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Abstract 

Indirect adaptive control of a class of systems. which perform repetitive operations and which are not neces- 

sarily time-invariant is considered. Neural networks are used for this purpose. with the error committed in one 
cycle being used to correct the corresponding parameters in the next cycle. It is shown that the time variations 
of the plant parameters cannot be captured if every parameter is allowed to vary at the sampling rate. Hence. 
various schemes for unfolding the network partially are proposed. Identification and adaptive control algo- 
rithms for such schemes are presented. Simulation results on a simple robot are also provided to illustrate the 
application of the scheme. 

Keywords: Indirect Adaptive Control. Periodic Systems. Time Varying Systems. Neural Networks 

I. Introduction 

Recently, neural networks have been successfully used in the areas of modeling and con- 
trol of dynamic systems 1-5 . Various approaches for employing neural networks in control 
have been addressed, which include inverse control'', feedback linearisation 7, stochastic 

methods, optimal controI 3 , and adaptive control methods ls . 

An adaptive control scheme is one where the controller is automatically adjusted in re- 
s. ponse to variations in the plant and its environment so that the closed loop system behav- 
ior matches the specified behavior. One of the assumptions made in most of the adaptive 
control schemes proposed in the literature % 	2. 5  is that the variation of the plant parame- 
ters is 'relatively' slow compared to the plant dynamics. In other words, for all practical 
purposes the plant is considered time-invariant. However, when using neural networks, 
such an assumption is not always appropriate. Methods based on sensitivity models' 
strongly depend on the assumption of time-invariance, while back-propag,ation through 
time' 3 , or equivalently back-propagation through the adjoints 4 , does not require such an 

assumption as a pre-requisite for calculating the required sensitivities. 

With time-invariance, the response to past actions can also be used to deduce the sen- 

sitivity of a parameter on the cost. But, without such an assumption, a signal input or a 

parameter change can be assessed only after a delay. The delay is quite logical since the 
presence of dynamics causes the result of an action to manifest only after a lapse of time. 
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However, in reality, it is impossible to go backwards in time to correct it. The probiemni 
delay is clearly absent in an off-line scheme such as Nguyen and Widrow

3  and was over.  come using prediction in Srinivasan et al. 5 . Here we take a different stand by considering the class of systems which perform repetitive operations. An error committed at 
softie  point of time in the present cycle is used to correct the Input at a corresponding inst ant in  the next cycle. 

Many practical systems such as the assembly robots, numerically controlled machi nes  and others which are motivated by the science of cybernetics fall under this categoT

Y  
Other processes such as the batch reactors can also be included in this group. Hence, it is 
logical to use a learning scheme which is also biologically motivated. Learning by humans 
and animals, especially basic capabilities, can be viewed as 'learning to do operations 
which are by-and-large repetitive'. In learning a repetitive operation, there is only mar- 
ginal, almost negligible, learning during any one operation, while a substantial amount of 
learning takes place between two repetitions. This is due to the fact that the presence of 
dynamics causes the effect of an action to manifest only after a certain length of time. In 
biological systems the error or reinforcement is 'stored in memory' and is used for cor- 
rection only when it is called upon to act the next time around. Some authors such as 
Barto 12  consider this as the basic difference between an adaptive controller and a learning 
controller. 

All indirect adaptive control schemes rely on the certainty-equivalence assumption, 
as the identified plant is used for controller synthesis instead of the true one. For this 
assumption to be valid, the parameters of the plant have to converge to the global 
minimum'. For this to happen in the time-varying case, a necessary condition is that 
all the parameters should not be allowed to vary at the sampling rate. Hence, the network 
should be unfolded in time only partially, for which various schemes are proposed. Gradi- 
ent calculation and update laws for each of the schemes are presented and discussed. 
Then, the adaptive control problem is formulated as a problem of identification and 
algorithms similar to those used for identification are used. Algorithms for the adapta- 
tion of controller parameters for different control structures, i.e., open loop, state feed- 
back, etc., are illustrated as special cases of the output feedback structure developed till 

then. 

The paper is organised as follows: In Section 2, the method of back-propaga. tinsa  

through the adjoint is briefly reviewed. Section 3 deals with the definition of periodic.  

systems and the identifiability problems faced while modeling them. Identification tandn 
adaptive control algorithms for various schemes are provided in Section 4. Siam, aio 

 

results on a simple robot are presented in Section 5 and Section 6 concludes the paper. 

