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Abstract

The Goore game among learning automata serves as a model for collective decision making under uncertainty.
It can also be used as a tool for stochastic optimization of a function of a discrete variable. This paper presents
the analysis of the Goore game where each player uses the Ly, algorithm. A one-10-one correspondence is
established between stable stationary points of the algorithm and the Nash equilibria of the game. A parallel
algorithm involving a module of learning automata for each player is then presented with the objective of im-
proving the speed performance. A brief analysis of the algorithm is followed by simulation studies that dem-
onstrate the efficacy of the parallel approach.

Keywords: Learning automata. cooperative games, Goore game, stochastic optimization. parallel learning
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1. Introduction

The Goore game, formulated by Tsetlin', is a simple symmetric game played by several
players. It is a special form of a cooperative game in which all players have identical ac-
tion sets of two actions each, denoted by «,, a;. There are N players and at every instant
k, each player i, i=1, 2,..., N chooses his action ¢o;(k) € {ay, @a}. An identical random
payoff B(k), with unknown distribution, is given to all the players based on the number of
players selecting ¢;. The players update their state depending on the payoff, and the pro-
cedure repeats itself at k + 1. The objective is to asymptotically choose the right number
of choices of &, such that (k) is maximized in the expected sense.

Although a very specific form of a cooperative game, the Goore game can be consid-
ered a simplistic model of several real-life situations. Consider the example of recruit-ment
of motor units', say in a working muscle, to perform a certain task, such as exerting a
force 1o lift a weight. Each motor unit contributes either a fixed magnitude of force or
none at all. Depending on the nature of the job, it will be necessary to recrutt the correct
aumber of motor units. It is not efficient to use more motor units than actually needed, as
this will exert more force than necessary. On the other hand, if less than the required
number are employed, they may not be able to perform the task at all. The probtem is thus
one of employing the right number of working units to perform the task.

Another application is the problem of discrete stochastic optimization in one variable,
with bounded domain and range. The domain, without loss of generality, could be taken as
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a subset of [0,1], a linear map being employed to give a one-to-one correspondence be
tween this set and the actual domain. It is assumed that the independent variable js discm:
tised to provide sufficient accuracy, and the number of discretisations is the same 4 the
number of players.

Solution of the Goore game using finite state learning automata (FSLA) has beep con.
sidered in detail®™®. In particular, extensive studies of the final distributions of action
probabilities for an infinitely increasing number of players, as functions of their memory
capacities, are considered. It is shown that the group of FSLA possesses the property of
asymptotic optimality.

This paper presents the solution to the Goore game using variable structure learning
automata (VSLA)*®. In contrast to FSLA that employ a large number of states, VSLA jug
maintain an action probability distribution (which is used to select actions at every ip.
stant) as their internal state, and refines this based on the action-payoff combination. The
refinements are weighted by a real number b, known as the learning parameter. In most of
the learning algorithms it is necessary that b € (0,1). This paper focuses attention on the
analysis of the Goore game, with the players using the Lg.; learning algorithm®®. Hence-
forth, VSLA will be called LA for simplicity.

A common payoff game among LA will have each player represented by an LA with
its actions corresponding to the player’s strategies. Schemes wherein each LA uses the L;.
; algorithm have been studied”®. It has been demonstrated’ that whenever the expected
payoff matrix is unimodal, this scheme is g-optimal. In case of multimodal payoff matri-

ces, it is shown that all stable stationary points of the algorithm are Nash equilibria of the
8
game'.

The Goore game clearly falls under the multimodal category; all those player combi-
nations resulting in the optimum number of players are stable equilibrium points for the
associated ODE. This fact is later brought out in the section on analysis. However, be-
cause of the special structure of the game, it is possible to derive a tighter relation-
ship between the stable stationary points of the algorithm and the Nash equilibria of the

game. In fact, in the section on analysis, it is shown that they have a one-to-one corre-
spondence.

Whenever a high degree of accuracy is required in a Goore game (a typical require-
ment in the context of an optimization set up), it becomes necessary to increase the num-
ber of players. Even with a reasonable increase in the number of players, the value offhe
learning parameter needed for good accuracy is drastically reduced, adversely affectiné
the speed of convergence of the algorithm. To improve the speed performance withou!
sacrificing the accuracy of the learning procedure, an algorithm for operating 2 group of
LA in parallel was proposed’. An extension of this algorithm is proposed in this papef for

solving the Goore game. The scheme will be analysed and its efficacy demonstrated by
means of extensive simulation studies.

