Sakakibara 21 , even if the noise 
probability is less than 50%. Our algorithm is able to handle noise by the stochastic nature 
of the search employed over the  hypothesis space. Our noise model is closely related to 
that of Angluin et a1 8  . Who, as in our model, assume that the examples undergo unbiased 
misclassifications. However, strictly speaking, they require an upper bound on the noise 
probability be known to the learning algorithm. Our model assumes only that the noise 
probability is less than 0.5 and hence the algorithm has no additional overhead to estimate 
bounds on the noise probability. 

A similar algorithm based on the model of team of automata has been used earlier for 
concept learning". That model learns simple conjunctive concepts expressed through 
nominal attributes. It is also incremental and has provable generalization properties. How- 
ever, the model cannot handle linear attributes and, as noted earlier, our algorithm can be 
thought of as a generalized version of Sastry et Cil l3 . 

Another important aspect Of our model is that our algorithm is parallel. All automata 
choose actions independently based on their respective action probability distributions, 
get a common reinforcement from the environment and independently update the distri- 
butions. There is no explicit communication between the automata. Hence, employing one 
processor per automaton in a SIMD machine, we can expect almost a linear speedup. 

Concept learning under noise has received much attention in Al and recently in Com- 
putational Learning Theory (COLT). The popular algorithms in Al are the Decision Tree 
based methods which include the Quinlan's ID3 algorithm 422  and its extensions2324  and 

the Classification and Regression Trees (CART) algorithm'. In COLT, the "e Version 
Space" Algorithm ? , k-CNF learning algorithm of Angluin et ar., Haussler's Empirical 

Risk Minimization algorithm 12  and p-concept learning algorithms of Kearns a ar. are 

some of the methods proposed for learning under noise. 

Decision tree based methods constitute an important class of methods capable of 
handling noise. Quinlan's ID3 algorithm and the CART algorithm are two popular mem- 
bers of this class. Both these algorithms learn concepts in the form of decision trees by 
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recursively partitioning the training set. Quinlan's algorithm uses an information theoretic 
measure as a heuristic to construct compact trees. The CART algorithm also builds trees 
using heuristic measures but, more importantly, uses pruning techniques based on statisti- 
cal considerations so that the learnt tree is not overly sensitive to the training exampl es  
The algorithms are computationally efficient and found to be noise-tolerant2).22.23 Also 
they can learn disjunctive concepts. However, they are non T incremental and hence need toi  
store all the examples. Though incremental versions of the algorithms have been pr o. 
posed26, since they essentially try to minimize the number of "calls" to the basic algo- 
rithm, storing all the examples may still be necessary. The methods grow huge trees under 
noisy conditions and hence, as an additional overhead, it may be necessary to prune the 
learnt tree. Also, we are not aware of any theoretical result on the PAC learnability of 
these algorithms under noise. 

The E version space algorithm' is a modified form of Mitchell's candidate elimination 
algorithm27  proposed by Haussler. Imposing a partial order over the hypothesis space, as 
in Mitchell 21 , the algorithm learns by updating the so-called version space of the examples 
seen so far. But unlike Mitchell's algorithm, it uses PAC identification as termination 
criterion. The algorithm is incremental and is proved to efficiently PAC learn concepts 
which use only boolean attributes. However, the algorithm may be space inefficient for 
learning rich concept classes and, in particular, it cannot handle linear attributes. 

Angluin et al. are one of the first to analyze the problem of PAC learning under noise. 
They propose an algorithms  for learning k-CNF concepts and prove that it efficiently PAC 
learns under noise. As in our case, the algorithm can tackle upto 50% of classification 
noise. However, the algorithm is efficient only in finite domains and cannot handle linear 

- attributes. Also, the algorithm is nonincremental. 

Haussler i 2  proposed a very general and powerful framework for PAC learning, which 
can take care of noise, using decision theoretic ideas. His approach is based on viewing 
learning process as one of minimizing empirical risk. We have used this framework in 
section 2.1 to define the goal of our learning system. Under this framework, he proves 
bounds on the sample size needed for PAC learning very general concept classes includ- 
ing the class of artificial neural networks. However, his algorithm is not computationally 
efficient. 