2. Parametric Sensitivities using Adjoints 

Adaptive control schemes can be broadly classified into (i) indirect, and (ii) 
direct 

schemes, depending on whether or not an explicit plant model is used. The indirect adap
- 

tive control problem should always be attacked in two stages : (i) the identification stagse. 
obtaining a model of the plant from the input-output data and (ii) the controller design 
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stage - obtaining a controller which achieves the desired control objectives, given the 
identified model of the plant. 

In the neural net framework, both the identification and adaptive control problems are 
posed as optimisation problems as stated below. 

The Identification Problem 

1 Al 
min 	=Yo  (k 	m(k 

.„,„ (A ),W,„ e (14. ) 	2 

subject to 

111( k  + 1 ) = im(x m(k)% 14(k),W (k)) 	 (2) 

Yru(k)= 	(-vm (k) , u(k) ,  W 	 (3) 

The Adaptive Control Problem 

M 
min 1 = ! I II 	2 )(/ ( 4  /) 	„(k 	 (4) 

2 i=o 

subject to 

wv„,(k + 1 )= .1,„(s„,(k),u(k),Kif(k)) 	 (5) 

y(k) = g„,(x „,(0, u(k),W(0) 	 (6) 

x,(k + I)= ficv, (k) ,  m(k) ,  (k) , W,f(k)) 	 (7) 

140 = y. (k) = ge k(k),W, R (0) 	 (8) 

where .1, is the identification fit criterion and .1, the control fit criterion defined over the M 

samples of the batch under consideration, 	the standard Euclidean norm„vp(k) and y„,(k) 

are the respective outputs of the actual plant and the plant model (see Fig. I), for the same 
applied input u(k) = y k), viz., the output of the controller (see Fig. 2), yd(k) the desired 

Output trajectory, y A 0 the reference input applied to the system, .t 4 (A) and .v,(k) the states 

of the model and the controller respectively, f,„ and g„, the respective input-state and the 

output mappings of the plant model with f. „gt. being the corresponding mappings for the 

controller, and k the discretized time. The nonlinear mappings f,„, g„„ ft , and g, are ap- 

proximated by multi-layer perceptrons whose weights are W„,1, W„,,, W11  and We, respec- 

tively. 

yen(k) 

FIG. I. Model of the plant. 
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Yo(k) 

FIG. 2. The basic control loop. 

In general, the identification problem is treated as a problem with only algebraic con- 

straints, though the constraints are inherently of a dynamic nature. Since, the adaptive 
control problem has to handle dynamics in any case, the algorithms used for these two 
problems are, in generals quite different. Yet, if the dynamic constraints are handled using 
adjoints at the identification stage itself, then similar algorithms can be used for both 
identification and adaptive control. Such a strategy will be followed in the rest of the pa- 
per. 

The adjoint of the given system, through which the error is back propagated, is con- 
structed by the three steps: (i) gradient linearisation, (ii) reversing the directions of both 
time and signal flows, and (iii) by changing the nodes to summing junctions and vice 
versa. For an interconnected system, the error is back propagated through the adjoint of 
the interconnection, in which each of the system blocks is replaced by its corresponding 
adjoint. Since we have two cost criteria, we have two adjoints corresponding to the two 
criteria which are given below (refer Figs. 3 and 4). The first adjoint corresponds to the 
plant model alone while the second corresponds to the controller-plant combination. 

— 0 

(9) k_ ifm tl im Oc— 1) + 311deti_jogniVerntim-Klii 

ileg M(3) = 0 , Act  (0) = 0, 

Anil  (1C)  = 3.7:41(Ab-K)fin 	(ke 3 .1; ( kbqc igt„ 3  Tv (M•K)f.,1,4.(K-1)+ $ Tr (M —K)gin V  r(3")jr(1°)  
A (K)= 	m  _sof, A t , Oc-1)+ 3 7: (A4_,.),c,.9::A (ic — 1 ) + 3T, (melogr3tra-c)gin 

V m 

Ad joint 
of fin0 Adjoint 

°W.) 
V
y(k)  JI 

Fin. 3. Adjoint of the plant model - for identification purposes. 
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FIG. 4. Adjoint of the controller-plant combination - for control purposes. 

where 3 is used to denote the Jacobian matrix at the specified time instant, V the gradient, 
A,„, the adjoint of the plant model constructed for identification purposes, 	and A. the 
adjoints of the plant model and the controller constructed for control purposes and K the 
retrograde time. 