The paper is organised as follows. Section 2 formulates the Goore game problem ?nd
presents the Lg; algorithm for solving it. The algorithm is analysed in Section 3 by um::ﬁ
weak convergence theory'. Section 4 presents the parallel algorithm for Goore game .
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its analysis. Simulation studies for both the schemes are presented in Section 5. An ex-
tension of the Goore game to multiple groups of players is proposed in Section 6. An

analysis with Lg, algorithm is carried out; a partial characterization of the equilibrium
points of the ODE 1s provided. Section 7 concludes the paper.

2. Problem formulation and algorithm

The Goore game among N players, with each player employing the L, algorithm, to
choose among his strategies, is analysed in this section. In the simplest form, player i,
i=1,2..., N chooses his action a;(k) from two actions «;, a; available to him,

te, oi(k)e o, ) i=1, 2., N.

The LA approach to solve this game comprises LA representing each player, each
equipped with an action probability for action selection. Let x;(k) be the probability that
player i selects first action «; at instant k. Correspondingly, probability of player i select-
ing second action is (1 —.x;(k)). The action probability vector and the action vector, re-
spectively, are

x(k) A [xi(k), xa(k),...., xp{(K)];
a(k) A [en(k), oa(k),....., an(k)).

Let n,(k) be the total number of times the first action is selected at k.
N
ie.m ()2 Yo, (k)=a,}
j=1

where [{A} is the indicator function of event A.

The environment gives a reinforcement signal f(k) € [0,1] based on n (k). The goal of
the players is to maximize E[B(k)] by choosing the appropriate number of first actions
collectively. In the most general situation, a player might not even be aware of the exis-
tence of other players or the number of players involved. Each player need know only the
payoff, once he chooses his action.

It is assumed that each player makes use of the Lg.; algorithm’.

x;(k+1)A x; (k) + bB(R)1 - x, (k) if & (k) =;
f = x; (k)= bB(k)x; (k) else.

(1)

The following notations are convenient during the analysis of the above algorithm‘. In
the sequel, explicit dependence on k is not shown whenever there is no scope for ambigu-

ity.
Axi(k) A Elxi(k + 1) = xi(k)lx(K)};
Ax A [Axy, Axa,..... Axy).

The following assumptions are made:
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Assumption 1. The reinforcement signal P(k) is non-negative and bounded. w
loss of generality, B e [0,1]. Otherwise if B e [0.M] for some | <M < o
rithm is replaced by /M.

) ”h[}m
» B in the 4jg,

Assumption 2. The expected payoff g : [0,1] > {0,1) is continuous. This is necessary
as g(-) should not have jumps for any given number of players.

Assumption 3. g(i/N), i=0,1,2,...., N, is unimodal. The case of multimodal 2() is
commented upon later.

Here,
E[ﬁln]] = g(%-).

In the sequel, g; denotes g(i/N) for convenience.

Remark 1. Given N, the problem essentially reduces to that of finding the maximizer of
g(ﬁl); i=0,1,..., N. Hence greater the N, finer the approximation to the actual maximi:-

ing value.

Remark 2. Since the environment payoff depends on the number of players choosing
the first action, and not their identity, all combinations that give the appropriate number
n, maximize g(-).

Remark 3. By virtue of Assumption 3, 3 1 s.t g;> g;, Vi # 1 and one of the following is
true.

o [=0withge>g,>...>8n

e |=Nwithgy<g;<...<gn

o g 1<gVO<j<landg;<g,.+VI<j<N.
It is easy to see that combinations corresponding to | choices of o, are the only Nash
equilibria for the game.
3. Analysis
Definitions

S(V) A {1.2,...., N}
S(N.,i) A{l2,..,i-1i+l.., N}
HN) A (W: W S(N)
HN.i) A {W: W g SN,

The probability that ¢, is chosen / times is given by

)
Pri{n,(K)=Mx,a;(K)=a }= Y [H"’m [1 (l_x")] B

WeP(n.i)IWi=l-I neS(N.i)-W
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Prim @) =xe; () =az}= ) [H-"m ] ("xn)] ©)