The work of Kearns et al. attempts to apply some of Haussler's general principles to a 
specific setting so that efficient algorithms can be developed. They propose9 several 
learning algorithms for PAC learning under noise and here we discuss only those relevant 
in our context. We also assume that all p-concepts learnt are converted into decision rules 
by suitably thresholding the p-concepts. First, an algorithm for learning the class of non- 
decreasing functions is presented. Under the assumption that the instance space is total

, 
 Y 

ordered, the algorithm is proved to efficiently PAC learn under noise. However, this 35: 

sumpt ion precludes effective handling of nominal attributes and so we do not discuss ttl ot .s 

any further. Learning a class of probabilistic decision lists is then considered. They Pr .  

pose an efficient algorithm for PAC learning under noise. But, the algorithm assumes the 
domain to be finite and hence cannot learn linear attributes. Finally, an algorithm 1 .  

learning a linear function space of finite pseudodimension is presented. Each concept I.
11  
_ 

this class is expressible as a linear combination of finite number of fixed functions. Is 
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specific representation is chosen so that the method of minimizing empirical loss is com- 
putationally efficient. For the same reason, the algorithm cannot be extended to learn 
richer concept classes, e.g. concepts expressible as a linear combination of functions from 
an infinite class. Moreover, all these algorithms are nonincremental. 

To summarize, the algorithms in Al are empirically efficient and have been employed 
to solve realistic problems. Some of these algorithms are found to handle noise in empiri- 
cal studies. However, their noise-tolerance in a general concept learning problem is un- 
known because they lack PAC learnability results under noise. Also, barring a few, the 
algorithms are not truly incremental. On the COLT side, the learning algorithms have 
provable convergence properties and are shown to be theoretically efficient. Their noise- 
tolerance has also been precisely characterized. However, almost all these algorithms as- 
sume unrealistic domains, e.g. domain characterized by boolean-valued attributes. Hence, 
the COLT algorithms turn out to be mainly of theoretical interest. The main motivation 
behind our work is to fill this gap so that we can come up with realistic, practically effi- 
cient, robust and incremental algorithms which PAC learn even in the presence of noise. 
The next section justifies this where we present empirical results of our algorithm. 

6. Simulation Studies 

In this section, we present empirical studies of Algorithm-I and Algorithm-3 on few syn- 
thetic and real-world domains. 
6.1. Synthetic Problems 

A synthetic domain is defined by specifying the attributes (nominal and/or linear) and 
their ranges. Then, an arbitrary concept description in the chosen representation (a simple 
conjunctive expression or a k-term disjunctive expression) involving the specified attrib- 
utes is selected. A fixed number of pre-classified examples (called the the training set) is 
generated randomly according to a predefined probability distribution. To evaluate the 
performance of the algorithm, we generate another set of examples (called the test set) 
with respect to the same probability distribution. The sets are generated in such a way that 
the number of positive and negative examples are equal in each set. 

We use Algorithm-1 for learning simple conjunctive concepts and Algorithm-3 for 
learning disjunctive concepts. The algorithms are simulated by selecting one example at a 
time from the training set and if needed, using the training set repeatedly for drawing ex- 
amples till convergence. The performance is studied by varying the classification noise 
from 0% to 40%. For comparison, we also implemented a decision tree based algorithm 24  

that can learn disjunctive concepts and handle noise. We refer to this algorithm as Algo- 
rithm-4. 