Srinivasan et a/. 4  pointed out that the sensitivity of a parameter at time instant 	can be 
obtained from the adjoint by multiplying (i) the signal that enters the weight in the for- 
ward (i.e., system) run at time instant 'k' and (ii) the signal which enters the weight after 
M k retrograde time steps in the adjoint run. So, 

	

11?,4  (k) / 	mini/tun (A/ k —1 ) 	 (12) 

V tv(0ii = 3714/,„„:(ogniV 	 (13) 

V 	J = 3 T  f A 	— k —1) iv., to e 	( 	 (14) 

Vw, r (t)ie 3 14;,: mge 3 iTiogni(k)Agent(M 	—1) 	 (15) 

It is important to note that the adjoint method gives the sensitivity of a particular time- 
tagged weight on any of the criterion functions. Hence it is immaterial whether or not 
plant parameters are time-varying. In an off-line scheme, we can go backwards in time 
after the batch is over to independently correct each of these weights spread over time. 
Consider such situation where the plant is known and the objective is to choose the con- 
troller parameters so as to minimise the control fit criterion 	Then the gradient descent 

parameter update will look like, 

(16) 
Wu  lf+ I  (k) = 	(k) pc' 	&Wrig+I  (k)= Wi.g (k)— 

where the superscript indicates the iteration number. 

However, if the plant is unknown, one has to necessarily run the plant for the sake of 
identification. In such a case, on-line schemes have the advantage of testing possible con- 
trollers directly on the plant. The price paid, however, is that a weight cannot be corrected 
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before the batch is complete and it is not possible to go backwards in time to correct  

wet,
' t later. This is due to the fact that in a dynamic system we cannot assess the result 

the 
 

an action without examining the response over a non-zero interval of time. To overcome 
this problem, prediction was resorted to in Srinivasan et al.

i 
 . The concept irt.ssimilar to 

model predictive control, where the response is predicted over a finite horizon, and o rp 
the initial part of the optimal input is actually given to the system. Here, only the weigh); 
corresponding to the present time instant is corrected. Correction of inputs and controller 
states is also found necessary for the sake of convergence 9 . 

In this paper, we consider only the class of systems which perform repetitive opera- 
tions. The advantage with this class is that the error committed in the present run/cycle 
can be used to correct the parameters of the next cycle. This way, no prediction is neces- 
sary and update laws similar to off-line iterations can be used on-line. Since time- 
invariance or the knowledge of time variations is a pre-requesite only for the sake of pre- 
diction, even that assumption drops out. 

3. Periodic Systems and their identifiability 

A periodic system is one in which a particular batch operation is repeated over and again. 
Let us assume that the process runs over M sampling instants and that this number is 
fixed. This type of operation is somewhat similar to the iterative solution of an optimal 
control problem with a fixed terminal time. Now, a periodic system is one in which, 

ycia + M) = yd(k); Vk = 0, 1, ..., 41-1 	 (17) 

(18) 

and in an ideal case 

evp(k) = yi,(k + Al); Vk = 0, 1,..., M — 1 	 (19) 

where W p (k) are some representative parameters of the plant. 

From such a definition of a periodic system, it is clear that the sensitivity can be used to 
correct W )(k + M). The update laws are given by, 

wnif (k A1 )= w„,f ( k ) — m vw,,,, ( 1 )J184w„ ,„ (k Al) = Ignig(k)— 	 (20) 

Wef  (k + M) = 	(k) 	(4  , 	+ M) = W, v (k)— 	tic cm ./ t. 	(21) 

This clearly means that we should have M different copies of each of the networks and 
update them independently. The plant is thus completely unfolded in time and there need  
not be any relationship between the two networks. Though, this gives an advantage tha

t 

rate. the parameters can be time varying in an arbitrary manner at the sampling 	a  major 
question that arises is whether we can use the model obtained after identification for con- 
trol purposes at all.  