WeP(N.i)IWIi=I\ meW neS(N.i-w

for player i choosing his first and second actions respectively. From the algorithm,
Av; = bx; (1 = )E[Blo; = 0. x] — bai(1 - x) E[fle; = oy, X] = bxf] - x;i)fi(x) (4)

where

n=1 ( A
=S ea-e) 3 {n 1 u-x,,)] s

\ WeP(N.iJIWI=I\ meW  neS(N.i)-W y

with

[1a.
¢

Example: N =3, §(3,1) = {2,3]
fitx) =(g1 — go)(1 = x2)(1 = x3) + (g2 — g¢) Ol — x3) + x3(1 = x3)) + (23 — 22)x3 x3.

Remark 4. fi(-) is not a function of x;. f{-) are symmetric, in the sense that, f(-) is ob-
tained by substituting x; for x; in f;(¢). ;

Now, Vb >0, {x(k):k >0} is a Markov process with dynamics dependent on b. This de-

pendence is explicitly denoted by x”(k). Define continuous time interpolations Xb(r) of
b

X (k) by

X"(1) = x"(k) if t € [kb,(k + 1)b).
The algorithm can be wriiten as
X"k + 1) = x"(k) + bG(X"(k), 6°(k))
where 6 comprises the action vector and the payoff.
The following conditions are satisfied by the algorithm:

1. {x(k), @k-1):k=20} is a Markov process.

2. The outputs of the automata are from finite sets. The payoff takes values from the
closed interval {0,1). Thus 8(k) takes values from a compact metric space $.

3. The function G(-,) is bounded, continuous and independent of 5.

4. Let B be a Borel subset of S (defined above). The one-step transition function
TF(-), defined as

TF(6,1,Blx) A Prob{ 8(k) € Bi&k — 1) = 0, x(k) = x}
is independent of b, £ and 6. Thus
TF(6,1,Blx) = TF(BIx).
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5. TF(6,1,1x) is its own unique invariant probability measure, since it is indePendem
of 6. Denote this invariant probability measure by M(x). As § is compact, the g of
probability measures M(x) is trivially tight.

6. |G(»,6) TF(6,1,d6'x) is independent of 8 and continuous with respect to x,

With the above conditions satisfied the following theorem results from weak copye.
gence theory'’.

Theorem 1. For the Lg_; algorithm, sequence of interpolated processes {X°(-) : p > 0|
converges weakly as b — 0 to z(-), given by

% - [h] (Z), hZ (Z), cosy hN (Z)]; Z(O) = X(O) .
where h(z) = z{1 - z;) f(z). i=1,2,...., N. (6)
3.1. Equilibrium points of the ODE

The equilibrium points of the system (6) are obtained by setting %= 0. The solutions can
be categorised as follows:

e Allze {0,1}".
o All zo € (0,1) with z = [zg, Zp,-.., Zp) and fi(z) = OV,

e Combinations of the above categories; i.e., z; € {0,1} for some of the is and
z; =29 € (0,1) for the rest.

From the expression for h;, we have

oh, &

azj I( zl)azj j?'-'f

oh v
;i=(1_2zi)f; l

To examine the local stability of each equilibrium point, the eigenvalues of the matnx

[%]; 1 €14, j <N, evaluated at each of these points, are considered.

]

Case 1: N bit binary strings

In this case z; € {0, 1}; Vj. Hence

%=O;Vj¢f

A 8
éi_yj__{f,-(z) if s, = |
o, |-f(2)ifz, =1 F

Consider a solution string with / 1s and z; = 1. For this combination it is easy 10 check
from (5) that,
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oh;

';" - ‘(31 — 811 )

!
Correspondingly, if there are / Is with z; =0,

oh.

Bj_' = (ng =& )

)

: M1 . .
Hence for such a string [}'—] 1s a diagonal matrix with (81— g1-1) for I diagonal entries

i

and (g —‘g;) for (n — 1) diagonal entries. Therefore, only for that / given by Remark 3,
both the eigenvalues are negative, and subsequently, only those solutions that contain / Is
are asymptotically stable.