The results of the two algorithms on two synthetic problems are presented below. The 
results of Algorithms 1 and 3 are given in Tables I, Ill and V. VII respectively. In these 
tables, A refers to the value of the learning coefficient used. The variance parameter cri. is 

set to a value of 0.1 in all the simulations. The column 'Average Iterations' refers to the 
average, over 20 runs of the algorithm, of the number of iterations taken to converge. The 
acronym WC refers to the number of runs (out of 20) in which the algorithms did not con- 
verge to the correct concept. The column Error rate refers to the percentage of examples 
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Table 1 
Performance of algorithm-I  

Noise A Average WC CPU Time Error 

% Iterations Secs. rate % 

0 0.005 9000 o 10 4.0 

5 0.005 11000 0 13 5.0 

10 0.005 14000 1 17 5.0 

20 0.005 15500 1 20 6.0 

30 0.005 18000 2 23 8.0 

40 0.004 22000 3 28 11.0 

Table II 
Performance of algorithm-4 

-, 
Noise Nodes Leaves Average CPU Time Error  
% 

0 10 11 

Depth 

4.1 

Sets. 

0.5 

rate it, 

4.0 
5 12 16 4.8 1.0 6.0 

10 16 17 5.2 1.0 9.0 
20 32 33 7.3 2.0 19M 
30 41 42 6.9 2.0 210 
40 43 44 9.3 3.0 29.0 

misclassified by the algorithms on the test set. The time taken by the algorithm is given 
under the column CPU Time. The performance of Algorithm-4 is given in Tables H, Iv, 
VI and VIII. In these tables, the columns Nodes,Leaves and Average Depth refer respec- 
tively to the number of nodes, number of leaves and the average depth of the learnt deci- 
sion tree. These quantities give a measure of the size of the learnt tree. 

The simulations were performed on an i860 based system. 

6.1.1. Problem 1 

Let the domain be characterized by 2 nominal and 2 linear attributes. Denote them by A 1 , 
A2, A3 and A4 respectively. The nominal attributes A 1  and A2 take values in [A, B, C, D} 
and the linear attributes A3 and A4 from [0.0, 5.0]. Let the target conjunctive concept be 

[(Al E (Al C} } A {A2 E (B, D}} A {A3 E [2.0, 4.0]} A (A4 E [2.0, 4.0]}] 

Case 1: Training set size = 100; Test set size = 100; 

Performance of Algorithm-1: See Table I. 
Performance of Algorithm-4: See Table II. 

Case 2: Training set size = 500; Test set size = 100; 

Performance of Algorithm-1: See Table III. 
Performance of Algorithm-4: See Table IV. 

6.1.2. Problem 2 

Let the domain consist of 2 nominal (A l  and A2 ) and 2 linear (A 3  and A 4) attributes as in 
Problem 1. Let the target concept be 

Table III 
Performance of algorithm-I 

Noise A. Average WC CPU Time Error 
% Iterations Secs. rate % 

o 0.005 12500 0 14 2.0 
5 0.005 15000 0 17 2.0 

10 0.005 17000 0 20 3.0 
20 0.005 20000 I 24 3.0 
30 0.005 25000 2 29 4.0 
40 0.005 31000 2 35 6.0 

Table IV 
Performance of algorithm-4 

Noise 
% 

Nodes Leaves Ave rag 
eDepth 

CPU Tine 
Secs. 

Error 
rate" 

....- 

0 15 17 4.6 2.0 3.0 

5 17 18 5.4 5.0 4.0 
10 24 25 6.8 18.0 8.0 

20 39 30 7.3 28.0 14.0 

30 55 56 8.2 44.0 22.0 

40 61 62 8.9 58.0 -------- 
28.0 
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Table V 
Performance of algorithm-3 

Noise 
% 

a Average 
Iterations 

WC CPU Tine 
Sees. 

Error 
rate % 

0 0.005 15000 0 38 3.0 
5 0.005 21000 0 57 51) 

10 0.005 25000 1 68 5.0 
20 0.005 32000 2 95 12.0 
30 0.005 405(K) 2 111 151) 
40 0.004 46000 3 133 17.0 

Table VI 
Performance of algorithm-4 

Noise 
% 

Nodes Leaves Average 
Depth 

CPU Time 
Secs. 

