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Abstract 

The Goore game among learning automata serves as a model for collective decision making under uncertainty. 
It can also be used as a tool for stochastic optimization of a function of a discrete variable. This paper presents 
the analysis of the Goore game where each player uses the Lti algorithm. A one-to-one correspondence is 
established between stable stationary points of the algorithm and the Nash equilibria of the game. A parallel 
algorithm involving a module of learning automata for each player is then presented with the objective of im- 
proving the speed performance. A brief analysis of the algorithm is followed by simulation studies that dem- 
onstrate the efficacy of the parallel approach. 

Keywords: Learning automata, cooperative games. Goore game. stochastic optimization, parallel learning 
algorithm. 

1. Introduction 

The Goore game, formulated by Tsetlin i , is a simple symmetric game played by several 
players. It is a special form of a cooperative game in which all players have identical ac- 
tion sets of two actions each, denoted by a l , al. There are N players and at every instant 
k, each player i, I = I, 2,..., N chooses his action at (k) E {a 1 , ai}. An identical random 
payoff /3(k), with unknown distribution, is given to all the players based on the number of 
players selecting al . The players update their state depending on the payoff, and the pro- 
cedure repeats itself at k + 1. The objective is to asymptotically choose the right number 
of choices of al  such that Mk) is maximized in the expected sense. 

Although a very specific form of a cooperative game, the Goore game can be consid- 
ered a simplistic model of several real-life situations. Consider the example of recruitment 
of motor units i , say in a working muscle, to perform a certain task, such as exerting a 
force to lift a weight. Each motor unit contributes either a fixed magnitude of force or 
none at all. Depending on the nature of the job, it will be necessary to recruit the correct 
number of motor units. It is not efficient to use more motor units than actually needed, as 
this will exert more force than necessary. On the other hand, if less than the required 
number are employed, they may not be able to perform the task at all. The problem is thus 
one of employing the right number of working units to perform the task. 

Another application is the problem of discrete stochastic optimization in one variable, 
with bounded domain and range. The domain, without loss of generality, could be taken as 
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a subset of [0,1), a linear map being employed to give a one-to-one correspondenc e  be _ 
tween this set and the actual domain. It is assumed that the independent variable is discr e . 
tised to provide sufficient accuracy, and the number of discretisations is the same as the  
number of players. 

Solution of the Goore game using finite state learning automata (FSLA) has been con. 
sidered in detail 2-4 . In particular, extensive studies of the final distributions of acti on  
probabilities for an infinitely increasing number of players, as functions of their mem ory  
capacities, are considered. It is shown that the group of FSLA possesses the property of 
asymptotic optimality. 

This paper presents the solution to the Goore game using variable structure learnin g  
automata (VSLA)". In contrast to FSLA that employ a large number of states, VSLA just 
maintain an action probability distribution (which is used to select actions at every in- 
stant) as their internal state, and refines this based on the action-payoff combination. The 
refinements are weighted by a real number b, known as the learning parameter. In most of 
the learning algorithms it is necessary that h E (0,1). This paper focuses attention on the 
analysis of the Goore game, with the players using the LARj learning algorithm". Hence- 
forth, VSLA will be called LA for simplicity. 

A common payoff game among LA will have each player represented by an LA with 
its actions corresponding to the player's strategies. Schemes wherein each LA uses the LR. 

algorithm have been studied 7 ' 8 . It has been demonstrated 7  that whenever the expected 
payoff matrix is unimodal, this scheme is &optimal. In case of multimodal payoff matri- 
ces, it is shown that all stable stationary points of the algorithm are Nash equilibria of the 
game s . 

The Goore game clearly falls under the multimodal category; all those player combi- 
nations resulting in the optimum number of players are stable equilibrium points for the 
associated ODE. This fact is later brought out in the section on analysis. However, be- 
cause of the special structure of the game, it is possible to derive a tighter relation- 
ship between the stable stationary points of the algorithm and the Nash equilibria of the 
game. In fact, in the section on analysis, it is shown that they have a one-to-one corre- 
spondence. 

