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Abstract 

The paper presents a neural net-based scheme embodying linear prediction techniques and the SVD algorithm 
to estimate the parameters of exponentially damped sinusoids satisfactorily under low SNR conditions. In the 
method proposed, a three-layer feed-forward neural network is employed at the output of the SVD block for 
suppressing bias in the estimated singular values due to the presence of noise. The ANN block is used to keep 
the singular values constant at their noiseless counterpart, even at SNR less than 0 dB. The method is consid- 
ered to be the most efficient for parameter estimation at very low SNR. 

Keywords: Singular value decomposition, artificial neural networks, linear predictive coding, backward linear 
prediction. 

1. Introduction 

Parameter estimation of an exponentially damped sinusoidal signal has been studied rig- 
orously over the past decade. A good number of techniques for the same have been re- 
ported in the literature' s'. Kumaresan et al l-4 ., Reddy et 4215 . and Rahman et a!7 . have pro- 
posed different powerful methods for parameter estimation related to linear predictive 
coding (LPC). The exponentially damped sinusoidal signals defined over a finite time in- 
terval can be completely characterized by the numerator and denominator polynomial 
coefficients of a transfer function model of large order 8.9  . The linear prediction coding 
method, proposed by Kumaresan and Tufts (KT), an improved variant of Prony's 
method 10, is used for the estimation of the coefficients of the transfer function" .8 . 

The features of the KT method are , 

(i) it uses an overdetermined set of linear equations, 

(ii) it overestimates the order of the assumed linear model, 

(iii) it uses singular value decomposition to solve the linear set of equations (Wiener- 
Hopf equations), 

(iv) it estimates the backward predictor polynomial coefficients so as to separate the 
signal poles from that of the noise poles. 

The frequency, damping, phase and amplitude of the signal are estimated from the 
roots of the denominator polynomial and the residues of the transfer function. N signal 

samples, which are processed to estimate the parameters, decide its robustness. However, 
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the performance of Kumaresan—Tufts method deteriorates when the noise power level i s  
increased. The concept of parameter estimation is based on the distribution of zeros of th e  
prediction error filter that does not prove to be a viable solution in many noisy envir on_ 
ments encountered in the power system and signal processing problems such as speech, 
sonar, communication and radar systems. 

The SVD algorithm augments the estimation capabilities of linear prediction at in vi  
SNRs. It is found that the distribution of the signal zeros behaves erratically in the I. 
plane, when the SNR of the input signal is less than 20 dB. Hence, at low SNR, i.e., below 
20 dB, the bias in the frequency is small but is significant in the damping factors. Greater 
the magnitude of damping more is the bias. There are very few published works on the 
bias compensation methods w I  to improve the estimates. Research is being carried ow to 
develop a robust algorithm to exhibit satisfactory performance in different practical envi- 
ronments with low SNR. In this paper, a neural network-based parameter estimation ap- 
proach is proposed to improve the estimates at low SNR conditions. This scheme employs 
widely used Kumaresan—Tufts method and an artificial neural network (ANN) to give 
much better performance at very low SNR. The algorithm employed for adaptation of the 
weights of the multi-layered network is the widely 12-15  used backpropagation algorithm 
with sigmoidal activation function. 

2. Linear predictive coding algorithm 

The mathematical model of the signal can be represented as, 

Ai 
y(n)=Ea k es k" +w(n); n= I, 2,...,N 	 (1) 

k=1 

where sk=—ak +2Rfk, k = 1, 2,..., M with positive damping coefficients aA 's and pole 

frequencies A s; ak, k = 1, 2,..., M are the amplitudes, and w(n) is the white Gaussian 
noise. 

The KT method is described using the following procedure. 

Step! 	 . 

Define the backward linear prediction data matrix A, and vector h for a filter of order L, 

such that M L 5 N—M, where 

y(2) y(3) 	
" ., it ,, ii I, y(L+1) 

y(3) y(4) 	" ., t t t t t1 9 I AL + 2) 

A = 

. 
N—L+1) AN—L+2) " " ,. ii ,, ,, y(N) 
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and Jr = 
(2) 

Step 2 

Find the singular-value decomposition of the matrix A: 

A = UZV H 
	

(3) 

where U and V are the left and right singular vectors of A, respectively, E is a diagonal 
matrix with M largest singular values as the diagonal elements are arranged in a non- 
decreasing manner, and H denotes the Hermitian transpose. 

Step 3 

Compute the predictor coefficient vector h: 

=(Ar t h =frri U ll )h 	 (4) 

where # denote the Moore—Penrose pseudo inversion. 