Error 
rate % 

0 13 16 5.5 IA) 8.0 
5 14 14 5.2 1.0 9.0 

10 211 23 7.3 1.5 17.0 
20 30 32 7.4 2.0 25.0 
30 33 35 9.1 2.5 28.0 
40 34 37 9.8 2.5 32.0 

HA1 EMMA tA2 e 113, CH A (A3 € [2.0, 4 .0]) A 1,4 4  € 	[2.0,4.01ii 
V Hit i  e 18) ) A (A2 € (C, D )1 A (A 3  E 	[1.0, 3.01) A fA 4  E 	[1.0, 3.011] 

and let A I  be the marker attribute. 

Case 1: Training set size = 100; Test set size = 100; 

Performance of Algorithm-3: See Table V. 
Performance of Algorithm-4: See Table VI. 

Case 2: Training set size = 500; Test set size = 100; 

Performance of Algorithm-3 See Table VII. 
Performance of Algorithm-4: See Table VIII. 

6.2. Real - world Problems . 

We consider two problems in the popular Iris Plants domain. This domain contains three 
types of plants namely Iris-setosa, Iris-versicolor and Iris-viginica. Each plant is charac- 
terized by four linear attributes viz. petal width, petal length, sepal width and sepal length. 
It is known 2  that the class Iris-setosa is linearly separable from the other two and the other 
two are not linearly separable. We consider the following nonlinearly separable classifi- 
cation problems 

1. To classify whether the given plant is Iris-viginica or not 
2. To classify whether the given plant is one of Iris-setosa and Iris-viginica or other- 

wise. 

Since the domain consists of 150 examples only, we divide the data into two sets and use 
the first one as training set and the second as test test. The division is done carefully to 

Table VII 
Performance of algorithm-3  

Noise 
91 

A Average 
Iterations 

WC CPU Time 
Secs. 

Error 
rate % 

0 0.005 14500 0 37 1.0 
5 0.005 22500 0 61 1.0 

10 0.005 27000 0 74 4.0 

20 0.005 36000 1 105 6.0 

30 0.005 43000 2 124 9.0 

40 0.005 49000 2 142 11.0 

Table VIII 
Performance of algorithm-4 

Noise 
% 

Nodes Leaves Average 
Depth 

CPU Time 
Secs. 

Error 
rate % 

0 15 16 5.4 2.5 4.0 

5 17 19 6.1 15.0 6.0 

10 34 41 7.7 28.0 8.0 

20 52 55 8.2 38.0 18.0 

30 96 87 10.2 54.0 25.0 

40 128 111 13.4 66.0 28.0 
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Table IX 
Performance of algorithm-I 

Noise 
% 

A Average 
Iterations 

WC CPU Time 
Sees. 

Error 
rate % 

0 0.005 4500 0 3 2.6 

5 0.005 6100 0 7 4.0 

10 0.005 7900 0 8 4.0 

20 0.005 10200 1 11 4.0 

30 0.005 14100. 2 16 5.3 

0 0.004 25300 2 28 5.3 

keep the distribution of classes same in both sets. We also train the algorithms with a set 
of examples (called duplicated training set) containing five copies each example in the 
original training set. Hence, the duplicated training set has size five times that of the 
original set. We study the performance of the algorithms by adding noise to the training 
set externally. 

The results of simulation of Algorithm 1 and 3 are given in tables IX and XI respec- 
tively. Tables X and XII contain the results for Algorithm-4. In the latter, the column CPU 
Time-I refers to the time taken by the algorithm on the original training set and CPU 
Time-II the time taken on the duplicated training set. All other columns remain the same 
as the duplicated set contains no new examples. However, there is no change in the exe- 
cution time for algorithms 1 and 3. 

6.2.1. Problem 1 

Performance of Algorithm-1: See Table IX. 
Performance of Algorithm-4: See Table X. 