Whenever a high degree of accuracy is required in a Goore game (a typical require - 

ment in the context of an optimization set up), it becomes necessary to increase the num- 
ber of players. Even with a reasonable increase in the number of players, the value of the 
learning parameter needed for good accuracy is drastically reduced, adversely affecting 
the speed of convergence of the algorithm. To improve the speed performance without 
sacrificing the accuracy of the learning procedure, an algorithm for operating 
LA in parallel was proposed 9. An extension of this algorithm is proposed in this paper for 

 solving the Goore game. The scheme will be analysed and its efficacy demonstrated by 
means of extensive -simulation studies. 	

a group o 

The paper is organised as follows. Section 2 formulates the Goore game problem and 
presents the LR_i algorithm for solving it. The algorithm is analysed in Section 3 by using 
weak convergence theory" ) . Section 4 presents the parallel algorithm for Goore game and 
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its analysis. Simulation studies for both the schemes are presented in Section 5. An ex- 
tension of the Goore game to multiple groups of players is proposed in Section 6. An 
analysis with LR_I algorithm is carried out; a partial characterization of the equilibrium 
points of the ODE is provided. Section 7 concludes the paper. 

7 . Problem formulation and algorithm 

The Goore game among N players, with each player employing the LR_I algorithm, to 
choose among his strategies, is analysed in this section. In the simplest form, player i, 
i = 1, 2...., N chooses his action a1(k) from two actions al , a2  available to him, 

	

i.e., a1 (k) e {a l , a2 ); i = 	1, 2..., N. 

The LA approach to solve this game comprises LA representing each player, each 
equipped with an action probability for action selection. Let x(k) be the probability that 
player i selects first action al  at instant k. Correspondingly, probability of player i select- 
ing second action is (1 - xi(k)). The action probability vector and the action vector, re- 
spectively, are 

x(k) A [xi (k), x2(k),...., 41(k)1; 

	

a(k) A [al (k), a2(k), 	, 

Let m(k) be the total number of times the first action is selected at k. 

N 

i.e.,n i (k)Ella j (k) = a 3 } 

1=1 

where II A) is the indicator function of event A. 

The environment gives a reinforcement signal AO e [0,1] based on ?la). The goal of 

the players is to maximize E[13(0] by choosing the appropriate number of first actions 
collectively. In the most general situation, a player might not even be aware of the exis- 
tence of other players or the number of players involved. Each player need know only the 
payoff, once he chooses his action. 

It is assumed that each player makes use of the 4.1 algorithm s. 

xi (k)+ bfi(k)(1- x i (k)) if cr i (k)= a l ; 
xi (k +1)A 	 (1) 

=Ixi (k)-:b/3(k).r i (k) 	else. 

The following notations are convenient during the analysis of the above algorithm. In 
the sequel, explicit dependence on k is not shown whenever there is no scope for ambigu- 

ity. 

Az i(k) A ari(k + 1) - x1(k)Ix(k)1; 

Ax A [Axi, Ax21...., Ax,v]. 

The following assumptions are made: 
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the algo. in 
Assumption 1. The reinforcement signal I3(k) is non-negative and hounded. wi thout  

loss of generality, p E [0,1]. Otherwise if )3 E [0,M] for some 1 < M < 	$  

rithm is replaced by NM. 

Assumption 2. The expected payoff g : [0,1] 1—) [0,1] is continuous. This is necessary 
as g(-) should not have jumps for any given number of players. 

Assumption 3. ON), i = 0,1,2,...., N, is unimodal. The case of multimodal g(-) 

commented upon later. 

Here, 

4f31 n 1 1= 

In the sequel, gi  denotes g(i1N) for convenience. 

Remark 1. Given N, the problem essentially reduces to that of finding the maximizer of 

g(k); i = 0,1,...., N. Hence greater the N, finer the approximation to the actual mast-it- 

ing value. 

Remark 2. Since the environment payoff depends on the number of players choosing 
the first action, and not their identity, all combinations that give the appropriate number 

n, maximize g(-). 

Remark 3. By virtue of Assumption 3, 3 / s.t g i > gi,Vi #1 and one of the following is 

true 

• I =0 with go> gi > ----> gN 

• 1= N with g o < < ....< gN 

• g c g3 V0cj ~ landg1 <g1 . 1 V1<j_N. 

It is easy to see that combinations corresponding to 1 choices of a l  are the only Nash 

equilibria for the game. 