Case 2: zg € (0,1) with f(z) =0; V;; z = 20, zos..., Z0o]

In this case,

% = (; for each z;,
(9)
oh, o
< =20(1-20) === a(z }ra(zp) € R.
3:; &j |

4

Consequently the matrix [“jl__'] has Os on the diagonal, and all other entries as a(zp). The

matrix 1s symmetric and all its eigenvalues are real. In fact, the eigenvalues of such a ma-
trix are (N - 1) a(zp) and -a(zp). Hence, irrespective of the sign of a(zp), one of the eigen-
values is always positive, and the corresponding equilibrium point is unstable. The same
holds Vzo € (0,1) s.1. fi(z; = zp: Vj) =0; Vi. Alternatively, since the sum of the diagonal
entries which is the sum of all the eigenvalues, is 0, and the matrix itself is symmetric,
some eigenvalue must be positive real and hence the instability.

Case 3:z; € (0,1} for utmost (N - 2) of the js and z; = =g, s.t. fj= 0 for the rest, with zo €
(0,1)

o

1

£ D 0 o
In this case, the matrix [—] has the form B C where D is diagonal and corre-

sponds to z;s that are binary; and C is a symmetric matrix with zeros on the principal di-

agonal and corresponds to all those z; € (0,1). The eigenvalues of such a matrix are the
eigenvalues of D along with those of C. Similar arguments as in Case 2 lead to some of
the eigenvalues of C having positive real parts and hence this case does not result 1n any

stable equilibrium points.

Remark 5. From the foregoing analysis it is possible to draw a few conclusions when
g(-) is multimodal. Consider the set

Ué {I' gi-1 < i and Liv1 < &is 0 <i<N}.
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Include 0 in U if go > g1. Also include N in U if gn > gn-1. It can be verified that 1, onl
Nash equilibria of the game are all those combinations that result in i choices of a’
Vie U. It is easy to see that all those string combinations containing 1 in j POSfrion:
ie U, will have all the corresponding eigenvalues negative, and hence, each of rh,,;
combinations is stable. This establishes the equivalence between the Nash equilibri, of
the game and the stable equilibrium points of the ODE for the multimodal case.

4. Parallel algorithm

As the number of players in the Goore game increases, the value of the learning paramete
b needs to be drastically reduced if good accuracy (in terms of less number of Wrong con.
vergences) is to be maintained. But reduction in the value of the learning parameter wjj
adversely affect the speed of convergence of the algorithm. To maintain good accuracy
levels while increasing the speed of convergence, an algorithm for the parallel operation
of several LA was proposed . This scheme could be regarded as an extension of the Le,
algorithm, as the algorithm is the same as Lg_, when only one LA is present. The im.
provement in the speed of convergence due to the parallel operation is theoretically estab-
lished and demonstrated by simulation studies’.

The game version of the above algorithm is proposed in this section to solve the Goore
game with improved speed performance. The scheme is described below and an outline of
the analysis is presented. Justification is also provided for the improved speed perform-
ance.

4.1. Algorithm Al

In this scheme, each player i, i = 1, 2,..., N; is replaced by n identical LA, each of which :
chooses actions independent of others. Such an arrangement of LA could be regarded as
forming a module, each module corresponding to a player. The action probability x{k) s
common to all members of the module. The action of jth element of ith (player) module,

al (k) e{a,,a,}.
Pr{a{(k) =a|}=~"s(’<)= I —Pf{a.’-i(k) =O-’3};l <jEnl<i<N.

There are n simultaneous plays of the Goore game by n teams of LA, each team bein.g
formed by the jth member of each module (j = 1, 2....., n). The payoff to the action combi-

nation @’ (k) =[] (k). @} (K)......a (k)] is denoted by F(k). F(k) € [0,1], and it depend

on n{(k), the number of times @ is selected by jth members of all modules. Other nota-
tions used in the algorithm are summarised below.

