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Abstract 

In this paper, we have investigated the unconstrained optimization version of the feature selection problem. 
We have searched the space of subsets of features with a genetic algorithm. The nearest-neighbour classifier 
accuracy is used as the search criterion. Our results on several data sets indicate that considerable improve- 
ment in classification accuracy can be obtained. Also, the genetic algorithm is both fast and robust on this 
problem to yield good solutions. Our limited experimental results to verify bias contradict, for some data sets. 
the guideline in pattern recognition of having the ratio of sample size to dimensionality of atleast five. 
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1. Introduction 

In this paper we propose the use of genetic algorithm (GA) for selecting a subset of 
features from an initially large set of features to improve the classification accuracy. 
By eliminating irrelevant or redundant features we hope to decrease the error rate by 
exploiting the peaking phenomenon arising out of the curse of dimensionality la. There 

are two versions to the problem of feature subset selection in the design of pattern classi- 
fiers, each version addressing a specific objective and leading to a distinct type of optimi- 
zation. In one version, the objective is to find the smallest subset of features for which 
the error rate (or perhaps some other measure of performance) is below a given threshold. 
This version leads to a constrained combinatorial optimization problem in which the error 
rate serves as a constraint and the number of features as the primary search criterion. 
In the second version of the problem, the objective is to find a subset of features that 
yields the lowest error rate of the classifier. This leads to an unconstrained optimization 
problem in which the error rate is the search criterion. The latter approach is adopted in 
this paper. 

Feature selection has been studied extensively earlier, but most of the studies are lim- 
ited. They either made a restricted assumption that the criterion function be monotonic, 
and/or assumed that the underlying structure of data is known, and/or used search tech- 
niques that are not good at considering the combinational aspects of features, especially in 

large dimensional problems. 
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The monotonicity property of the performance criterion states that the Performance 

 
obtained by a set of features will never be worse than the performance obtained by ati 
subset of it. Since an exhaustive search is not possible even on a problem of reasonabl 
dimensionality, many search techniques use this property to contain the search. Distrir; 
nant functions and distance measures such as the Bhattacharyya distance and divergence 
are examples of criterion functions satisfying the monotonicity property, and hence this 
property was treated by most of the researches as nonrestrictive. While this assumption i

s  
true for the Baye's rule, any practical discrimination method working on a limited number 
of samples may find it to be restrictive". It is in these problems that the unconstrained 
optimization version seeks a subset of features to improve the performance. Hence, it 
implicitly rejects the monotonicity property. 

The search techniques used for feature subset selection problems can be broadly clas- 
sified as methods based on: sequential selection 2.4 , dynamic programming", branch-and- 
bouneg  and others 9 . Sequential selection techniques include forward selection, backward 
elimination and their generalized version (p, q) search. In the Sequential forward selection 
technique, to begin with, a feature which maximizes a certain performance criterion is 
chosen. Then, among the rest of the features, another one which maximizes the perform- 
ance criterion is chosen next. This process is repeated until enough number of features 
have been chosen that satisfy the constraints imposed. Similarly, backward elimination 
starts with all features which are eliminated one by one. Clearly, these approaches are 
greedy, and are found not to be good at considering the combinational aspects of the fea- 
tures unt i I . This problem has only been alleviated to some extent by the generalized (p, q) 

forward (backward) search which chooses (eliminates) the best (worst) p features at every 

step, and rejects (adds) q from the features chosen (eliminated) by then. 

Dynamic programming approach was used to resolve this problem in that, on the 
one hand, an exhaustive search can be avoided by applying the Bellman's principle of 
optimality which states that an optimal policy has the property that whatever the initial 
state and initial decision are, the remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first decision. On the other hand, an application 
of the foregoing principle together with appropriately formulated 'recursive functional 
equations ensures that the final best subset chosen may not necessarily include all of 
the best single features selected in the previous stages. In addition to this improvement 
based on the monotonicity property, further improvement in search was obtained by 
the branch-and-bound technique which explores only the feasible regions, pruning the 
unfeasible regions based on constraints. However, even searching the feasible regions 
becomes impractical for feature dimensionality exceeding a moderate value like 20. 
Recently, genetic algorithm, a population-based search technique, was used to obtain 
about a two-order improvement over the traditional techniques making it practical to 
use on large-dimensional problems 3 . However, this approach was for the constrained ver- 

sion. 