3. Analysis 

Definitions 

S(N) A { 1,2,...., N} 

S(N,i) A ( I,2,...., — I, + I,...., IV) 

T(1V) A (W : W c S(N)} 

P(N,i) A {W : W c S(N,i)) 

The probability that a l  is chosen / times is given by 

PrIn i (k)= /Ix,a i (k)= 	= 
wET(„.,)„wi.,_, „,Ew neS(N,i)-W 

(2) 



GOORE GAME AMONG LEARNING AUTOMATA 	 51 

PrIn i (k)= Ilx,a i (k)= ail = E (1-1 X  
WeT(N,i):IWI=1 nreW 

(1_ I n )) 

neS(N,i)—W 
(3) 

for player i choosing his first and second actions respectively. From the algorithm, 

avi  = bx, (1 — x,)Errilai = al ,xi — /mai(' — xi) EU3I a, = a2, xl = Nei(l xi)fi(x) 
	

(4) 

where 

nal 

fi(x)= 1(g1+1 - gi) 
1=0 

n X 
flt 

WeP(A1,0:1W19 niEW neS(N,i)—W 
(5) 

with 

HA' 
0 

Example: N = 3, 5(3,1) = (2,3) 

1.1(x) = (gt — go)(1 — x2)(1 — x3) + (g2 gt) (12(1 —1 3 ) + 13(1 —x 2 )) + (g3 — g2)x2 x3 . 

Remark 4. fi(•) is not a function of x,. f ee) are symmetric, in the sense that, f,(•) is ob- 
tained by substituting .5 for xi  in b(•). 

Now, Vb > 0, x(k):k > 0) is a Markov process with dynamics dependent on b. This de- 
pendence is explicitly denoted by xb (k). Define continuous time interpolations X b(t) of 
xb(k) by 

X b(t) = x6(k) if t E (kb,(k + 1)b). 

The algorithm can be written as 

xb(k + 1) = xh(k) bcoe(k), eck» 

where 0 comprises the action vector and the payoff. 

The following conditions are satisfied by the algorithm: 

1. jx(k), 0(k —1): k 0) is a Markov process. 

2. The outputs of the automata are from finite sets. The payoff takes values from the 
closed interval [0,1]. Thus 0(k) takes values from a compact metric space S. 

3. The function G(,-) is bounded, continuous and independent of b. 

4. Let B be a Borel subset of S (defined above). The one-step transition function 

TF(*), defined as 

TF(0,1,81x) 	Probt et(k) € 1310(k — 1) = 0, x(k)= x} 

is independent of I), k and O. Thus 

TF(0,1,81x)=TF(Blx). 
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5. TF(0,1,.1x) is its own unique invariant probability measure, since it is indePendent 
of O. Denote this invariant probability measure by M(x). As S is compact, the set of 
probability measures M(x) is trivially tight. 

6. IG(x,91 ) TF(0,1,d01x) is independent of 0 and continuous with respect to x. 

With the above conditions satisfied the following theorem results from weak conver- 
gence theory 1° . 

Theorem I. For the LR4 algorithm, sequence of interpolated processes (X 6() b > 0 1  
converges weakly as b -4 0 to z(s), given by 

• 
—
dz 

=[hi (z), h 2 (z),..., h N  (40) = x(0) 
di 

where h,(z) = z,(1 	z i)f,(z); i = l,2,...., N. 	 (6) 

3.1. Equilibrium points of the ODE 

The equilibrium points of the system (6) are obtained by setting fel= 0. The solutions can 

be categorised as follows: 

• All z E 1011N 

• All z0  e (0,1) with z = (zo, zo,..., zol and f,(z) = OW. 

• Combinations of the above categories; i.e., z 1 € (0,11 for 
z, = zo  e (0,1) for the rest 

From the expression for h„ we have 

some of the is and 

dh. 
= z.(1 - 	;Vj azi 	1 	I dzj  

(7) 

—
dhi 

=(1-2zi)fi 
dz i  

To examine 
r 

the local stability of each equilibrium point, the eigenvalues of the matrix 

Lit]; 1 5 i,j5N, evaluated at each of these points, are considered. 

Case 1: N bit binary strings 

In this case e (0, 1); Vj. Hence 

dh. 
• =0•t1j*i 

dh, .ffi (z) if zi  = 0 

dzi  1—fi (z) if zi  = 1 

Consider a solution string with us and z i = 1. For this combination it is easy to check 
from (5) that, 

(8) 
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dh 
-(g, g,_, 

Correspondingly, if there are 1 is with zi  = 0, 

dhi 
= V 14.1  

dii 

dn 
Hence for such a string [ ] is a diagonal matrix with –(g, – gi_l) for / diagonal entries ek i  

and (gr.! – AO for (n – I) diagonal entries. Therefore, only for that / given by Remark 3, 
both the eigenvalues are negative, and subsequently, only those solutions that contain I is 
are asymptotically stable. 