6.2.2. Problem 2 

The classification problem here is more difficult than Problem 1 because a plant in this 
problem may be positive if it is either Iris-setosa or Iris-viginica. We use a 2-term dis- 
junctive concept to represent concepts in algorithm 3. Since all attributes are linear, we 
need to discretize one of the attributes to use as a marker attribute. It is known that the 
attribute sepal width and sepal length are relevant to the problem 2 . We choose sepal length 
for the discretization. A cutpoint of 1.0 was chosen by trial and error to discretize this 
attribute into a two valued nominal attribute. Thus, the new learning problem has I nom - 

Table X 
Performance of algorithm-4 

Noise 
% 

Nodes Leaves Average 
Depth 

CPU Tine 
Sees. 

Error 
rate % 

CPU Time-!! 
Sees. 

0 
5 

10 

4 
8 
17 

5 
9 
18 

2.4 
3.7 
5.9 

0.5 
-0.5 

1.0 

5.3 
8.0 
8.0 

2.0 
4.0 
9.0 

20 23 24 6.7 2.0 24.0 10.0 
30 31 32 7.3 2.5 32.0 10.0 
40  46 47 7.4 2.5 48.0 12.0 
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Table XI 
Performance of algorithm-3 

Noise 

W 

A Average 
Iterations 

WC CPU Time 
Sees. 

Error 
rate eik 

o 0.004 5600 0 12 2.6 
5 0.004 9300 0 26 4.0 

10 0.004 107(X) 1 39 4.0 
20 0.004 18100 1 55 5.3 
30 0.003 22000 2 71 5.3 
40 0.003 27200 3 86 8.0 

nal and 3 linear attributes. The sizes of training as well as test test are same as in Prob- 
lem I. 

Performance of Algorithm-3: See Table XI. 
Performance of Algorithm-4: See Table XII. 

6.3. Discussion 

It can be observed that, though Algorithm-4 performs reasonably well under no noise 
conditions, the performance degrades as the noise percentage increases. Under the same 
conditions, Algorithms I and 3 exhibit better accuracy and, as the number of training ex- 
amples is increased, the algorithms generalize well resulting in a further reduced error rate 
(cf. Tables I, III and V. VII). It appears that Algorithm-4 is computationally very efficient 
compared to Algorithms I and 3, especially under noise. However, this is true only when 
the number of training examples is small. As seen from tables VI and VIII, the execution 
time of Algorithm-4 drastically increases when the size of the training set in increased. 
Actually, this behaviour happens for a training ,set containing only duplicated copies of 
the training examples used for the previous problem (cf. Tables X, XII). This is the main 
disadvantage of nonincremental algorithms. On the other hand, Algorithms 1 and 3, being 
incremental, are not sensitive to such redundancy in the training set. Even if the size of 
the training set is increased to contain new examples, these incremental algorithms can 
effectively handle the situation and show no appreciable change in the execution time (cf. 
Tables I, III and V, VII). 

7. Conclusion 

We considered the problem of learning conjunctive and disjunctive concepts using a set of 
positive and negative examples of the concept. We formulated this problem in the Proba- 

Table XII 
Performance of algorithm-4 

Noise 
% 

Nodes Leaves Average 
Depth 

CPU Tine 
Sees. 

Error 
rate % 

CPU Time-!! 
Sees. 

0 7 8 3.6 1.0 8.0 2.5 

5 10 11 3.9 1.0 13.3 3.0 

10 12 13 4.3 1.5 17.3 9.0 

20 26 27 6.2 2.0 22.6 14.0 

30 39 40 7.1 23 34.6 19.0 

40 38 42 7.2 3.0 41.3 21.0 
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bly Approximately Correct Learning framework and presented an algorithm for learning 
simple conjunctive concepts. We proved that the algorithm correctly learns the Class of 
conjunctive concepts in the presence of upto 50% of classification noise. We proposed a n  
extension to this algorithm for learning a class of disjunctive concepts. From the simula- 
tion studies, it was observed that the algorithms are reasonably efficient for learning logic 
expressions. The slowness of our algorithms observed under some cases may be due to the 
fact that we simulated these parallel algorithms on a sequential machine. The speed could 
be improved through a parallel implementation of these algorithms. 
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