In this paper, we have investigated the unconstrained optimization version of the 
problem, which implicitly rejects the monotonicity property, under no assumption of the 
underlying structure, and with an emphasis on large dimensional problems. This necessi- , 
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tated a good choice for the search technique to be used along with the criterion function. 
We  have searched the space of subsets of features with a genetic algorithm, a search 
technique that worked best on the constrained optimization version of the problem. The 
nearest-neighbor classifier (NNC) accuracy is used as the search criterion. A work some- 
what akin to ours was done by Kudo and Shimbo 12  in which the error rate was used only 
as a secondary criterion while the smallest subset was used as the primary search crite- 
rion. Also, they used a sequential algorithm. 

The organization of the paper is as follows. In the next section we describe the nearest 
neighbor classifier briefly. In Section 3 we describe the genetic approach to feature subset 
selection problem. Section 4 presents the experiments conducted, results obtained, and a 
discussion of them. Finally, in the last section, we summarize and conclude. 

2. Nearest Neighbor Classifier 

When an unlabelled pattern in an nn-dimensional feature space X and represented by the 
m-dimensional feature vector Y= [y i , y 2 , y„,1 is to be classified, the nearest neighbor of Y 
is found among all the training samples of the c classes,T. Y is assigned to the same class 
as this nearest neighbor. The distance between Y and a training sample is measured using 
the squared Eucledian distance. 

Let 4 = 	 and M i  denote the kth m-dimensional training feature vector of the 

hill class and the number of available training samples of class i, respectively. Similarly, 

let s =[.sks 	, 	sti  I and 1\15 , denote the kth m-dimensional test feature vector of the ith 
***, 	"At I 

class and the number of available test samples of class i respectively. Let N, and N, be the 

total number of test and training samples, respectively. Then, the classifier accuracy ob- 
tained on all test samples, S, using the nearest neighbor classifier(NNC), NNCA, is given 
by 

NNCA(X,T,S)= EE f(sii)*1001 	 (1) 

itl j=1 

f(sii)=1 0'  
if i=i* 
otherwise 

ci(s ii ,tkle )= Mini.k d(sj ,t4 ),/ = 1,2,...,c,k 

r7$ 

d(s t t  I  = 	(s i. 	) 
2

7 n; =IX' 
A La 

u=1 

3. CA approach to search for an optimal subset of features 

Genetic algorithms belong to a class of stochastic algorithms, based on the mechanisms of 
natural selection and natural genetics" possessing an inherent capability to perform paral- 
lel search in complex search spaces. GAs are shown to be competent in obtaining optimal 
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or near-optimal solutions to many optimization problems arising in diverse areas includ- 
ing pattern recognition. For a general introduction to genetic algorithms, the reader is re- 
ferred to Goldberg". 

The problem is formulated as determining an optimal subset of a set of 
n given fea- tures resulting in the best discriminating capability. Hence, it is an optimization problem 

in the space of all subsets of features whose criterion function is the classification accu- 
racy. Given a particular set of features, a training set and a test set, the NNC computes the 
classifier accuracy according to eqn 1. Here, we pose the selection of optimal subset of 
features, Z, as an optimization problem. T and S are the training and the test data sets, re- 
spectively. Given a subset of features, X, T x  and Sx  represent the training and the test data 
sets, and are obtained by projecting T and S onto the subspace spanned by the features of 
X. 

maximize NNCA(X, Tx, Sx) as given by eqn I 

E T(Z) 

The GA requires a solution to be represented in the form of a string or a chromosome. 
So, we require a coding scheme for transforming the subset of features chosen for the 
NNC into a string form, and vice versa. Each chromosome is represented by a binary 
string of length a bits. The ith bit corresponds to the ith feature. If the bit has a value oft, 
then the corresponding feature is included in the subset. Otherwise, it is excluded from it. 
Note that this simple encoding is a bijection. 