Case 2: zo € (0,1) with f(z) = 0; V i; z = LOI zo,..., 

In this case, 

ahi  
= 0; for each zo  

(9) 
— = zo  (I-:) 	= a(zo  ); zo  

Consequently the matrix [ta ] has Os on the diagonal, and all other entries as a(4). The 

matrix is symmetric and all its eigenvalues are real. In fact, the eigenvalues of such a ma- 
trix are (N – 1) a(.:0 ) and –a(z0). Hence, irrespective of the sign of a(z0), one of the eigen- 
values is always positive, and the corresponding equilibrium point is unstable. The same 

holds VZ0 E (0,1) set. f(z i = zo; V j) = 0; Vie Alternatively, since the sum of the diagonal 
entries which is the sum of all the eigenvalues, is 0, and the matrix itself is symmetric, 
some eigenvalue must be positive real and hence the instability. 

Case 3:z, E 10 1 1 I for utmost (N – 2) of the is and z i = :0, s.t. eh= 0 for the rest, with :0 € 
(0,1) 

D 0]
In this case, the matrix [LI has the form 

B C 
where D is diagonal and corre- 

sponds to zis that are binary; and C is a symmetric matrix with zeros on the principal di- 

agonal and corresponds to all those zi  
eigenvalues of D along with those of C. 
the eigenvalues of C having positive real 
stable equilibrium points. 

(0,1). The eigenvalues of such a matrix are the 
Similar arguments as in Case 2 lead to some of 
parts and hence this case does not result in any 

• Remark 5. From the foregoing analysis it is possible to draw a few conclusions when 
g(-) is multimodal. Consider the set 

U A fi: g i_i < gi  and gi.. 1  < gi; 0 < i < 
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Include 0 in U if go  > 	Also include N in (I if g N  > gN- 1 . It can he verified that the onl y  
Nash equilibria of the game are all those combinations that result in i choices of a  
Vi E U. It is easy to see that all those string combinations containing 1 in i position; 

i E U, will have all the corresponding eigenvalues negative, and hence, each of thes; 
combinations is stable. This establishes the equivalence between the Nash equilibri a of 
the game and the stable equilibrium points of the ODE for the multimodal case. 

4. Parallel algorithm 

As the number of players in the Goore game increases, the value of the learning parameter 
h needs to be drastically reduced if good accuracy (in terms of less number of wrong con- 
vergences) is to be maintained. But reduction in the value of the learning parameter will 
adversely affect the speed of convergence of the algorithm. To maintain good accuracy 
levels while increasing the speed of convergence, an algorithm for the parallel operation 
of several LA was proposed 9 . This scheme could be regarded as an extension of the LR4 
algorithm, as the algorithm is the same as LR_1 when only one LA is present. The im- 
provement in the speed of convergence due to the parallel operation is theoretically estab- 
lished and demonstrated by simulation studies 9 . 

The game version of the above algorithm is proposed in this section to solve the Goore 
game with improved speed performance. The scheme is described below and an outline of 
the analysis is presented. Justification is also provided for the improved speed perform- 
ance. 

4.1. Algorithm Al 

In this scheme, each player i, i = 1, 	N; is replaced by n identical LA, each of which b,  
chooses actions independent of others. Such an arrangement of LA could be regarded as 
forming a module, each module corresponding to a player. The action probability x,-(k) is 

common to all members of the module.. The action of jth element of ith (player) module, 
a/ (k) E {Ct 1 ,a2}. 

Prtal(k) = 	= (k) = 1— PrIal(k) = a 2 1;1 S f n,1 i N. 

There are n simultaneous plays of the Goore game by n teams of LA, each team being 

formed by the jth member of each module (j = 1, 2,...., n). The payoff to the action combi- 

nation oc i  (k)=[al(k),a“0,....,a iN (101 is denoted by Mk). Pi(k) E [0,11, and it depends 

on ni(k), the number of times a l  is selected by jth members of all modules. Other now 
tions used in the algorithm are summarised below. 