 Total reward to o, for player i at k : ¢'(k)A 2 ﬁf(k)l{af(k) = a,}.
e Total reward to each player at k : g(k)A X, B (k).

e Normalised learning parameter: EQ__{:—
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Algorithm Al

The algorithm to update the action probabilities is
xi(k+1)=x;(k) +b(q' (k) = g(k)x, (k)i =1.2...., N, (10)

For each player, the algorithm compares the fraction of the total payoff obtained by a, to
its probability of selection and increases (decreases) the latter if the former

1S larger
(smaller). E

4.2. Analysis

Results similar to those derived for Lg_, algorithm are obtained in this subsection for Al-
gorithm Al. Taking expectations on both sides of Algorithm A1 conditioned on x(k)

v, (k) =2 E[g' ()= x, () (k3x(b) (1)

Substituting for qf and g in (11),

Ax; =-§i£[ﬁf(l{a{ =a,}-.r,.)lx]. (12)
j=1

Remark 6. f/(k) does not depend on er'(k); s # j.

Now,

E[ﬁf(l{af = a,}—x,-)lx] = {[B/(1~x)x.af =a Jx; = (1-x; )E[ﬁj.l‘;)lx.af = az]
=xi(l—.rf)f,-(_x) (13)

The last equality follows because of independent selection of actions, and fi(x) is as given
by (5). Thus

Ax; = bnx;(1- x;)f,(x). (14)

Following arguments similar to those of the previous section (this also involves checking
the conditions therein), the following theorem results:

. AN
Theorem 2. For the Algorithm Al, sequence of interpolated processes {X (-):b >0}
converges weakly as b — 0 to z(-), given by
.‘?;_ = [y (2), s (2)..... iy (2)}:2(0) = X(0)
4

where h;(z) = nz;,(1-2; ) f;(z)i = 12,....N. (15)
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It is easy to see that ODE (6) and ODE (15) have the same set of equilibrium p.:
and exactly the same stability arguements hold for any given n. POin

Remark 7. The long time behaviour of Algorithm Al can be approximateg by Opg

(15). With b same as b of Lg_; algorithm, the approximation is valid to a simijgr degree
accuracy. Within this accuracy level Algorithm Al is faster than Lg_; algorithm gq 0D -
(15) has a larger speed of convergence.

Extensive simulations demonstrate improvements in speed of convergence for Varigys
values of n, and are presented in the following section.

5. Simulation studies

Simulation studies for unimodal and multimodal functions, using Algorithms L, ang Al
are reported in this section. The studies indicate good speedups for various module sjzs
The studies are tabulated and discussed for the two cases. In the tabulations n > | ipgi.
cates study using Algorithm Al.

3.1. Unimodal function

The following unimodal mean payoff function was employed for simulation studies. In :
this case as well as the following case the random payoff is obtained by adding a zero
mean random noise arising from a uniform distribution. The uniform distributions spread
between —g(x) and +g(x) if g(x) < 0.5; between —(1 — g(x)) and +(1 — g(x)) otherwise.

2\
g(x)=09 exp(-— x ;gf) ];Vx e [0,1].

Based on the value of N, the problem is that of finding / for which g(//N) is maximum. F[:ar
example, for N = 4 the mean payoffs have the value g(i/N); n = 0,1,2,3,4. It is desirable in
this case that n;(k) converges to n; =1 as g(1/4) is the maximum of g(i/N); i = 0,1,2,34.

Twenty runs of simulation were performed for each n, N and b and Table | lists the
values of the average number of iterations for convergence in each case. The value of b
listed in each case is the maximum for which no wrong convergence resulted in any of th¢ -
runs. Convergence was assumed when all x;s went outside the interval [0.01, 0.95]- The
vialue of x;(0) = 0.5 was used Vi=1,2,..., N.

Table 1
Unimodal function

N=4, =1 N=8 n =2 N=16, n =5
n b Avg. Iter. b Avg. Iter. b _Avg. lter.
| 0.2 84 0.01 12025 0.005 61279
2 05 28 0.02 6651 0.01 29893
4 1.0 13 0.04 3151 0.02 14058
R 1.0 18 0.1 1356 0.04 7331
16 1.0 21 0.16 813 0.08 3503
12

210 21 0.3 459 0.16 1713
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Table II
Multimodal function

i ——— e

_—
N=4, m=04 N=8 =08 N=16 n =016

n b Avg. lter. b Avg. Iter. b Avg. Iter,
1 04 23 0.1 188 0.05 808
2 0.8 12 0.2 99 0.1 423
4 1.0 9 0.3 635 0.2 213
§ 1.0 9 1.0 20 0.4 112
16 1.0 9 1.0 21 0.8 57
32 10 9 _ 1.0 21 1.0 46

ﬁ

5.2. Multimodal function

The multimodal mean payoff function considered for studies is
g(x) =2(x - 0.3)%; Vx e [0,1}.