The GA maintains a population of chromosomes which represent different NNC con- 
figurations, and the search is carried out using genetic operators. For each solution string, 
Sh in the population, we need to compute its fitness value. We take the NNCA as given by 
eqn 1 as its fitness value. Since the encoding is a bijection, we know what features are 
chosen for a given chromosome, and hence can compute the classifier accuracy. 

Now, we describe the genetic operators used. 

Fitness function: Given a chromosome q, the fitness function, / returns its fitness value 

as: f(q)= NNCA(X,Tx, Sx), where X is a subset of features having a 1 in their correspond - 

ing bit positions in q. The fitness function used in constrained optimization approach by 

Siedlecki and Sklansky 3  is much more complicated. 

Selection operator: We have used a stochastic remainder selection strategy 13 . In this strat- 

egy, the probabilities of selection are calculated as pselecti  = where f, is the 

fitness of the chromosome i. Then the expected number of individuals for each string 
e, 

is calculated as e i  = pselect, *N. Each string is allocated with a number of samples accord- 

ing to the integer part of the e i  values. The remainder strings are filled in as follows: In 
stochastic remainder selection with replacement, the fractional parts of the expected nutn.- 
ber values are used to calculate the weights in a roulette wheel selection procedure. This 
selection procedure is then used to fill the remaining population slots. In stocbaso

c  
_ 

remainder selection without replacement, the fractional parts of the expected number val- 
ues are treated as probabilities. One by one, weighted coin tosses (Bernoulli trials) 
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performed using the fractional parts as success probabilities. For example, a string with 
an expected number of copies equal to 1.5 would receive a single copy surely, and another 
copy with a probability of 0.5. This process is continued until the population is full. 
We have used the stochastic remainder selection with replacement. We have also adopted 
the elite strategy where the current best chromosome is always carried to the next genera- 
tion. 

Crossover and mutation operators: We have chosen the operators discussed in the previ- 
ous sectior 

4. Experiments and Results 

In this section, we describe the data sets used, the experiments conducted, and the results 
obtained. Finally, we discuss the results. 

4.1. The utili:ed data sets 

We have chosen eight data sets in this study: fiveclass I4 , iris' s , fossil' s , 80X I6. vowel, 
waveform, soybean and sonar". Of these, the first four are small dimensional, but have 
been included for illustrative purposes. Although the vowel data set is of dimensionality 
10, it has been chosen because of its complexity. The last three data sets can be consid- 
ered as large dimensional. The details of dimensionality, number of training, test and total 
samples. and the ratio of number of design samples to dimensionality are given in Table 
I. For some data sets there is no explicit separation between training and test sets. Leave- 
one-out method is used on them. 

The first four data sets have been used extensively in pattern recognition literature. 
and are available in the cited references. The vowel, waveform and sonar data sets have 
been used by neural network community, and are available on CMU NN benchmark col- 
lection. The soybean data set is available on the UCI machine learning benchmark collec- 
tion. 

4.2. Experiments 

We.  have conducted an exhaustive search on the first five low-dimensional data sets. Ge- 
netic algorithm is used to search for an optimal solution for the large-dimensional prob- 

Table I 
Data sets used 

n thes 

Test 	Totes, 

. 	35 
- 	150 
_ 	87 
. 	45 

462 	990 

1000 	1300 

242 	442 

104 	208 

Allalitlf.-1.-----n sle*m 

1.3 

12.5 
4.8 
1.9 
9.0 

20.6 
1.4 
1.7 

SI. No. 

1 
2 
3 
4 
5 
6 
7 
8 

Data set 

Five class 
Iris 
Fossil 
80X 
Vowel 
Waveform 
Soybean 
Sonar 

Dimensionality 

(nil 

3 
4 
6 
8 

10 
21 
35 
60 

Number g 
classes lc) 

5 
3 
3 
3 

11 
3 
9 
2 

Training 

- 
- 
- 
. 