• Total reward to ai  for player i at k: (flaI ni=1  13 j  (k)Ifoink)= 

• Total reward to each player at k : q(k)A11. 1 16.1  (k). 

• Normalised learning parameter: b-- 41---h == 
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Algorithm AI 

The algorithm to update the action probabilities is 

(10) 

For each player, the algorithm compares the fraction of the total payoff obtained by al  to 
its probability of selection and increases (decreases) the latter if the former is larger 
(smaller). 

4.2. Analysis 

Results similar to those derived for 1.44 algorithm are obtained in this subsection for Al- 
gorithm Al. Taking expectations on both sides of Algorithm AI conditioned on x(k) 

Ax .(k) = -b  E[qi  (k) 	i (k)q(k)lx(k)]. 	 (11) 

Substituting for qi  and q in (11), 

b r • Ay/  = 	E[$i v tat =a i  - xi)xl 	 (12) 
Al 

Remark 6. ifi(k) does not depend on ce(k); s j. 

Now, 

E[P 	=a i l- xj )1 = E[fii(1 - Ati )lx,a1 = a dxi  -(1- A-i  )4/3ixdix,ail = a 

= xi (1- xi )fi (x) 	 (13) 

The last equality follows because of independent selection of actions, and f(x) is as given 

by (5). Thus 

Ax, = el; nxi (1-xjfi (x). 	 (14) 

Following arguments similar to those of the previous section (this also involves checking 
the conditions therein), the following theorem results: 

Theorem 2. For the Algorithm Al, sequence of interpolated processes {X .;  (-):1; >0} 

converges weakly as b -40 to z(•), given by 

dz 
=[h i (z), h2 (z),...,h N  (z)]: z(0) = x(0) 

di 

where hi (z)= zi)fi(z);i = 1,2,..., N. 	. 	 (15) 
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It is easy to see that ODE (6) and ODE (15) have the same set of equilibrium Poin
t  

and exactly the same stability arguements hold for any given n. 	 ts 

Remark 7. The long time behaviour of Algorithm Al can be approximated b y  ODE  
(15). With -1; same as h of LR-I algorithm ,  the approximation is valid to a similar degre e of 
accuracy. Within this accuracy level Algorithm Al is faster than LR4 algorithm as ODE . 
(15) has a larger speed of convergence. 

Extensive simulations demonstrate improvements in speed of convergence for various 
values of n, and are presented in the following section. 

S. Simulation studies 

Simulation studies for unimodal and multimodal functions, using Algorithms 44 and Al 
are reported in this section. The studies indicate good speedups for various module sizes. 
The studies are tabulated and discussed for the two cases. In the tabulations n > 1 indi- 
cates study using Algorithm Al. 

5.1. Unimodal function 

The following unimodal mean payoff function was employed for simulation studies. In ; 
this case as well as the following case the random payoff is obtained by adding a zero 
mean random noise arising from a uniform distribution. The uniform distributions spread 
between —g(x) and +g(x) if g(x) 0.5; between —(1 — g(x)) and +(1 — g(x)) otherwise. 

g(x)= 0.9 exp
( (x — 0.32 )

Vx E [0,4 
0.01 

Based on the value of N, the problem is that of finding 1 for which g(11N) is maximum. For 

example, for N = 4 the mean payoffs have the value g(iIN); n = 0,1,2,3,4. It is desirable in 
this case that n 1 (k) converges to nt =1 as g(1/4) is the maximum of g(iIN); i = 0,1,2,3,4. 

Twenty runs of simulation were performed for each n, N and b and Table 1 lists the 

values of the average number of iterations for convergence in each case. The value of b 

listed in each case is the maximum for which no wrong convergence resulted in any of the 
runs. Convergence was assumed when all ex-is went outside the interval [0.01, 0.951. The 
value of xi(0) = 0.5 was used Vi = 1,2,..., N. 

Table I 
Unimodal function 

Nn 4, nr=1 N = 8 nr =2 N=16, 4=5 

n h Avg. her. b Avg. her. b _ 4v8. her. 

1 0.2 84 0.01 12025 0.005 61279 
2 0.5 28 0.02 6651 0.01 29893 
4 1.0 13 0.04 3151 0.02 14058 
H 1.0 18 0.1 1356 0.04 7331 

HS 1.0 21 0.16 813 0.08 3503 
12 k  1

' 

0 21 0.3 459 0.16 1713 
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Table II 
Multimodal function 

n 

N=4, 

b 

4=0,4 

Avg. her. 