All indirect adaptive control methods inherently assume certainty-equivalence. whic h  
means that the identified model is assumed to be a true replica of the actual plant. in a  
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linear time-invariant case, the identified model asymptotically matches the true one if the 
input is persistently exciting 9 :  However, for a nonlinear plant, the problem of getting 
trapped in a local minimum arises: .  when so trapped, it cannot be proved that the assump- 
tion of certainty-equivalence is valid. The validity can be established when the parameters 
of the plant model converge to the global minimum (which means either an algorithm 
which performs global minimisation should be used or the initial conditions should be in 
the attraction region of the global minimum) 9. In a time-varying case, an additional aspect 
is that the convergence to the global minimum should be assured for the plant at every 
unfolded time instant (i.e., all the M sets of networks should converge to the global mini- 
mum). 

This brings us to the basic problem of identifiability". The parameter estimation can 
be unique only if the total number of conditions (C say) which the parameters have to 
satisfy is greater than or equal to the total number of parameters (P say), i.e., C > P. Note 
that this is a necessary condition and does not guarantee a unique determination of the 
parameters. This is a very basic condition in addition to which we need to assume persis- 
tency of excitation, initial conditions being in the attraction region of the global minimum 
etc., to obtain parametric convergence. With complete unfolding, this identifiability con- 
dition is violated even for some of the simple cases, which indicates that no parameter 
convergence can be established. 

Proposition 1: Let nt be the number of outputs and p the total number of parameters cor- 
responding to the network at a single time instant. If the plant is completely unfolded in 
time. the identifiability condition 

C.>Pp5.nt 	 (22) 

Proof: If p is the number of network parameters at any time instant and M the number of 

stages, then the total number of parameters P = pM. Each of the m outputs corresponds to 

a condition which the parameters have to satisfy. With all the outputs at the M sampling 

instants available, the total number of conditions the parameters have to satisfy C = ntM. 

So the identifiability condition C ?_ P 	p tn. 

Remark 1: In a single output system. Proposition 1 implies that the number of parameters 

should be less than or equal to I, which is unrealistic. 

Looking bark, such an unrealistic scenario stems from the fact that we have assumed 
that plant parameters vary at the sampling rate which is at least twice the maximum fre- 
quency encountered by the signals in the system. If the parameters vary, they do so at a 
much slower rate and hence unfolding the network completely does not make much sense. 
Hence, various partial unfolding schemes are discussed below. 

Option 1: 

The first natural partial unfolding scheme is to consider that the parameters of the 

plant/model change only once in r 
time instants. By the definition of the periodic system, 

this means 

ti/p(k 
 r 
+ i) = 14/1)(k), Vi = 	2, ..., 1"--I and k =0, r, 2r, ..., 	 (23) 
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Proposition 
2: If the plant is partially unfolded as in Option 1, then the identifiability 

condition 
• 	 C P p mr 	 (24) 

Proof.  Since the parameters change only once in r time instants, the number of Copies of 

the networks maintained is (MM. So the total number of parameters P --= (pAvr). The t ota l 
number of conditions the parameters have to satisfy still remains C = nthl . So the identifi- 

ability condition C P 	p S »tr. 0 

Option 2: 

In Option I all the parameters change at the same rate, though in actuality it need not be 
the case. If a single rate of parameter change is chosen, r should be small enough to cap- 
ture the fastest time variation and be big enough to accommodate all the parameters of the 
model. Instead, one could use to advantage the fact that all the parameters do not change 
at the same rate while unfolding the plant. 

Let pi  be the number of parameters in the model which change every `j' time instants, 
with 4/ allowed to vary from I to Al. The number of time invariant parameters is p m. Op- 

tion I is a special case of Option 2 where pi = 0; V j r and pr  = p. If the weight vector Wp  
is partitioned into Win , 	Wpm , corresponding to their rates of change, then the varia- 
tion of one representative group Wp,  is given by 

Wpi (k +i)=Wp. (k),Vi = 1,2,..., j — 1 and k = 0, j,2j,..., M j for j = 1,2,...,M 	(25) 

Proposition 3: If the plant is partially unfolded as in Option 2, the identifiability condi- 
tion yields, 

E(p)  1 45_ m and I pi  = 1' 	 (26) 
jtt 	 J=I 

Proof: Since, the parameter pi  changes only once in j time instants, the number of copies 
of this partneter will be (M/j). Considering the summation over j, the total number of 
parameters P =1,1_1 0016). As C = m41, the proposition follows. 