528 
300 
200 
104 
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Table II 
Results obtained on best subsets chosen 

SI. No. Data set Search No. of tamers NNC accuracy (f4 I 
technique all 	

subset all 	subset 

1 Five class Exhaustive 3 3 100.0 100.0 
' Iris Exhaustive 4 4 96.0 96.0 
3 Fossil Exhaustive 6 5 98.8 100.0 
4 SOX Exhaustive S 	7 93.3 100.0 
5 Vowel Exhaustive 10 7 56.1 60.1 
6 Waveform Genetic 21 12 77.0 80.0 
7 Soybean Genetic 35 22 86.4 95.0 
8 Sonar Genetic 60 33 91.3 1(X).0 

lems. For the first four data sets, NNC accuracy is obtained using the leave
-one - out tech- 

nique. For the last four data sets the accuracy is obtained using separate training and test 
sets. The best results obtained are shown in Table II. 

In our GA, we have varied the crossover probability from 0.95 to 0.45 in steps of 
0.1. We have used a fixed mutation probability of 0.05 for all data sets. A population 
size of 50, 100, and 100 were used for the waveform, soybean and the sonar data sets, 
respectively. Since GA is a stochastic algorithm, we repeated the above experiment five 
times for every combination, and the mean results are obtained. The mean results corre- 

sponding to a crossover probability of 0.95 are plotted in Fig. 1. Since the other parameter 

settings also led to a similar convergence, they are not shown. There were multiple 

subsets of features resulting in the same classification accuracy for some data sets. We 

have chosen one of them arbitrarily, and reported the results for that choice in Tables II 

and III. 

The optimization of error rate may introduce an unwanted bias in the 
sense that the 

selected features may strongly suit the data at hand, and not necessarily the 
underly- 

ing distributions of the feature space. An accepted guideline in pattern recognition is 
that 

the ratio of the number of design samples per class to the dimensionality should be 
larger 

than 5 for the bias to be small'. Since some of the data sets do not 
satisfy this 

Number ot generatiorie 

(a) 	 (b) 

FIG. 1. Convergence of the genetic algorithm for (a) waveform data, (b) Soybean 
Ow. and (c) Sonar 

dam. 
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Table III 
Results obtained to verify bias 

Daut set Features Clasmih.ation (W( 111Th 	(tk a 

Leave-one-out Trg: Set) Trg: 5e12 
Set I Set 2 Total set Test: Set2 Test: Sell 

Vowel all 99.1 99.1 99.1 561 55.1 
subset 98.7 99.1 98.1 60.1 53.0 

Wavefor all 75.6 75.6 76.4 77.0 73.0 
at subset 76.4 75.6 78. 1  80.0 77.0 
Soybean all 84.0 86.4 89.1 86.4 85.0 

subset 91.0 90.9 93.2 95.0 89.5 
Sonar all 63.5 89.4 8 1 .7 91.3 77.9 

subset 74.0 92.3 889 100.0 75.0 

guideline as seen from Table I. a bias may be introduced. For the last four data sets where 
separate training and test sets are used, we conducted further experiments to gain some 
insight into the bias. We obtained error rates using the leave-one-out technique on the 
training, test and total samples separately. Also, we obtained the NNC accuracy by revers- 
ing the roles of the training and the test sets. These experiments were done for both the 
complete and subset of features chosen by the genetic algorithm which used different 
training and test sets. Since optimization is carried out with respect to separate training 
and test sets, we feel that these experiments serve the purpose of testing unknown sam- 
ples. If no bias is introduced, we would expect similar improvement in all the experi- 
ments. We could have partitioned the total available samples into three sets: a training and 
a test set to be used in optimization, and another test set to be used after optimization. 
However, we have not done this because when the sample size is small, every effort 
should be made to use all of them in the design set. The results of these experiments are 
shown in Table 111. Here. Data sets 1 and 2 correspond to the original training and test sets 

used by the genetic algorithm. 