It is obvious that n; =0 and N, are the optimal combinations in their neighbourhood.
Wrong convergence 1s said to occur whenever n;(k) does not go to 0 or N. Other condi-

tions for simulation remain the same. Simulation studies are presented in Table II for this
case.

The tables demonstrate the efficacy of the parallel Algorithm Al in terms of good
speedups over the Lg_; algorithm. It is seen that the speedup is of the order of the module
size in almost all the cases. The implications of this factor in a real life situation are
quite significant; even with noisy inputs, fast convergence is achievable with good accu-
racies.

6. Groups of players

An extension of the Goore game to involve groups of players, is proposed in this section.
The obvious application to multivariable stochastic optimization serves as a good motiva-
tion. Results obtained for single variable optimization problems encourage the investiga-
tion of the feasibility of the Goore game approach for solving multidimensional optimiza-
tion problems. Only the analysis for Lg_; algorithm is considered; extenston to the corre-
sponding parallel case is straightforward. At present, only a partial characterization of t.he
equilibrium points is available. The intent of this section is to highlight the difficulties
involved in the analysis of the multiple group situation.

The notations used in this section sometimes do not differ from Ih{?SF of the section on
parallel algorithm. This is done only to simplify the notation by avoiding too many sub-

scripts and superscripts.

6.1. Problem formulation
player i chooses action

Goore game among M groups of players is considered. In group J, hoos
lect i at instant k.

ai".(k)E{aj.a{}. There are N; players in group j, of which nyk) se
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x/ (k) denotes the probability of the event “player i of group j selects o/ at instant &, Ty,

payoff depends on the fraction of players choosing the first action in each group. |, the
following, the dependence on £ is omitted for notational convenience.

Let

where
x-‘fﬂ,‘i’,,‘lé,rt--plﬁj ].

Each player uses the Lg_; algorithm.

. x2(k)+bBK) 1=/ (k) if af(k)=al
xi{(k+DAY ( | ) | (16)
| & (k)= bB(k)x! (k) else.
Similar assumptions on g(-) hold, with
n n
ElBin,,..., nyl=e —-..... M
[ﬁ | M] R( N, N, ]
g(-) is denoted as g, ,, ,, for convenience.
Define the functions
( 3
/a3 [l 11 (-x)j
We(N,.iJIWi=i\ meW  ueS(N.i)-W ;
( \

uj(!)g Z H.l‘;f, H (l—.l';f):

Wer(N, JiWi=i\ meW  neS(N,)-w

/
Then .
. . . M
Pr{n, =1,y =lylx, 0! = a‘;}=q{(ij —l) l—[ltj(lj):
s=hs#y
. . . -M
PI‘{HI =1ty =lylxaf = af'-!} =qi'(Ij) Hu’(l,):
s=lis#y
From the algorithm,
A = b (1- 37 ) (x)
where
N, N Ni=i N Ny M

£ ()aR, - Z J (Rr,...:j_,u,+m,-,,....:. 811y )Q’f (’ j) H“I(’s )

h=0 1,,=0 £;=01,=0 I,=0 s=15%)
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Define
h! (Z)Az/(1-2/ )f (2)
and
hj=[ j j‘ j }
Alhi  h3, "‘h"’;
Then, as earlier,

%=[h',h2,...,h”]

is the associated ODE of the system. The results pertaining to the weak convergence of
the interpolated processes to the associated ODE can be obtained here also.

From the expression for 4/,

h/ L
= (1l Ve
= =(1-2z/)f/.
)
- A i 2 : : : i . : - oh/
Similarly, SR #LIs obtained by replacing g/ by <* in the expression for h/ and s

m # j is obtained by replacing &A™ by %‘-;,— in the expression for h,-‘" ;

]
AA i .
oz,
The following solutions of the ODE are characterized in this subsection. For every

J e AM),
z) =ae(01);s.t1. f/ =0,Vi=12,...,N;;jeJ and ) e {0,1}"; j e S(M)—-J.

6.2. Equilibrium points of the ODE

Denote

The following cases arise while observing the local stability of the equilibrium points.