Remark 2: In a single output case, if p> 1, which is normally the case, pi I 
Proposition 3. So, 	should be zero. This indicates that not even one parameter can be 
allowed to vary at every time instant. 	

violates 
p i   

Option 3 

To avoid having M different copies of the network, it is possible to approximate the time 
variation of the parameters by another neural network for which the time instant or the  

stage variable acts as the input, i.e., W(-)(k) f (W 	
1 
k). The auxiliary Parameters, 

dif 	 t 
i 

f an)
, are chosen suitably to approximate the time variation and hence the number o 

such parameters required depends on the smoothness of the time variation, 	no the or 
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length of the cycle 	or on both. If the number of auxiliary parameters plus the number 
of parameters of the original network is less than those needed for Option 2, then the pre- 
sent scheme becomes more cost effective. 

Instead of having one network to capture the dynamics of the signal and another for 
the parameters, we can have a single big augmented network where the time or the stage 
variable enters explicitly as one of the arguments. Then, the time varying system can be 
represented by, .v(k + I) =f,(x(k), it(k), W j  k), where the augmented parameters Wt.,  
are time invariant. With the introduction of the stage variable as an additional input, Op- 

tion 3 can be considered as a special case of Option 2 for adaptation purposes with ph, = p. 

In Option 2, we consider the time variation just as a sequence of parameters, with no 
relationship amongst them. Hence, we need to determine every element of it. But, in Op- 
tion 3, we assume some relationship among the members of the sequence. The entropy of 
the sequence is thus reduced and hence fewer 'parameters' can be used to define the se- 
quence. For example, if we know that the torque variation while turning a square rod is a 
square wave with unknown amplitude and frequency, the time variation of the torque can 
be captured with just two parameters. Certain other disturbances of specific types have 
been captured with smaller number of parameters (output of an unforced linear system), 
e.g.. Mukhopadhyay and Narendra". 

4. Identification and adaptive control algorithms 

Having discussed various methods of partial unfolding, we now develop update rules for 
the adaptation of identifier and controller parameters. As far as adaptation laws are con- 
cerned, Option 2 is the most general one and the other two options can be considered as 
special cases. So, update laws are developed below only for Option 2. 

Let y be a general cost function and W(k) be the representative set of parameters. Then 

the change in cost function due to changes in W(k) is given by, 

M-1 
= 	ArW(kWw(4), 	 (27) 

4=0 

If we have the condition. W(k) = 	+ 1) = • = 	+ 	1) for k = 0, j, 2j,..., M j, then 

we have aW(k) = AW(k + I) = = AW(k + j— ))• Hence (27) can be written as, 

Ay = 	S 	ATW(k)E w(4.4.)y 
=0.3.2).....M-j 	 i=() 

Effectively, the sensitivity of a change in W(k) on the cost is given by, 

A+141,05  = 	VW(k+i), 
i=0 

where the superscript (+) is used to denote the effective gradient. 

(28) 

(29) 
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As before, consider the weight vectors W„81, Wang , Icr  and Weg  to be parti tioned int  corresponding to their rates of change. Then 
the adaptation laws for 

01 ' 	' 
some 7 are given by, 

liciff (k + M) = W anij (k) —  pEV W/ 4  "1 
(30) 1=0 

W,,, gi (k+ Al) = W mgj  (k) Ili V Won k +0  
1=0 

W + M) = W(k)— pEVi 	
(32) 

1=0 

j-I 
Wcgi  (k + M)= Wcgj (k) —  PEV cvcsi(hi) i 	 (33) 

1=0 

Various other control structures can also be handled under the mechanism of the output 
feedback structure assumed so far. For open loop control, the state mapping for the con- 
troller, i.e., (7), has to be dispensed with and the output mapping of the controller should 
be replaced by u(k) = yc(k)= g(Weg (k)). For state feedback, again (7) has to be discarded 
from the model and the output mapping will look like u(k) = y(k) = g(x,n(k), xr(k), 
Wcg(k)), where xr  is the reference state. However, no change is required as far as the sen- 
sitivity calculation or the update laws are concerned. 

In many cases, the periodic variation is with respect to some abstract variable, s =0, 
S 1 (say) rather than time. For example, in pick and place operation, the load car- 

ried by the gripper varies depending on whether it is moving in one direction or the other. 