4.3. Discussion of results 

The results in Table 11 indicate clearly a trend that with increase in the number of features 
the difference also increases in classification accuracies among the features and the best 
subset of features. This can be expected because as the number of features increases so are 
the chances of the presence of redundant or irrelevant features also increase. However, the 
80X data set appears to be an exception in the sense that although the dimensionality is 
only 8, the improvement in accuracy is significantly high. Since the ratio of sample size to 
dimensionality is only 1.9, bias might have been introduced. A further analysis of the re- 
sults and data revealed that all the three global optima excluded the last feature along 
which all three classes overlap considerably. Thus, this feature can be considered as ir- 
relevant. Since one of the optima excluded only this feature, we feel that the bias intro- 
duced is small. In addition to the last feature, the second feature from the first and the 
fourth feature from another optimal subsets were excluded. They can be treated as redun- 

dant. 
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• 	The results obtained on the sonar data set are particularly interesting. This data set is 
highly undersampled considering the dimensionality of 60 and a sample size of 104 for 
training and test sets. The best result obtained, using a multilayer perceptron, was 90.4" 
We however, have obtained 100% accuracy. Of course, MLP used only the training set as 
the design set, whereas our optimization of NNC accuracy uses both training and test sets 
as the design set. However, we feel that there was no unwanted bias introduced as indi- 
cated by the results in Table III. Also, the best found subset consisted features selected at 
almost regular intervals, i.e., it selected two or three and rejected two or three features 
repeatedly across the entire spectrum. The features were obtained from sampling apertures 
offset temporally. Since this roughly corresponds to taking fewer number of wider aper- 
tures with greater offset, we feel that the bias introduced by NNC is small. Hence, the 
features can be considered as redundant. 

The convergence plots shown in Fig. I clearly indicate that genetic algorithm is better 
than a random search. Although convergence has not taken place, the trend is clearly seen. 
Also, that such a trend has been shown in all cases of parameter values it indicates the 
robustness of the GA in the selection of a good subset of features. 

The results shown in Table III, which include the results obtained by GA (column 6) 
and reported in Table II, indicate that the improvement from all features to subsets is 
similar across all columns which correspond to different experiments. This trend can be 
observed for all the data sets except the vowel data set. Hence, we feel that a bias has been 
introduced only in the vowel data set. We feel that there is no bias introduced in the case 
of 80X, soybean and sonar data sets based on the results shown in Table III along with 
manual analysis done. According to the guideline in PR practice, bias must have been in- 
troduced in these and not in the vowel data set. Hence, we feel that further investigation is 
desirable to resolve this conflict. 

5. Summary and Conclusion 

We have investigated the effectiveness of selecting an optimal subset of features which 
maximizes the classification accuracy. We found that as the number of features increases. 

improvement mprovement in classification accuracy increases too. Intuitively this is appealing be- 
cause the chances of the presence of redundant or irrelevant features increases with in- 
creasing dimensionality. Irrelevant features may either correspond to features which have 
no relevance to the classification intent as in the case of some of the features in soybean 
data, or may correspond to features which are highly noisy as in the case of 80 X data. 
Redundant features may arise out of multivariate relationships among features, or out of 
negligible variation in their values across different classes (compared to variation in other 
features), or may even arise out of finer resolution as in the case of sonar data. 

Genetic algorithms have been found to be effective in finding good solutions fast. 
Also, they appear to be robust for our problem since a variety of parameter values gave 

almost the same results on all data sets. 

We have used the NNC directly to compute the classifier accuracy for optimization. As 
far as the possibility of a bias is concerned, our analysis contradicts, for some data sets. 
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the guideline in PR practice of using a sample size at least five times the dimensionality. 
Finally, we conclude that a considerable improvement that can be achieved by our ap- 
proach of feature selection makes a further investigation of bias worth before the results 
are either accepted or rejected. 

Note: After submitting the paper, we came to know of a similar attempt made earlier. This 
work on the GAs was reported in the Neural Information Processing Systems - Vol. III. 
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