Case 1: J=¢

j € S(M); Vj and hence A is diagonal. The analysis similar to Case 1 of the s?ngle group
situation holds, and only those solution combinations corresponding to the single maxi-

mum (of the discretised function) are stable.

Case 2: J = S(M)

Z}f =a’ € (0,1); Vi, j. From the expression for the derivatives,
oh?

——

O/
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Hence, A is a symmetric matrix with zero entries on the principal diagonal. Since sum
of the eigenvalues of such a matrix is zero and the matrix is nonsingular, some of te &
genvalues are positive real. Hence these combinations are not stable.

Case 3:J # ¢, J # S(M)

Whenever 2) € {O,I}Hf, from the above derivative
! ‘

€Xpressions

/ F; p
=0:Vn#i, and%= 0;Vm # j. Suitable permutations can be carried out on the A .

0
trix to bring it to the form [B C] where D is diagonal and corresponds to j e S(Mj~).

and C is a symmetric matrix with zeros on the principal diagonal and correspondsto e J
The eigenvalues of such a matrix are the eigenvalues of D along with those of C. Simily
arguments as in Case 2 lead to some of the eigenvalues of C having positive real parts.

Remark 8. The equilibrium points not characterized in this section are those in which
some of the values in each group are binary and the others identical and belonging 1o the
interval (0,1). Obraining the eigenvalues of the matrix of partial derivatives does not seem
to be as simple as it was in the previous sections.

Remark 9. For the class of equilibrium points considered, more can be said in case of
multimodal functions. As in the single group situation, the set U can be constructed (refer

Remark 5), and all those binary combinations corresponding to the elements of this sel
are seen to be stable.

7. Conclusions

A detailed analysis of the Goore game among LA has been presented. The equivalence of
the stable equilibrium points of the associated ODE and the Nash equilibria of the game
was demonstrated. A weak convergence result is employed to show that the long-time
behaviour of the algorithm could be approximated by the associated ODE for small
learning parameters. A parallel algorithm has been presented to improve the speed per-
formance of the Goore game. Similar results regarding the stability of the equilibrium
points have been derived for this algorithm. Simulation studies have been presented 10
demonstrate the improvements in speed performance for the parallel algorithm. Further
improvements in speed appear possible by considering a larger number of teams formed
by different combinations of members of the n available modules. Finally, extension l?f
the analysis to the multiple group situation is considered, with applications to mu]tiv_arl'
able stochastic optimization in mind. A partial characterization of the equilibrium points

of the associated ODE is presented. Further efforts will be directed at providing a com-
plete characterization of the multiple group Goore game.

References

I. TSETLIN, M. L. Automaia theory and modeling of biological systems. 1973

Academic Press.



10.

GOORE GAME AMONG LEARNING AUTOMATA

BOROVIKOV, V. A. AND
BrYZGaLov, V. I,

VOLKONSKIY. V. A.

PiTTEL. B. G.

NARENDRA, K. S. AND
THATHACHAR, M. A. L.

LAKSHMIVARAHAN, S.

WHEELER. JR.. R. M. aND
NARENDRA, K. S.

SASTRY. P. S.. PHANSALKAR, V. V. AND
THATHACHAR, M. A. L.

THATHACHAR, M. A. L. AND
ArRVIND, M. T.

KUSHNER, H. J.

61

A simple symmetric game between many automata, Avomar.
Telemekh., 1965, 26(4).

]

Asymptotic properties of the behaviour of simple automata in a
game, Probl. Peredachi Inform, 1965, 1(2).

The asymptotic properties of a version of the goore game,
Probl. Peredachi Inform., 1965, 1(3).

Learning automata: An introduction, 1989, Prentice Hall.

Learning algorithms: Theory and applications, 1981, Springer
Verlag.

Decentralized learning in finite markov chains. IEEE Trans.,
1986, AC-31, 519-526.

Decentralized learning of nash equillibria in multi—person

stochastic games with incompiete information. JEEE Trans.,
1994, SMC-24, 769-777.

A parallel algorithm for operating a stack of leaming automata.
Proc. Fourth [ntelligent Sysiems Symp., IEEE Bangalore
Section, Nov 1994.

Approximation and weak convergence methods for random
processes, 1984, MIT Press.