In such cases, unfolding of the network has to be done with respect to the variable, s, over 

which the parameter varies, rather than over time. This complicates the problem since the 

adjoint can apportion the error only in time but not with respect to networks separated by 
some other abstract variable. However, adjoints do give all the necessary information 
which needs only to be used properly in such cases. 

Let c be the running index for the cycle and we are looking for an update la w which 

takes the parameters from W(s, c) to W(s, c + 1). During that cycle, let Mk) be a function 

representing the variation of this abstract variable, s, over the discretized time k. Then 

(27) can be rewritten as, 

es--1 	 (34) 
= E [A 	w(od 

ik I s= fs (k)j 
s=0 

Proceeding in a similar manner, the update law, will look like, 
(35) 

fkls=f1(01 
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5. Simulation Results 

In this section, we present the outputs of a simulation study which illustrate some of the 
theoretical developments presented above. A simple two-dimensional robot used for pick 
and place operation is considered. For simplicity, a semi-circular trajectory is taken where 
the robot picks an object at one end of the trajectory and drops it at another. Considerable 
time is spent at either of the ends so that the dynamic effects die out. The robot consists of 
two revolute ',Hilts each of length 1.25. The position of the objects, the robot and the tra- 
jectory ar.x. given in Fig. 5. The problem is characterised by a variable inertia 
(nonlinearity) primarily due to the construction of the machine and additionally due to the 
load picked (time variation). Note that the inertia change due to picking up of the load 
also changes with position. 

In Fig.6, control of such a robot (under no load) with a simple P controller is shown. 
The response is quite good, but it should be noted that the machine moves slower towards 
the end of the trajectory due to the larger inertia faced at that position. Fig. 7 shows the 
deviation from the desired trajectory when the load is picked up. The return trajectory 
remains the same. 

A standard mechanical load was chosen with the inertia In of the first motor being a 

function of the motor positions (p i , p2 ). The controllers were proportional controllers with 

the gain of the first motor K i  being a function of the motor positions to compensate for the 

inertia changes. 
K T,  

p 1  (s) = 1 1 (s) 	  „ 	 (36) 
siln i (p is p 2 )s+ 

K T  
p 2 (s) = I 2 (S) 	2 	 (36) 

s(In 2 s+ B) 
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FIG. 5. The structure of the robot. 
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FIG. 7. Response with a P controller loaded in one 
direction. 

1 1(s)= K1(PI , P2)(Pi nef  — Pi) 	 (38) 

1 2 (s) = K2 (P2 trf  P2 ) 	 (38) 

where B i  is the friction encountered, I the current supplied, p 	the reference position 

and KT  the torque constant of the ith motor, and s the Laplace operator. 

The variations of the inertia and the proportional gain due to change in position was 
captured by neural networks. They were two input, single output networks with 2 hidden 
layers of 3 nodes each. Initially, no unfolding was done. After 200 runs of learning, this 
lead to fairly acceptable trajectories, except for the beginning of the pick operation and 
the end of the place operation. The simulation result is shown in Fig. 8. Then both J 1 (.) 
and K 1 (-) were partially unfolded. Two copies were held corresponding to the forward and 
backward runs (initially both copies were identical as was obtained from earlier experi- 
ment). Then, near-perfect trajectory tracking was seen after another 100 runs as shown in 
Fig. 9. 

6. Conclusion 

The sensitivities calculated by back-propagating the error through the adjoint neural 
model were used on-line without prediction in the class of systems which perform 

repeti- 

tive operations. The methods were directly applicable to time varying systems also. The 
error committed in any cycle was used to correct the parameters in the next cycle. It is 
shown that the condition for identifiability is violated if every parameter varies at the 
sampling rate. Hence, three schemes were proposed for partial unfolding of the network. 
Identification and adaptive control algorithms, for such partially unfolded networks were 

2 

II 

o. 



2. 

1.1 

0.5 

0 	0.5 	1 	1.5 	2 	2.5 

of r 

—%/•4 	 V 	 V.* 	1 	1.5 	2 

ADAPTIVE CONTROL OF PERIODIC SYSTEMS 

83 

FIG. 8. Response with a % neural network controller- 	FIG. 9. Response with a neural network controller- with no unfolding in time. 	 with unfolding in time. 

presented. The algorithms were tested by simulation of a two dimensional robot perform- 
ing pick and place operation. 
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