Step 4 

Define the polynomial 8(z): 

B(2)= 	;M L N—M. 	 (5) 
1=1 

Step 5 

The M roots p„ j = 1, 2,..., M) of 8(z) which fall on or outside the unit circle, out of the 

L roots ( vi , j = 1, 2,..., LI, correspond to the reciprocal of the roots of Et(z): 

/v,; 15i< M.  

Step 6 

Compute the values of the signal parameters from the M roots of Step 5. 

3. Proposed scheme 

The implementation strategy of the proposed scheme is shown in Fig. I. The parameters 
are estimated by the scheme in the following sequence. Initially, the backward linear 
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AG. 1. Block diagram for ANN-based parameter estimator. 

prediction (BLP) data matrix is formed from the signal samples. Then, the SVD algorithm 
breaks up the BLP data matrix into singular values and vectors, yielding biased singular 
values in the noisy environment. Now, these biased singular values are the inputs to the 
ANN block to produce the actual singular values, then the LPC algorithm described in 
Section 2 is used for the estimation of the parameters. 

4. Artificial neural network (ANN) training 

The neural network is trained before the scheme is exposed to the complex signal sam- 
ples for parameter estimation. The training sets encompass the biased singular values 
as the inputs to the neural network, and the actual singular values which would have re- 
sulted without noise as the target. Although the singular vectors computed are affected 
at low SNRs of the signal, the estimated results predominantly depend on the singular 
values. For a particular signal with low noise power. the backward linear prediction 
data matrix is formed, and the conventional SVD along with LPC technique is employed 
for estimation of parameters such as amplitude, frequency, damping and phase. Singular 
values for the backward data matrix formed from the signal samples with varied noise 
power have been computed. The biased singular values so obtained from the noisy data 
along with the desired ones form the training pairs for learning the neural network. 
Training is terminated when the objective function, which is defined as half the sum of the 
square error, is minimum or below a certain floor level. The neural network has been ex: 
posed to different biased singular value sets corresponding to different corrupted sir: 
samples for generalization. After completion of training the scheme is employed for esti- 
mation. 

S. Simulation and result discussion 

The number of hidden and output nodes of the network are judiciously selectedwi th. : 

view to reduce the computational burden. However, in this problem the number of 11  oae' 
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Table I 
Parameters of the ANN 

Parameters 	 Example I 	 Example 2 
Single exponentially 	 Two exponentially damped 
damped sinusoids 	 sinusoids 

Number of data points. N 	25 	 25 
Filter order. L 	 4 	 8 
Number of signals. Al 	 2 	 2 
Number of layers in the neural 	2 	 2 
network 
Number of inputs to the neural 	4 	 8 
network 

Number of output neurons 	4 	 2 

Number of hidden neurons 	4 	 12 

is selected based upon the filter order and the number of signals. It has been stated in Step 
5 of the LPC algorithm in Section 2 that M out of the L roots corresponds to the signal 
parameters. So, the number of input to the network is chosen to be the same as the order 
of the filter and the number of output neurons is equal to the filter order or the number of 
input signals. Excellent results have been obtained with input samples corresponding to 
very low SNRs, which establish the robustness of the proposed scheme for a wide range of 
practical applications. Different types of signals with varying parameters such as damp- 
ing, amplitude, frequency and phase are considered, and quite promising simulation re- 
sults are obtained. 

In this paper, two examples have been considered to verify the strength of the pro- 
posed method (Table I). The convergence characteristics for learning of the network of 
Example I has been illustrated in Fig. 2; the weights of the output and hidden layers are 
shown in Figs 3 and 4, respectively. At SNR of 10dB the estimated parameters are ampli- 
tude = 1; frequency = 0.45Flz; phase = 0.0; and damping =—O.0791. 

FIG. 3. Learning curve for output layer weight. 
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FIG. 5. Average learning curve for two damped sinusoidal signals. 

The learning curve for the network in Example 2 has been illustrated in Fig. 5. Forthe 
above signals with an SNR of 10dB, the estimated values of the amplitudes are unity, fre- 
quencies are 0.45 and 0.35 Hz, and dampings are —0.1 and 4.2, respectively, with the 
associated phase angles 0.0. 

S. Conclusions 

ANNs along with LPC and SVD for parameter estimation of an exponentially damped 
sinusoidal signals have been presented in this paper. The results obtained exhibit the effi- 
cacy of the proposed method over the existing methods. It has been shown that the pro- 
posed modifications considerably reduce the problem of erroneous parameter estimation at 

very low SNRs. 
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