N=8 

b 

4=0,8 

Avg. her. 

N=16, 

b 

4=0,16 

Avg. her. 

1 0.4 23 0.1 188 0.05 808 
2 0.8 12 0.2 99 0.1 423 
4 1.0 9 0.3 65 0.2 213 
8 1.0 9 1.0 20 0.4 112 

16 1.0 9 1.0 21 0.8 57 
32 1.0 9 1.0 21 1.0 46 

5.2. Multimodal function 

The multimodal mean payoff function considered for studies is 

ex) = 2(x — 0.3)2; Vx E [0,1 

It is obvious that tic = 0 and N, are the optimal combinations in their neighbourhood. 
Wrong convergence is said to occur whenever n i (k) does not go to 0 or N. Other condi- 
tions for simulation remain the same. Simulation studies are presented in Table II for this 
case. 

The tables demonstrate the efficacy of the parallel 	Algorithm Al in terms of good 
speedups over the LR4 algorithm. It is seen that the speedup is of the order of the module 
size in almost all the cases. The implications of this factor in a real life situation are 
quite significant; even with noisy inputs, fast convergence is achievable with good accu- 
racies. 

6. Groups of players 

An extension of the Goore game to involve groups of players, is proposed in this section. 
The obvious application to multivariable stochastic optimization serves as a good motiva- 
tion. Results obtained for single variable optimization problems encourage the investiga- 
tion of the feasibility of the Goore game approach for solving multidimensional optimiza- 
tion problems. Only the analysis for LR.4 algorithm is considered; extension to the corre- 
sponding parallel case is straightforward. At present, only a partial characterization of the 
equilibrium points is available. The intent of this section is to highlight the difficulties 
involved in the analysis of the multiple group situation. 

The notations used in this section sometimes do not differ from those of the section on 
parallel algorithm. This is done only to simplify the notation by avoiding too many sub- 
scripts and superscripts. 

6.1. Problem formulation 

Goore game among M groups of players is considered. In group j, player i chooses action 

al(k)e icri,afi. There are NJ  players in group j, of which n1(k) select ai at instant k. 



neS(N cs)—W 

neS(N i )—W 

58 	 M. A. L. THATHACHAR AND M. T. ARVIND 

x/(k) denotes the probability of the event "player i of group j selects at at instant k". The  
payoff depends on the fraction of players choosing the first action in each group. In th e  
following, the dependence on k is omitted for notational convenience. 

Let 

x 	{x l ,x 2 ,...,x m l 

where 

X i ik194,•••$X 1N.  

Each player uses the LR_I algorithm. 

(k)+ 0(00 - 4(k)) 
xf(k + OA{ 

(k)— bli(k)st (k) 

if a! (k)= aj 

else. 
(16) 

Similar assumptions on g•) hold, with 

E[01111,, 911 	= 1 ni 	nm  
N 

g() is denoted as g„ „ „ for convenience. 

Define the functions 

Then 	 • 

Prim = 	= Im  I x,otj = all= sql(li  - 1) n us os); 

Prini  = /"...,nm  = /m lx,a1 = a -41= ql j ) ll „s ( is ) : 
s=b., 

From the algorithm, 

Ari = /4(1 —4)f/(x) 

where 
N,.1  N 	N,,, 	N 	 A4  

)q/ (i1 ) fTuQsJ- 
11 .. 	 =0 	=0 
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Define 

and 
• 	 hi tkii 

Then, as earlier, 

dz 

dt 

is the associated ODE of the system. The results pertaining to the weak convergence of 
the interpolated processes to the associated ODE can be obtained here also. 

From the expression for , 

Oh/ 

ozi it  
ei 

Similarly, --1--;n * i is obtained by replacing ql by al in the expression for hii and :±C• ad -. 	 esti 'a 

in * .i is obtained by replacing r by a 1  in the expression for h/. a:,7 

6.2. Equilibrium points of the ODE 

Denote 

AA 
= 

The following solutions of the ODE are characterized in this subsection. For every 
J E TOO, 

= a E 	 = 0,Vi =1,2,...,N j ;jEJ and zi e Me/ ; j€ 

The following cases arise while observing the local stability of the equilibrium points. 

Case 1: J = 

E S(M), Vj and hence A is diagonal. The analysis similar to Case I of the single group 
situation holds, and only those solution combinations corresponding to the single maxi- 
mum (of the discretised function) are stable. 

Case 2: J = S(M) 

= al  E (0,0; Vi, j. From the expression for the derivatives, 
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Hence, A is a symmetric matrix with zero entries on the principal diagonal. Since surn  
of the eigenvalues of such a matrix is zero and the matrix is nonsingular, some of the et. 
genvalues are positive real. Hence these combinations are not stable. 

Case 3: J* 0; .1 S(M) 

Whenever 	Z i  E 10,1} N' , 	from 	the 	above 	derivative 	expressions 
Ai 	 AI 
—1- --= 0-

'
Vn # i, and e  --L. = O .  Vm ;t j. Suitable permutations can be carried out on the A m a. a:4 	 m 	' , 

trix to bring it to the form [ D 01 where D is 	d iagonal and corresponds to j e 
B C 

and C is a symmetric matrix with zeros on the principal diagonal and corresponds to j E J. 
The eigenvalues of such a matrix are the eigenvalues of D along with those of C. Similar 
arguments as in Case 2 lead to some of the eigenvalues of C having positive real pans. 

Remark 8. The equilibrium points not characterized in this section are those in which 

some of the values in each group are binary and the others identical and belonging to the 
interval (0,1). Obtaining the eigenvalues of the matrix of partial derivatives does not seem 

to he as simple as it was in the previous sections. 

Remark 9. For the class of equilibrium points considered, more can be said in case of 

multimodal functions. As in the single group situation, the set U can be constructed (refer 
Remark 5), and all those binary combinations corresponding to the elements of this so 
are seen to be stable. 

7. Conclusions 

A detailed analysis of the Goore game among LA has been presented. The equivalence of 
the stable equilibrium points of the associated ODE and the Nash equilibria of the game 
was demonstrated. A weak convergence result is employed to show that the long-time 
behaviour of the algorithm could be approximated by the associated ODE for small 
learning parameters. A parallel algorithm has been presented to improve the speed per- 
formance of the Goore game. Similar results regarding the stability of the equilibrium 
points have been derived for this algorithm. Simulation studies have been presented to 
demonstrate the improvements in speed performance for the parallel algorithm. Further 
improvements in speed appear possible by considering a larger number of teams formed 
by different combinations of members of the n available modules. Finally, extension of 
the analysis to the multiple group situation is considered, with applications to multivan 
able stochastic optimization in mind. A partial characterization of the equilibrium points 
of the associated ODE is presented. Further efforts will be directed at providing a com- 
plete characterization of the multiple group Goore game. 

References 

I. ISETLIN, M. L. 	 Automata theory and modeling of biological systems, P973.  

Academic Press. 



GOORE GAME AMONG LEARNING AUTOMATA 	
61 

2. BoRoviKov, V. A. AND 

BRYZGALOV, V. I. 

3. VOLKONSKIY, V. A. 

4. PITTEL, B. G. 

5.  NARENDRA. K. S. AND 

THATHACHAR, M. A. L. 

6. LAKSHMIVARAHAN..S. 

7. WHEELER, JR., R. M. AND 

NARENDRA, K. S. 

A simple symmetric game between many automata, Avomar. 
Telemekh., 1965, 26(4). 

Asymptotic properties of the behaviour of simple automata in a 
game. Prohl. Peredachi Inform, 1965, 1(2). 

The asymptotic properties of a version of the goore game. 
Prohl. Peredachi Inform., 1965, 1(3). 

Learning automata: An introduction, 1989, Prentice Hall. 

Learning algorithms: Theory and applications, 1981, Springer 
Verlag. 

Decentralized learning in finite markov chains. IEEE Trans., 
1986, AC-31, 519-526. 

8. SASTRY, P. S., PHANSALKAR, V. V. AND 	Decentralized learning of nash equillibria in multi—person 

THATHACHAR, M. A. L. 	 stochastic games with incomplete information. IEEE Trans., 
1994, SMC-24, 769-777. 

9. THATHACHAR, M. A. L. AND 	 A parallel algorithm for operating a stack of learning automata. 

ARVIND, M. T. 	 Proc. Fourth Intelligent Systems Symp., IEEE Bangalore 
Section, Nov 1994. 

10. KUSHNER, H. J. 	 Approximation and weak convergence methods for random 

processes, 1984, MIT Press. 




